References
- A. Mariadhas, I. Raja, R. Kavvampally, J. Jayaraman,
N. Joy, Characteristics of heat transfer and pressure drop in a
corrugated plate heat exchanger with chemically synthesized
ZnO/sparkling water nanofluids, Desal. Water Treat.,
262 (2022) 14–26.
- K. Ishida, H. Sakai, Effects of advanced ultraviolet/H2O2
treatment on oxidation of linear alkylbenzene sulfonate in
detergent wastewater, Desal. Water Treat., 289 (2023) 191–196.
- N.R. Kuppusamy, H.A. Mohammed, C.W. Lim, Numerical
investigation of trapezoidal grooved microchannel heat sink
using nanofluids, Thermochim. Acta, 573 (2013) 39–56.
- H.A. Mohammed, G. Bhaskaran, N.H. Shuaib, R. Saidur, Heat
transfer and fluid flow characteristics in microchannels heat
exchanger using nanofluids: a review, Renewable Sustainable
Energy Rev., 15 (2011) 1502–1512.
- B.H. Salman, H.A. Mohammed, K.M. Munisamy, A. Sh.
Kherbeet, Characteristics of heat transfer and fluid flow in
microtube and microchannel using conventional fluids and
nanofluids: a review, Renewable Sustainable Energy Rev.,
28 (2013) 848–880.
- L. Godson, B. Raja, D. Mohan Lal, S. Wongwises,
Enhancement of heat transfer using nanofluids—an overview,
Renewable Sustainable Energy Rev., 14 (2010) 629–641.
- B.H. Salman, H.A. Mohammed, A. Sh. Kherbeet, Heat transfer
enhancement of nanofluids flow in microtube with constant
heat flux, Int. Commun. Heat Mass Transfer, 39 (2012)
1195–1204.
- O. Maťátková, J. Michailidu, A. Miškovská, I. Kolouchová,
J. Masák, A. Čejková, Antimicrobial properties and
applications of metal nanoparticles biosynthesized by green
methods, Biotechnol. Adv., 58 (2022) 107905, doi: 10.1016/j.biotechadv.2022.107905.
- M. Chandra Sekhara Reddy, V. Vasudeva Rao, Experimental
studies on thermal conductivity of blends of ethylene glycol water-based TiO2 nanofluids, Int. Commun. Heat Mass Transfer,
46 (2013) 31–36.
- T. Yiamsawasd, A.S. Dalkilic, S. Wongwises, Measurement of
the thermal conductivity of titania and alumina nanofluids,
Thermochim. Acta, 545 (2012) 48–56.
- P. Keblinski, J.A. Eastman, D.G. Cahill, Nanofluids for thermal
transport, Mater. Today, 8 (2005) 36–44.
- E. Mat Tokit, M.Z. Yusoff, H.A. Mohammed, Generality of
Brownian motion velocity of two phase approach in interrupted
microchannel heat sink, Int. Commun. Heat Mass Transfer,
49 (2013) 128–135.
- P. Naphon, L. Nakharintr, Heat transfer of nanofluids in the
mini-rectangular fin heat sinks, Int. Commun. Heat Mass
Transfer, 40 (2013) 25–31.
- C.J. Ho, W.C. Chen, An experimental study on thermal
performance of Al2O3/water nanofluid in a minichannel heat
sink, Appl. Therm. Eng., 50 (2013) 516–522.
- S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature
dependence of thermal conductivity enhancement for
nanofluids, ASME J. Heat Transfer, 125 (2003) 567–574.
- C.T. Nguyen, G. Roy, C. Gauthier, N. Galanis, Heat transfer
enhancement using Al2O3-water nanofluid for an electronic
liquid cooling system, Appl. Therm. Eng., 27 (2007) 1501–1506.
- N.A. Roberts, D.G. Walker, Convective performance of
nanofluids in commercial electronics cooling systems,
Appl. Therm. Eng., 30 (2010) 2499–2504.
- B.P. Whelan, R. Kempers, A.J. Robinson, A liquid-based system
for CPU cooling implementing a jet array impingement
waterblock and a tube array remote heat exchanger,
Appl. Therm. Eng., 39 (2012) 86–94.
- A. Ijam, R. Saidur, P. Ganesan, Cooling of minichannel heat
sink using nanofluids, Int. Commun. Heat Mass Transfer,
39 (2012) 1188–1194.
- J.F. Tullius, Y. Bayazitoglu, Effect of Al2O3/H2O nanofluid on
MWNT circular fin structures in a minichannel, Int. J. Heat
Mass Transfer, 60 (2013) 523–530.
- L. Harish Kumar, S.N. Kazi, H.H. Masjuki, M.N.M. Zubir,
A review of recent advances in green nanofluids and their
application in thermal systems, Chem. Eng. J., 429 (2022)
132321, doi: 10.1016/j.cej.2021.132321.
- X. Yu, J. Feng, Q. Feng, Q. Wang, Development of a plate-pin
fin heat sink and its performance comparisons with a plate fin
heat sink, Appl. Therm. Eng., 25 (2005) 173–182.
- Y.-T. Yang, H.-S. Peng, Investigation of planted pin fins for heat
transfer enhancement in plate fin heat sink, Microelectron.
Reliab., 49 (2009) 163–169.
- E.M. Sparrow, J.W. Ramsey, C.A.C. Altemani, Experiments
on in-line pin fin arrays and performance comparisons with
staggered arrays, J. Heat Transfer, 102 (1980) 44–50.
- D. Soodphakdee, M. Behnia, D.W. Copeland, A comparison
of fin geometries for heatsinks in laminar forced convection:
part I - round, elliptical, and plate fins in staggered and in-line
configurations, Int. J. Microcircuits Electron Packag., 24 (2001)
68–76.
- S. Ramalingam, G. Sankaranarayanan, S. Senthil, R.A. Rohith,
R. Santosh Kumar, Effect of cerium oxide nanoparticles
derived from biosynthesis of Azadirachta indica on stability
and performance of a research CI engine powered by diesellemongrass
oil blends, Energy Environ., 34 (2023) 886–908.
- K.R.B. Singh, V. Nayak, T. Sarkar, R.P. Singh, Cerium oxide
nanoparticles: properties, biosynthesis and biomedical
application, RSC Adv., 10 (2020) 27194–27214.
- A. Saka, Y. Shifera, L.T. Jule, B. Badassa, N. Nagaprasad,
R. Shanmugam, L. Priyanka Dwarampudi, V. Seenivasan,
K. Ramaswamy, Biosynthesis of TiO2 nanoparticles by Caricaceae (papaya) shell extracts for antifungal application, Sci. Rep.,
12 (2022) 15960, doi: 10.1038/s41598-022-19440-w.
- A.A. Kashale, A.S. Rasal, G.P. Kamble, V.H. Ingole, P.K. Dwivedi,
S.J. Rajoba, L.D. Jadhav, Y.-C. Ling, J.-Y. Chang, A.V. Ghule,
Biosynthesized Co-doped TiO2 nanoparticles based anode for
lithium-ion battery application and investigating the influence
of dopant concentrations on its performance, Composites,
Part B, 167 (2019) 44–50.
- A. Ansari, V.U. Siddiqui, W.U. Rehman, Md. Khursheed Akram,
W.A. Siddiqi, A.M. Alosaimi, M.A. Hussein, M. Rafatullah,
Green synthesis of TiO2 nanoparticles using Acorus calamus leaf extract and evaluating its photocatalytic and in vitro
antimicrobial activity, Catalysts, 12 (2022) 181, doi: 10.3390/catal12020181.
- A. Maridhas, V.N. Aravind Kumar, S. Kaushik, P. Bency,
J. Jayaprabakar, Thermal performance analysis of a double
pipe heat exchanger using biosynthesised silicon carbide
and carbon nanotubes, Aust. J. Mech. Eng., (2022) 1–9,
doi: 10.1080/14484846.2022.2154308.
- M. Roshani, S. Ziaeddin Miry, P. Hanafizadeh, M. Ashjaee,
Hydrodynamics and heat transfer characteristics of a miniature
plate pin-fin heat sink utilizing Al2O3-water and TiO2-water
nanofluids, ASME J. Therm. Sci. Eng. Appl., 7 (2015) 031007,
doi: 10.1115/1.4030103.
- M. Anbuvannan, M. Ramesh, G. Viruthagiri, N. Shanmugam,
N. Kannadasan, Anisochilus carnosus leaf extract mediated
synthesis of zinc oxide nanoparticles for antibacterial and
photocatalytic activities, Mater. Sci. Semicond. Process.,
39 (2015) 621–628.
- S. Vijayakumar, S. Mahadevan, P. Arulmozhi, S. Sriram,
P.K. Praseetha, Green synthesis of zinc oxide nanoparticles
using Atalantia monophylla leaf extracts: characterization and
antimicrobial analysis, Mater. Sci. Semicond. Process., 82 (2018)
39–45.
- B. Shahmoradi, M. Pirsaheb, M.A. Pordel, T. Khosravi,
R.R. Pawar, S.-M. Lee, Photocatalytic performance of chromiumdoped
TiO2 nanoparticles for degradation of Reactive Black
5 under natural sunlight illumination, Desal. Water Treat.,
67 (2017) 324–331.
- H.S. Kwak, H. Kim, J.M. Hyun, T.-H. Song, Thermal control of
electroosmotic flow in a microchannel through temperaturedependent
properties, J. Colloid Interface Sci., 335 (2009)
123–129.
- R.L. Hamilton, O.K. Crosser, Thermal conductivity of
heterogeneous two-component systems, Ind. Eng. Chem.
Fundam., 1 (1962) 187–191.
- S.M.S. Murshed, K.C. Leong, C. Yang, Enhanced thermal
conductivity of TiO2—water based nanofluids, Int. J. Therm.
Sci., 44 (2005) 367–373.
- W. Yu, S.U.S. Choi, The role of interfacial layers in the
enhanced thermal conductivity of nanofluids: a renovated
Hamilton–Crosser model, J. Nanopart. Res., 6 (2004) 355–361.
- E.V. Timofeeva, A.N. Gavrilov, J.M. McCloskey, Y.V. Tolmachev,
S. Sprunt, L.M. Lopatina, J.V. Selinger, Thermal conductivity
and particle agglomeration in alumina nanofluids: experiment
and theory, Phys. Rev. E, 76 (2007) 061203, doi: 10.1103/PhysRevE.76.061203.
- G.K. Batchelor, The effect of Brownian motion on the bulk
stress in a suspension of spherical particles, J. Fluid Mech.,
83 (1977) 97–117.
- D.A. Drew, S.L. Passman, Theory of Multicomponent Fluids,
Springer, New York, NY, 2006.
- H.C. Brinkman, The viscosity of concentrated suspensions and
solutions, J. Chem. Phys., 20 (1952) 571, doi: 10.1063/1.1700493.
- X. Wang, X. Xu, S.U.S. Choi, Thermal conductivity of
nanoparticle - fluid mixture, J. Thermophys Heat Transfer,
13 (1999) 474–480.
- N.B. Argaftik, B.N. Volkov, L.D. Voljak, International tables of
the surface tension of water, J. Phys. Chem. Ref. Data, 12 (1983)
817–820.
- D.S. Zhu, S.Y. Wu, N. Wang, Surface tension and viscosity
of aluminum oxide nanofluids, AIP Conf. Proc., 1207 (2010)
460–464.
- R. Penn, B.J. Ward, L. Strande, M. Maurer, Review of synthetic
human faeces and faecal sludge for sanitation and wastewater
research, Water Res., 132 (2018) 222–240.
- J.T. Radford, S. Sugden, Measurement of faecal sludge in-situ
shear strength and density, Water SA, 40 (2014) 183–188.
- B. Camenen, D.P. van Bang, Modelling the settling of suspended
sediments for concentrations close to the gelling concentration,
Cont. Shelf Res., 31 (2011) S106–S116.
- D.R. Lester, S.P. Usher, P.J. Scales, Estimation of the hindered
settling function R(ϕ) from batch‐settling tests, AlChE J.,
51 (2005) 1158–1168.
- J.-H. Lee, K.S. Hwang, S.P. Jang, B.H. Lee, J.H. Kim, S.U.S. Choi,
C.J. Choi, Effective viscosities and thermal conductivities of
aqueous nanofluids containing low volume concentrations
of Al2O3 nanoparticles, Int. J. Heat Mass Transfer, 51 (2008)
2651–2656.
- I. Roefs, B. Meulman, J.H.G. Vreeburg, M. Spiller, Centralised,
decentralised or hybrid sanitation systems? economic
evaluation under urban development uncertainty and phased
expansion, Water Res., 109 (2017) 274–286.
- K.B. Anoop,T. Sundararajan, S.K. Das, Effect of particle size
on the convective heat transfer in nanofluid in the developing
region, Int. J. Heat Mass Transfer, 52 (2009) 2189–2195.
- M.R. Sohel, S.S. Khaleduzzaman, R. Saidur, A. Hepbasli,
M.F.M. Sabri, I.M. Mahbubul, An experimental investigation
of heat transfer enhancement of a minichannel heat sink using
Al2O3–H2O nanofluid, Int. J. Heat Mass Transfer, 74 (2014)
164–172.
- P. Selvakumar, S. Suresh, Convective performance of CuO/water nanofluid in an electronic heat sink, Exp. Therm. Fluid
Sci., 40 (2012) 57–63.