References
- H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu,
X. Wang, Semiconductor heterojunction photocatalysts: design,
construction, and photocatalytic performances, Chem. Soc.
Rev., 43 (2014) 5234–5244.
- D.V. Talapin, J.-S. Lee, M.V. Kovalenko, E.V. Shevchenko,
Prospects of colloidal nanocrystals for electronic and
optoelectronic applications, Chem. Rev., 110 (2010) 389–458.
- A.J. Nozik, M.C. Beard, J.M. Luther, M. Law, R.J. Ellingson,
J.C. Johnson, Semiconductor quantum dots and quantum dot
arrays and applications of multiple exciton generation to thirdgeneration
photovoltaic solar cells, Chem. Rev., 110 (2010)
6873–6890.
- H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, C.J. Brabec,
Rare-earth ion doped up-conversion materials for photovoltaic
applications, Adv. Mater., 23 (2011) 2675–2680.
- B. Benalioua, M. Mansour, A. Bentouami, B. Boury,
E.H. Elandaloussi, The layered double hydroxide route to
Bi–Zn co-doped TiO2 with high photocatalytic activity under
visible light, J. Hazard. Mater., 288 (2015) 158–167.
- M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras,
A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne,
K. O’Shea, M.H. Entezari, D.D. Dionysiou, A review on
the visible light active titanium dioxide photocatalysts for
environmental applications, Appl. Catal., B, 125 (2012) 331–349.
- R.P. Lefojane, B.T. Sone, N. Matinise, K. Saleh, P. Direko,
P. Mfengwana, S. Mashele, M. Maaza, M.P. Sekhoacha, CdO/CdCO3 nanocomposite physical properties and cytotoxicity
against selected breast cancer cell lines, Sci. Rep., 11 (2021) 30,
doi: 10.1038/s41598-020-78720-5.
- F.M. Castañeda de la Hoya, R. Castanedo-Pérez, J. Márquez-
Marín, F.A. Hernández-García, G. Torres-Delgado, Study of
the water content on the CdO + CdTiO3 crystalline grains
distribution in thin films obtained by sol–gel and their
effect on the morphological, optical, and photocatalytic
properties, Colloids Surf., A, 662 (2023) 131033, doi: 10.1016/j.colsurfa.2023.131033.
- O. Ali Al Hattali, F. Al Marzouqi, S. Al Mamari, A.T. Kuvarega,
R. Selvaraj, CdO nanoplates for photocatalytic degradation
of Levofloxacin and Nizatidine under natural solar light
irradiation, Inorg. Chem. Commun., 146 (2022) 110071,
doi: 10.1016/j.inoche.2022.110071.
- Tripta, P.S. Rana, Suman, Tuning the morphological, optical,
electrical, and structural properties of
NiFe2O4@CdO
nanocomposites and their photocatalytic application, Ceram.
Int., 49 (2023) 18735–18744.
- A.A. Dakhel, Transparent conducting properties of samariumdoped
CdO, J. Alloys Compd., 475 (2009) 51–54.
- A.A. Dakhel, Electrical and optical properties of iron-doped
CdO, Thin Solid Films, 518 (2010) 1712–1715.
- J. Li, Y. Ni, J. Liu, J. Hong, Preparation, conversion, and
comparison of the photocatalytic property of Cd(OH)2, CdO,
CdS and CdSe, J. Phys. Chem. Solids, 70 (2009) 1285–1289.
- A. Tadjarodi, M. Imani, H. Kerdari, Experimental design to
optimize the synthesis of CdO cauliflower-like nanostructure
and high performance in photodegradation of toxic azo dyes,
Mater. Res. Bull., 48 (2013) 935–942.
- S. Sivakumar, A. Venkatesan, P. Soundhirarajan,
C.P. Khatiwada, Synthesis, characterizations and antibacterial
activities of pure and Ag doped CdO nanoparticles
by chemical precipitation method, Spectrochim. Acta, Part A,
136 (2015) 1751–1759.
- V.K. Gupta, A. Fakhri, S. Tahami, S. Agarwal, Zn doped CdO
nanoparticles: structural, morphological, optical, photocatalytic
and anti-bacterial properties, J. Colloid Interface Sci.,
504 (2017) 164–170.
- R. Saravanan, H. Shankar, T. Prakash, V. Narayanan, A. Stephen,
ZnO/CdO composite nanorods for photocatalytic degradation
of methylene blue under visible light, Mater. Chem. Phys.,
125 (2011) 277–280.
- S. Kumar, A.K. Ojha, B. Walkenfort, Cadmium oxide
nanoparticles grown in situ on reduced graphene oxide for
enhanced photocatalytic degradation of methylene blue dye
under ultraviolet irradiation, J. Photochem. Photobiol., B,
159 (2016) 111–119.
- P. Dhatshanamurthi, B. Subash, M. Shanthi, Investigation on
UV-A light photocatalytic degradation of an azo dye in the
presence of CdO/TiO2 coupled semiconductor, Mater. Sci.
Semicond. Process., 35 (2015) 22–29.
- T. Linda, S. Muthupoongodi, X.S. Shajan, S. Balakumar,
Fabrication and characterization of chitosan templated CdO/NiO nano composite for dye degradation, Optik, 127 (2016)
8287–8293.
- C. Venkata Reddy, N. Bandaru, J. Shim, S.V.P. Vattikuti,
Synthesis of CdO/ZnS heterojunction for photodegradation
of organic dye molecules, Appl. Phys. A, 123 (2017) 396,
doi: 10.1007/s00339-017-1013-3.
- D.J. Jeejamol, K.S. Jai Aultrin, M. Dev Anand, Exploration of
CdO properties favoring superior photocatalytic degradation
of methylene blue dye by Al3+ doping, Opt. Quantum Electron.,
54 (2022) 291, doi: 10.1007/s11082-022-03694-9.
- M. Mansour, I. Benyamina, B. Benalioua, A. Bentouami,
B. Boury, H. Hentit, P.-E. Lippens, Combined effect between
PVP and glass wool for improvement of the photocatalytic
activity under visible light of bismuth(III) oxyhalide and access
to α-Bi2O3-BiOI-BiOBr, Appl. Surf. Sci., 534 (2020) 147577,
doi: 10.1016/j.apsusc.2020.147577.
- C. Li, Y. Ma, S. Zheng, C. Hu, F. Qin, L. Wei, C. Zhang, S. Duo,
Q. Hu, One-pot synthesis of Bi2O3/Bi2O4 p-n heterojunction for
highly efficient photocatalytic removal of organic pollutants
under visible light irradiation, J. Phys. Chem. Solids, 140 (2020)
109376, doi: 10.1016/j.jpcs.2020.109376.
- A. Aranda-Aguirre, J.M. de Oca, A. Corzo, S. Garcia-Segura,
H. Alarcon, Mixed metal oxide Bi2O3/Bi2WO6 thin films for the
photoelectrocatalytic degradation of histamine, J. Electroanal.
Chem., 919 (2022) 116528, doi: 10.1016/j.jelechem.2022.116528.
- Y. Zhang, M. Zhu, S. Zhang, Y. Cai, Z. Lv, M. Fang,
X. Tan, X. Wang, Highly efficient removal of U(VI) by the
photoreduction of SnO2/CdCO3/CdS nanocomposite under
visible light irradiation, Appl. Catal., B, 279 (2020) 119390,
doi: 10.1016/j.apcatb.2020.119390.
- S.G. Ruvalcaba-Manzo, S.J. Castillo, R. Ochoa-Landín,
M. Flores-Acosta, R. Ramírez-Bon, Optical, structural, and
morphological characterization of cadmium carbonate thin
films by CBD two formulations, Opt. Mater., 109 (2020) 110295,
doi: 10.1016/j.optmat.2020.110295.
- I. Benyamina, K. Manseri, M. Mansour, B. Benalioua,
A. Bentouami, B. Boury, New Bi2O3-ZnO composite
deposited on glass wool. Effect of the synthesis method on
photocatalytic efficiency under visible light, Appl. Surf. Sci.,
483 (2019) 859–869.
- N. Premalatha, L. Rose Miranda, Surfactant modified ZnO–Bi2O3 nanocomposite for degradation of lambda-cyhalothrin
pesticide in visible light: a study of reaction kinetics and
intermediates, J. Environ. Manage., 246 (2019) 259–266.
- S. Ramachandran, A. Sivasamy, Effective charge separation
in binary ZnO-Bi2O3 photocatalytic material for the treatment
of simulated wastewater, Mater. Today Proc., 17 (2019)
101–110.
- B.T. Huy, D.S. Paeng, C. Thi Bich Thao, N.T. Kim Phuong,
Y.-I. Lee, ZnO-Bi2O3/graphitic carbon nitride photocatalytic
system with H2O2-assisted enhanced degradation of Indigo
carmine under visible light, Arabian J. Chem., 13 (2020)
3790–3800.
- N. Lakshmana Reddy, G. Krishna Reddy, K. Mahaboob Basha,
P. Krishna Mounika, M.V. Shankar, Highly efficient hydrogen
production using Bi2O3/TiO2 nanostructured photocatalysts
under led light irradiation, Mater. Today Proc., 3 (2016)
1351–1358.
- Q. Huang, J. Ye, H. Si, B. Yang, T. Tao, Y. Zhao, M. Chen,
H. Yang, Differences of characteristics and performance with
Bi3+ and Bi2O3 doping over TiO2 for photocatalytic oxidation
under visible light, Catal. Lett., 150 (2020) 1098–1110.
- H. Rongan, L. Haijuan, L. Huimin, X. Difa, Z. Liuyang,
S-scheme photocatalyst Bi2O3/TiO2 nanofiber with improved
photocatalytic performance, J. Mater. Sci. Technol., 52 (2020)
145–151.
- D. Wu, M. Long, Realizing visible-light-induced self-cleaning
property of cotton through coating N-TiO2 film and loading
AgI particles, ACS Appl. Mater. Interfaces, 3 (2011) 4770–4774.
- G. Xiao, X. Huang, X. Liao, B. Shi, One-pot facile synthesis of
cerium-doped TiO2 mesoporous nanofibers using collagen
fiber as the biotemplate and its application in visible light
photocatalysis, J. Phys. Chem. C, 117 (2013) 9739–9746.
- H.F. Moafi, A.F. Shojaie, M.A. Zanjanchi, Titania and titania
nanocomposites on cellulosic fibers: synthesis, characterization
and comparative study of photocatalytic activity, Chem.
Eng. J., 166 (2011) 413–419.
- D.-H. Yu, X. Yu, C. Wang, X.-C. Liu, Y. Xing, Synthesis of natural
cellulose-templated TiO2/Ag nanosponge composites and
photocatalytic properties, ACS Appl. Mater. Interfaces, 4 (2012)
2781–2787.
- T.-D. Pham, B.-K. Lee, Feasibility of silver doped TiO2/glass
fiber photocatalyst under visible irradiation as an indoor
air germicide, Int. J. Environ. Res. Public Health, 11 (2014)
3271–3288.
- T.-D. Pham, B.-K. Lee, Cu doped TiO2/GF for photocatalytic
disinfection of Escherichia coli in bioaerosols under visible
light irradiation: application and mechanism, Appl. Surf. Sci.,
296 (2014) 15–23.
- P. Kongsong, L. Sikong, S. Niyomwas, V. Rachpech,
Photocatalytic antibacterial performance of glass fibers thin
film coated with N-doped SnO2/TiO2, Sci. World J., 2014 (2014)
869706, doi: 10.1155/2014/869706.
- R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Enhanced photocatalytic
activity of TiO2-coated NaY and HY zeolites for the
degradation of methylene blue in water, Ind. Eng. Chem. Res.,
46 (2007) 369–376.
- H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite
as a high performance photocatalyst, ACS Nano, 4 (2010)
380–386.
- S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal,
K.J. Balkus, Hydrothermal synthesis of graphene-TiO2
nanotube composites with enhanced photocatalytic activity,
ACS Catal., 2 (2012) 949–956.
- W. Qian, P.A. Greaney, S. Fowler, S.-K. Chiu, A.M. Goforth,
J. Jiao, Low-temperature nitrogen doping in ammonia
solution for production of N-doped TiO2-hybridized graphene
as a highly efficient photocatalyst for water treatment,
ACS Sustainable Chem. Eng., 2 (2014) 1802–1810.
- C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, Y. Feng,
Synthesis of visible-light responsive graphene oxide/TiO2
composites with p/n heterojunction, ACS Nano, 4 (2010)
6425–6432.
- M.S.A. Sher Shah, A.R. Park, K. Zhang, J.H. Park, P.J. Yoo,
Green synthesis of biphasic TiO2–reduced graphene oxide
nanocomposites with highly enhanced photocatalytic activity,
ACS Appl. Mater. Interfaces, 4 (2012) 3893–3901.
- B. Benalioua, I. Benyamina, M. Mansour, K. Mensri,
A. Bentouami, B. Boury, Synthesis of a new multi-heterojunction
photocatalyst BiOI/Bi2O3/MgO, and its photocatalytic efficiency
in the degradation of Rhodamine B under visible light,
Desal. Water Treat., 281 (2023) 265–275.
- F.-t. Li, X.-j. Wang, Y. Zhao, J.-x. Liu, Y.-j. Hao, R.-h. Liu,
D.-s. Zhao, Ionic-liquid-assisted synthesis of high-visible-lightactivated
N–B–F-tri-doped mesoporous TiO2 via a microwave
route, Appl. Catal., B, 144 (2014) 442–453.
- G.-D. Lim, J.-H. Yoo, M. Ji, Y.-I. Lee, Visible light driven
photocatalytic degradation enhanced by α/β phase
heterojunctions on electrospun Bi2O3 nanofibers, J. Alloys
Compd., 806 (2019) 1060–1067.
- Y. Jia, X.-Y. Yu, T. Luo, J.-H. Liu, X.-J. Huang, Shape-controlled
synthesis of CdCO3 microcrystals and corresponding
nanoporous CdO architectures, RSC Adv., 2 (2012) 10251–10254.
- S. Landi, I.R. Segundo, E. Freitas, M. Vasilevskiy, J. Carneiro,
C.J. Tavares, Use and misuse of the Kubelka–Munk function
to obtain the band gap energy from diffuse reflectance
measurements, Solid State Commun., 341 (2022) 114573,
doi: 10.1016/j.ssc.2021.114573.
- H. Jamil, I.M. Dildar, U. Ilyas, J.Z. Hashmi, S. Shaukat,
M.N. Sarwar, M. Khaleeq-ur-Rahman, Microstructural and
optical study of polycrystalline manganese oxide films using
Kubelka–Munk function, Thin Solid Films, 732 (2021) 138796,
doi: 10.1016/j.tsf.2021.138796.
- A. Escobedo-Morales, I.I. Ruiz-López, M.d. Ruiz-Peralta,
L. Tepech-Carrillo, M. Sánchez-Cantú, J.E. Moreno-Orea,
Automated method for the determination of the band gap
energy of pure and mixed powder samples using diffuse
reflectance spectroscopy, Heliyon, 5 (2019) e01505, doi: 10.1016/j.heliyon.2019.e01505.
- N. Sangiorgi, L. Aversa, R. Tatti, R. Verucchi, A. Sanson,
Spectrophotometric method for optical band gap and
electronic
transitions determination of semiconductor materials,
Opt. Mater., 64 (2017) 18–25.
- C. Xu, X. Wang, J. Zhu, Graphene−metal particle nanocomposites,
J. Phys. Chem. C, 112 (2008) 19841–19845.
- T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis,
D. Petridis, I. Dékány, Evolution of surface functional
groups in a series of progressively oxidized graphite oxides,
Chem. Mater., 18 (2006) 2740–2749.
- J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J.M.D. Tascón, Atomic force and scanning tunneling
microscopy imaging of graphene nanosheets derived from
graphite oxide, Langmuir, 25 (2009) 5957–5968.
- C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, L. Niu, Direct
electrochemistry of glucose oxidase and biosensing for glucose
based on graphene, Anal. Chem., 81 (2009) 2378–2382.
- X. Liu, H. Deng, W. Yao, Q. Jiang, J. Shen, Preparation and
photocatalytic activity of Y-doped Bi2O3, J. Alloys Compd.,
651 (2015) 135–142.
- S. Zhu, L. Lu, Z. Zhao, T. Wang, X. Liu, H. Zhang, F. Dong,
Y. Zhang, Mesoporous Ni-doped δ-Bi2O3 microspheres
for enhanced solar-driven photocatalysis: a combined
experimental and theoretical investigation, J. Phys. Chem. C,
121 (2017) 9394–9401.
- S.D. Khairnar, A.N. Kulkarni, S.G. Shinde, S.D. Marathe,
Y.V. Marathe, S.D. Dhole, V.S. Shrivastava, Synthesis and
characterization of 2-D La-doped Bi2O3 for photocatalytic
degradation of organic dye and pesticide, J. Photochem.
Photobiol., 6 (2021) 100030, doi: 10.1016/j.jpap.2021.100030.
- T. Munawar, M.N. ur Rehman, M.S. Nadeem, F. Mukhtar,
S. Manzoor, M.N. Ashiq, F. Iqbal, Facile synthesis
of Cr-Co
co-doped CdO nanowires for photocatalytic, antimicrobial,
and supercapacitor applications, J. Alloys Compd., 885 (2021)
160885, doi: 10.1016/j.jallcom.2021.160885.
- R.K. Mandal, P. Saha, T.P. Majumder, Structural, optical
characterization of the synthesized Fe doped CdO nano
particles, its application as a promising photocatalyst for
degradation of the hazardous methyl violet dye, Optik,
246 (2021) 167795, doi: 10.1016/j.ijleo.2021.167795.