References

  1. Y. Liu, P. Gu, L. Jia, G. Zhang, An investigation into the use of cuprous chloride for the removal of radioactive iodide from aqueous solutions, J. Hazard. Mater., 302 (2016) 82–89.
  2. M.A. Cherif, A. Martin-Garin, F. Gérard, O. Bildstein, A robust and parsimonious model for caesium sorption on clay minerals and natural clay materials, Appl. Geochem., 87 (2017) 22–37.
  3. S.R.H. Vanderheyden, R. Van Ammel, K. Sobiech-Matura, K. Vanreppelen, S. Schreurs, W. Schroeyers, J. Yperman, R. Carleer, Adsorption of cesium on different types of activated carbon, J. Radioanal. Nucl. Chem., 310 (2016) 301–310.
  4. I.T. Al-Alawy, O.A. Mzher, Radiological characterization of the irt-5000(14-Tammuz) research nuclear reactor at Al-Tuwaitha nuclear center in Iraq, Environ. Earth Sci., 78 (2019) 229, doi: 10.1007/s12665-019-8122-6.
  5. S. Higaki, M. Hirota, Decontamination efficiencies of pot-type water purifiers for 131I, 134Cs and 137Cs in rainwater contaminated during Fukushima Daiichi nuclear disaster, PLoS One, 7 (2012) e37184, doi: 10.1371/journal.pone.0037184.
  6. C. Decamp, S. Happel, Utilization of a mixed-bed column for the removal of iodine from radioactive process waste solutions, J. Radioanal. Nucl. Chem., 298 (2013) 763–767.
  7. S. Sarri, P. Misaelides, F. Noli, L. Papadopoulou, D. Zamboulis, Removal of iodide from aqueous solutions by polyethylenimine-epichlorohydrin resins, J. Radioanal. Nucl. Chem., 298 (2013) 399–403.
  8. N.M. Jabbar, S.M. Alardhi, A.K. Mohammed, I.K. Salih, T.M. Albayati, Challenges in the implementation of bioremediation processes in petroleum-contaminated soils: a review, Environ. Nanotechnol. Monit. Manage., 18 (2022) 100694, doi: 10.1016/j.enmm.2022.100694.
  9. N.S. Ali, K.R. Kalash, A.N. Ahmed, T.M. Albayati, Performance of a solar photocatalysis reactor as pretreatment for wastewater via UV, UV/TiO2, and UV/H2O2 to control membrane fouling, Sci. Rep., 12 (2022) 16782, doi: 10.1038/s41598-022-20984-0.
  10. G. Lefèvre, A. Walcarius, J.-J. Ehrhardt, J. Bessière, Sorption of iodide on cuprite (Cu2O), Langmuir, 16 (2000) 4519–4527.
  11. A.N. Kamenskaya, N.B. Mikheev, S.A. Kulyukhin, I.A. Rumer, V.L. Novichenko, Metal-containing zeolites as sorbents for localization of radioiodine and CsI aerosols from vapor-air and aqueous phases, Radiochemistry, 43 (2001) 575–579.
  12. G. Lefèvre, J. Bessière, J.-J. Ehrhardt, A. Walcarius, Immobilization of iodide on copper(I) sulfide minerals, J. Environ. Radioact., 70 (2003) 73–83.
  13. S.D. Balsley, P.V. Brady, J.L. Krumhansl, H.L. Anderson, Iodide retention by metal sulfide surfaces: cinnabar and chalcocite, Environ. Sci. Technol., 30 (1996) 3025–3027.
  14. D. Rana, T. Matsuura, M.A. Kassim, A.F. Ismail, Radioactive decontamination of water by membrane processes — a review, Desalination, 321 (2013) 77–92.
  15. G. Zakrzewska-Trznadel, Advances in membrane technologies for the treatment of liquid radioactive waste, Desalination, 321 (2013) 119–130.
  16. S.M. Alardhi, J.M. Alrubaye, T.M. Albayati, Removal of methyl green dye from simulated wastewater using hollow fiber ultrafiltration membrane, IOP Conf. Ser.: Mater. Sci. Eng., 928 (2020) 052020,
    doi: 10.1088/1757-899X/928/5/052020.
  17. S. Choung, W. Um, M. Kim, M.-G. Kim, Uptake mechanism for iodine species to black carbon, Environ. Sci. Technol., 47 (2013) 10349–10355.
  18. J.S. Hoskins, T. Karanfil, S.M. Serkiz, Removal and sequestration of iodide using silver-impregnated activated carbon, Environ. Sci. Technol., 36 (2002) 784–789.
  19. H.J. Al-Jaaf, N.S. Ali, S.M. Alardhi, T.M. Albayati, Implementing eggplant peels as an efficient bio-adsorbent for treatment of oily domestic wastewater, Desal. Water Treat., 245 (2022) 226–237.
  20. N.S. Ali, N.M. Jabbar, S.M. Alardhi, H.Sh. Majdi, T.M. Albayati, Adsorption of methyl violet dye onto a prepared bio-adsorbent from date seeds: isotherm, kinetics, and thermodynamic studies, Heliyon, 8 (2022) e10276, doi: 10.1016/j.heliyon.2022.e10276.
  21. M. Ikari, Y. Matsui, Y. Suzuki, T. Matsushita, N. Shirasaki, Removal of iodide from water by chlorination and subsequent adsorption on powdered activated carbon, Water Res., 68 (2015) 227–237.
  22. A. Iwanade, N. Kasai, H. Hoshina, Y. Ueki, S. Saiki, N. Seko, Hybrid grafted ion exchanger for decontamination of radioactive cesium in Fukushima Prefecture and other contaminated areas, J. Radioanal. Nucl. Chem., 293 (2012) 703–709.
  23. P. Rajec, F. Macášek, M. Féder, P. Misaelides, E. Šamajová, Sorption of caesium and strontium on clinoptilolite-and mordenite-containing sedimentary rocks, J. Radioanal. Nucl. Chem., 229 (1998) 49–55.
  24. K.C. Song, H.D. Kim, H.K. Lee, H.S. Park, K.J. Lee, Adsorption characteristics of radiotoxic cesium and iodine from low-level liquid wastes, J. Radioanal. Nucl. Chem., 223 (1997) 199–205.
  25. S.T. Kadhum, G.Y. Alkindi, T.M. Albayati, Determination of chemical oxygen demand for phenolic compounds from oil refinery wastewater implementing different methods, Desal. Water Treat., 231 (2021) 44–53.
  26. T. Kubota, S. Fukutani, T. Ohta, Y. Mahara, Removal of radioactive cesium, strontium, and iodine from natural waters using bentonite, zeolite, and activated carbon, J. Radioanal. Nucl. Chem., 296 (2013) 981–984.
  27. W.A. Muslim, S.K. Al-Nasri, T.M. Albayati, Evaluation of bentonite, attapulgite, and kaolinite as eco-friendly adsorbents in the treatment of real radioactive wastewater containing Cs-137, Prog. Nucl. Energy, 162 (2023) 104730, doi: 10.1016/j.pnucene.2023.104730.
  28. G.D. Yuan, B.K.G. Theng, G.J. Churchman, W.P. Gates, Chapter 5.1 – Clays and Clay Minerals for Pollution Control, F. Bergaya, G. Lagaly, Eds., Developments in Clay Science, Elsevier, Vol. 5, 2013, pp. 587–644, ISSN 1572-4352, ISBN 9780080993645. Available at https://doi.org/10.1016/B978-0-08-098259-5.00021-4
  29. T. Ohnuki, N. Kozai, Adsorption behavior of radioactive cesium by non-mica minerals, J. Nucl. Sci. Technol., 50 (2013) 369–375.
  30. Y. Zabulonov, V. Kadoshnikov, H. Zadvernyuk, T. Melnychenko, V. Molochko, Effect of the surface hydration of clay minerals on the adsorption of cesium and strontium from dilute solutions, Adsorption, 27 (2021) 41–48.
  31. W.A. Muslim, T.M. Albayati, S.K. Al-Nasri, Decontamination of actual radioactive wastewater containing 137Cs using bentonite as a natural adsorbent: equilibrium, kinetics, and thermodynamic studies, Sci. Rep., 12 (2022) 13837, doi: 10.1038/s41598-022-18202-y.
  32. Z.H. Ibrahim, A.F. Mkhaiber, S.K. Al-Nasri, Estimation and reduction of the total activity for the liquid waste pool in radiochemistry laboratories in Al-Tuwaitha site, Baghdad J. Eng. Appl. Sci., 13 (2018) 3386–3391.
  33. G.F. Knoll, A.V. Wegst, Radiation detection and measurement, Med. Phys.: Int. J. Med. Phys. Res. Pract., 7 (1980) 397–398.
  34. N.S. Abbood, N.S. Ali, E.H. Khader, H. Sh. Majdi, T.M. Albayati, N.M. Cata Saady, Photocatalytic degradation of cefotaxime pharmaceutical compounds onto a modified nanocatalyst, Res. Chem. Intermed., 49 (2023) 43–56.
  35. A.T. Khadim, T.M. Albayati, N.M. Cata Saady, Removal of sulfur compounds from real diesel fuel employing the encapsulated mesoporous material adsorbent Co/MCM-41 in a fixed-bed column, Microporous Mesoporous Mater., 341 (2022) 112020, doi: 10.1016/j.micromeso.2022.112020.
  36. N.S. Ali, H.N. Harharah, I.K. Salih, N.M. Cata Saady, S. Zendehboudi, T.M. Albayati, Applying MCM-48 mesoporous material, equilibrium, isotherm, and mechanism for the effective adsorption of 4-nitroaniline from wastewater, Sci. Rep., 13 (2023) 9837, doi: 10.1038/s41598-023-37090-4.
  37. A.W.A. Al-Ajeel, S.N. Abdullah, A.M. Kh. Mustafa, Beneficiation of attapulgite – montmorillonite claystone by dispersion sedimentation, Iraqi Bull. Geol. Min., 4 (2008) 117–124.
  38. M.I. Abdou, A.M. Al-sabagh, M.M. Dardir, 2013, Evaluation of Egyptian bentonite and nano-bentonite as drilling mud, Egypt. J. Pet., 22 (2013) 53–59.
  39. R.L. Frost, Hydroxyl deformation in kaolins, Clays Clay Miner., 46 (1998) 280–289.
  40. H.N. Erten, S. Aksoyoglu, S. Hatipoglu, H. Göktürk, Sorption of cesium and strontium on montmorillonite and kaolinite, Radiochim. Acta, 44–45 (1998) 147–152.
  41. T. Shahwan, H.N. Erten, L. Black, G.C. Allen, TO-SIMS study of Cs+ sorption on natural 647 kaolinite, Sci. Total Environ., 226 (1999) 255–260.
  42. R.N.J. Comans, D.E. Hockley, Kinetics of cesium sorption on illite, Geochim. Cosmochim. Acta, 56 (1992) 1157–1164.
  43. R.N.J. Comans, M. Haller, P. De Preter, Sorption of cesium on illite: non-equilibrium behaviour and reversibility, Geochim. Cosmochim. Acta, 55 (1991) 433–440.
  44. D.W. Evans, J.J. Alberts, R.A. Clark III, Reversible ionexchange fixation of cesium-137 leading to mobilization from reservoir sediments, Geochim. Cosmochim. Acta, 47 (1983) 1041–1049.
  45. T. Missana, A. Benedicto, M. García-Gutiérrez, U. Alonso, Modeling cesium retention onto Na-, K- and Ca-smectite: effects of ionic strength, exchange and competing cations on the determination of selectivity coefficients, Geochim. Cosmochim. Acta, 128 (2014) 266–277.
  46. L. Baborová, D. Vopálka, R. Červinka, Sorption of Sr and Cs onto Czech natural bentonite: experiments and modelling, J. Radioanal. Nucl. Chem., 318 (2018) 2257–2262.
  47. X. Wei, Y. Sun, D. Pan, Z. Niu, Z. Xu, Y. Jiang, W. Wu, Z. Li, L. Zhang, Q. Fan, Adsorption properties of Na-palygorskite for Cs sequestration: effect of pH, ionic strength, humic acid and temperature, Appl. Clay Sci., 183 (2019) 105363, doi: 10.1016/j. clay.2019.105363.
  48. A.A. Al-Rahmani, S.K. Al-Attafi, S.K. Al-Nasri, Z.W. Jasim, Hierarchical structures incorporating carbon and zeolite to remove radioactive contamination, Iraqi J. Sci., 61 (2020) 1944–1951.
  49. J. Jang, D.S. Lee, Magnetic prussian blue nanocomposites for effective cesium removal from aqueous solution, Ind. Eng. Chem. Res., 55 (2016) 3852–3860.
  50. J. Qian, J.Y. Xu, L.J. Kuang, D.B. Hua, Cesium removal from human blood by poly(ethylene glycol)-decorated prussian blue magnetic nanoparticles, ChemPlusChem, 82 (2017) 888–895.
  51. P.F. Wang, J.L. Zheng, X.L. Ma, X. Du, F.F. Gao, X.G. Hao, B. Tang, A. Abudula, G. Guan, Electroactive magnetic microparticles for the selective elimination of cesium ions in the wastewater, Environ. Res., 185 (2020) 109474, doi: 10.1016/j. envres.2020.109474.
  52. T. Yousefi, M. Torab-Mostaedi, M.A. Moosavian, H.G. Mobtaker, Potential application of a nanocomposite:HCNFe@polymer for effective removal of Cs(I) from nuclear waste, Prog. Nucl. Energy, 85 (2015) 631–639.
  53. Md. Nazmul Hasan, M.A. Shenashen, Md. Munjur Hasan, H. Znad, Md. Rabiul Awual, Assessing of cesium removal from wastewater using functionalized wood cellulosic adsorbent, Chemosphere, 270 (2021) 128668, doi: 10.1016/j. chemosphere.2020.128668.