References

  1. A. Mariadhas, I. Raja, R. Kavvampally, J. Jayaraman, N. Joy, Characteristics of heat transfer and pressure drop in a corrugated plate heat exchanger with chemically synthesized ZnO/sparkling water nanofluids, Desal. Water Treat., 262 (2022) 14–26.
  2. K. Ishida, H. Sakai, Effects of advanced ultraviolet/H2O2 treatment on oxidation of linear alkylbenzene sulfonate in detergent wastewater, Desal. Water Treat., 289 (2023) 191–196.
  3. N.R. Kuppusamy, H.A. Mohammed, C.W. Lim, Numerical investigation of trapezoidal grooved microchannel heat sink using nanofluids, Thermochim. Acta, 573 (2013) 39–56.
  4. H.A. Mohammed, G. Bhaskaran, N.H. Shuaib, R. Saidur, Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: a review, Renewable Sustainable Energy Rev., 15 (2011) 1502–1512.
  5. B.H. Salman, H.A. Mohammed, K.M. Munisamy, A. Sh. Kherbeet, Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: a review, Renewable Sustainable Energy Rev., 28 (2013) 848–880.
  6. L. Godson, B. Raja, D. Mohan Lal, S. Wongwises, Enhancement of heat transfer using nanofluids—an overview, Renewable Sustainable Energy Rev., 14 (2010) 629–641.
  7. B.H. Salman, H.A. Mohammed, A. Sh. Kherbeet, Heat transfer enhancement of nanofluids flow in microtube with constant heat flux, Int. Commun. Heat Mass Transfer, 39 (2012) 1195–1204.
  8. O. Maťátková, J. Michailidu, A. Miškovská, I. Kolouchová, J. Masák, A. Čejková, Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods, Biotechnol. Adv., 58 (2022) 107905, doi: 10.1016/j.biotechadv.2022.107905.
  9. M. Chandra Sekhara Reddy, V. Vasudeva Rao, Experimental studies on thermal conductivity of blends of ethylene glycol water-based TiO2 nanofluids, Int. Commun. Heat Mass Transfer, 46 (2013) 31–36.
  10. T. Yiamsawasd, A.S. Dalkilic, S. Wongwises, Measurement of the thermal conductivity of titania and alumina nanofluids, Thermochim. Acta, 545 (2012) 48–56.
  11. P. Keblinski, J.A. Eastman, D.G. Cahill, Nanofluids for thermal transport, Mater. Today, 8 (2005) 36–44.
  12. E. Mat Tokit, M.Z. Yusoff, H.A. Mohammed, Generality of Brownian motion velocity of two phase approach in interrupted microchannel heat sink, Int. Commun. Heat Mass Transfer, 49 (2013) 128–135.
  13. P. Naphon, L. Nakharintr, Heat transfer of nanofluids in the mini-rectangular fin heat sinks, Int. Commun. Heat Mass Transfer, 40 (2013) 25–31.
  14. C.J. Ho, W.C. Chen, An experimental study on thermal performance of Al2O3/water nanofluid in a minichannel heat sink, Appl. Therm. Eng., 50 (2013) 516–522.
  15. S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, ASME J. Heat Transfer, 125 (2003) 567–574.
  16. C.T. Nguyen, G. Roy, C. Gauthier, N. Galanis, Heat transfer enhancement using Al2O3-water nanofluid for an electronic liquid cooling system, Appl. Therm. Eng., 27 (2007) 1501–1506.
  17. N.A. Roberts, D.G. Walker, Convective performance of nanofluids in commercial electronics cooling systems, Appl. Therm. Eng., 30 (2010) 2499–2504.
  18. B.P. Whelan, R. Kempers, A.J. Robinson, A liquid-based system for CPU cooling implementing a jet array impingement waterblock and a tube array remote heat exchanger, Appl. Therm. Eng., 39 (2012) 86–94.
  19. A. Ijam, R. Saidur, P. Ganesan, Cooling of minichannel heat sink using nanofluids, Int. Commun. Heat Mass Transfer, 39 (2012) 1188–1194.
  20. J.F. Tullius, Y. Bayazitoglu, Effect of Al2O3/H2O nanofluid on MWNT circular fin structures in a minichannel, Int. J. Heat Mass Transfer, 60 (2013) 523–530.
  21. L. Harish Kumar, S.N. Kazi, H.H. Masjuki, M.N.M. Zubir, A review of recent advances in green nanofluids and their application in thermal systems, Chem. Eng. J., 429 (2022) 132321, doi: 10.1016/j.cej.2021.132321.
  22. X. Yu, J. Feng, Q. Feng, Q. Wang, Development of a plate-pin fin heat sink and its performance comparisons with a plate fin heat sink, Appl. Therm. Eng., 25 (2005) 173–182.
  23. Y.-T. Yang, H.-S. Peng, Investigation of planted pin fins for heat transfer enhancement in plate fin heat sink, Microelectron. Reliab., 49 (2009) 163–169.
  24. E.M. Sparrow, J.W. Ramsey, C.A.C. Altemani, Experiments on in-line pin fin arrays and performance comparisons with staggered arrays, J. Heat Transfer, 102 (1980) 44–50.
  25. D. Soodphakdee, M. Behnia, D.W. Copeland, A comparison of fin geometries for heatsinks in laminar forced convection: part I - round, elliptical, and plate fins in staggered and in-line configurations, Int. J. Microcircuits Electron Packag., 24 (2001) 68–76.
  26. S. Ramalingam, G. Sankaranarayanan, S. Senthil, R.A. Rohith, R. Santosh Kumar, Effect of cerium oxide nanoparticles derived from biosynthesis of Azadirachta indica on stability and performance of a research CI engine powered by diesellemongrass oil blends, Energy Environ., 34 (2023) 886–908.
  27. K.R.B. Singh, V. Nayak, T. Sarkar, R.P. Singh, Cerium oxide nanoparticles: properties, biosynthesis and biomedical application, RSC Adv., 10 (2020) 27194–27214.
  28. A. Saka, Y. Shifera, L.T. Jule, B. Badassa, N. Nagaprasad, R. Shanmugam, L. Priyanka Dwarampudi, V. Seenivasan, K. Ramaswamy, Biosynthesis of TiO2 nanoparticles by Caricaceae (papaya) shell extracts for antifungal application, Sci. Rep., 12 (2022) 15960, doi: 10.1038/s41598-022-19440-w.
  29. A.A. Kashale, A.S. Rasal, G.P. Kamble, V.H. Ingole, P.K. Dwivedi, S.J. Rajoba, L.D. Jadhav, Y.-C. Ling, J.-Y. Chang, A.V. Ghule, Biosynthesized Co-doped TiO2 nanoparticles based anode for lithium-ion battery application and investigating the influence of dopant concentrations on its performance, Composites, Part B, 167 (2019) 44–50.
  30. A. Ansari, V.U. Siddiqui, W.U. Rehman, Md. Khursheed Akram, W.A. Siddiqi, A.M. Alosaimi, M.A. Hussein, M. Rafatullah, Green synthesis of TiO2 nanoparticles using Acorus calamus leaf extract and evaluating its photocatalytic and in vitro antimicrobial activity, Catalysts, 12 (2022) 181, doi: 10.3390/catal12020181.
  31. A. Maridhas, V.N. Aravind Kumar, S. Kaushik, P. Bency, J. Jayaprabakar, Thermal performance analysis of a double pipe heat exchanger using biosynthesised silicon carbide and carbon nanotubes, Aust. J. Mech. Eng., (2022) 1–9, doi: 10.1080/14484846.2022.2154308.
  32. M. Roshani, S. Ziaeddin Miry, P. Hanafizadeh, M. Ashjaee, Hydrodynamics and heat transfer characteristics of a miniature plate pin-fin heat sink utilizing Al2O3-water and TiO2-water nanofluids, ASME J. Therm. Sci. Eng. Appl., 7 (2015) 031007, doi: 10.1115/1.4030103.
  33. M. Anbuvannan, M. Ramesh, G. Viruthagiri, N. Shanmugam, N. Kannadasan, Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities, Mater. Sci. Semicond. Process., 39 (2015) 621–628.
  34. S. Vijayakumar, S. Mahadevan, P. Arulmozhi, S. Sriram, P.K. Praseetha, Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: characterization and antimicrobial analysis, Mater. Sci. Semicond. Process., 82 (2018) 39–45.
  35. B. Shahmoradi, M. Pirsaheb, M.A. Pordel, T. Khosravi, R.R. Pawar, S.-M. Lee, Photocatalytic performance of chromiumdoped TiO2 nanoparticles for degradation of Reactive Black 5 under natural sunlight illumination, Desal. Water Treat., 67 (2017) 324–331.
  36. H.S. Kwak, H. Kim, J.M. Hyun, T.-H. Song, Thermal control of electroosmotic flow in a microchannel through temperaturedependent properties, J. Colloid Interface Sci., 335 (2009) 123–129.
  37. R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two-component systems, Ind. Eng. Chem. Fundam., 1 (1962) 187–191.
  38. S.M.S. Murshed, K.C. Leong, C. Yang, Enhanced thermal conductivity of TiO2—water based nanofluids, Int. J. Therm. Sci., 44 (2005) 367–373.
  39. W. Yu, S.U.S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton–Crosser model, J. Nanopart. Res., 6 (2004) 355–361.
  40. E.V. Timofeeva, A.N. Gavrilov, J.M. McCloskey, Y.V. Tolmachev, S. Sprunt, L.M. Lopatina, J.V. Selinger, Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory, Phys. Rev. E, 76 (2007) 061203, doi: 10.1103/PhysRevE.76.061203.
  41. G.K. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech., 83 (1977) 97–117.
  42. D.A. Drew, S.L. Passman, Theory of Multicomponent Fluids, Springer, New York, NY, 2006.
  43. H.C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20 (1952) 571, doi: 10.1063/1.1700493.
  44. X. Wang, X. Xu, S.U.S. Choi, Thermal conductivity of nanoparticle - fluid mixture, J. Thermophys Heat Transfer, 13 (1999) 474–480.
  45. N.B. Argaftik, B.N. Volkov, L.D. Voljak, International tables of the surface tension of water, J. Phys. Chem. Ref. Data, 12 (1983) 817–820.
  46. D.S. Zhu, S.Y. Wu, N. Wang, Surface tension and viscosity of aluminum oxide nanofluids, AIP Conf. Proc., 1207 (2010) 460–464.
  47. R. Penn, B.J. Ward, L. Strande, M. Maurer, Review of synthetic human faeces and faecal sludge for sanitation and wastewater research, Water Res., 132 (2018) 222–240.
  48. J.T. Radford, S. Sugden, Measurement of faecal sludge in-situ shear strength and density, Water SA, 40 (2014) 183–188.
  49. B. Camenen, D.P. van Bang, Modelling the settling of suspended sediments for concentrations close to the gelling concentration, Cont. Shelf Res., 31 (2011) S106–S116.
  50. D.R. Lester, S.P. Usher, P.J. Scales, Estimation of the hindered settling function R(ϕ) from batch‐settling tests, AlChE J., 51 (2005) 1158–1168.
  51. J.-H. Lee, K.S. Hwang, S.P. Jang, B.H. Lee, J.H. Kim, S.U.S. Choi, C.J. Choi, Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles, Int. J. Heat Mass Transfer, 51 (2008) 2651–2656.
  52. I. Roefs, B. Meulman, J.H.G. Vreeburg, M. Spiller, Centralised, decentralised or hybrid sanitation systems? economic evaluation under urban development uncertainty and phased expansion, Water Res., 109 (2017) 274–286.
  53. K.B. Anoop,T. Sundararajan, S.K. Das, Effect of particle size on the convective heat transfer in nanofluid in the developing region, Int. J. Heat Mass Transfer, 52 (2009) 2189–2195.
  54. M.R. Sohel, S.S. Khaleduzzaman, R. Saidur, A. Hepbasli, M.F.M. Sabri, I.M. Mahbubul, An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3–H2O nanofluid, Int. J. Heat Mass Transfer, 74 (2014) 164–172.
  55. P. Selvakumar, S. Suresh, Convective performance of CuO/water nanofluid in an electronic heat sink, Exp. Therm. Fluid Sci., 40 (2012) 57–63.