References

  1. H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances, Chem. Soc. Rev., 43 (2014) 5234–5244.
  2. D.V. Talapin, J.-S. Lee, M.V. Kovalenko, E.V. Shevchenko, Prospects of colloidal nanocrystals for electronic and optoelectronic applications, Chem. Rev., 110 (2010) 389–458.
  3. A.J. Nozik, M.C. Beard, J.M. Luther, M. Law, R.J. Ellingson, J.C. Johnson, Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to thirdgeneration photovoltaic solar cells, Chem. Rev., 110 (2010) 6873–6890.
  4. H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, C.J. Brabec, Rare-earth ion doped up-conversion materials for photovoltaic applications, Adv. Mater., 23 (2011) 2675–2680.
  5. B. Benalioua, M. Mansour, A. Bentouami, B. Boury, E.H. Elandaloussi, The layered double hydroxide route to Bi–Zn co-doped TiO2 with high photocatalytic activity under visible light, J. Hazard. Mater., 288 (2015) 158–167.
  6. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal., B, 125 (2012) 331–349.
  7. R.P. Lefojane, B.T. Sone, N. Matinise, K. Saleh, P. Direko, P. Mfengwana, S. Mashele, M. Maaza, M.P. Sekhoacha, CdO/CdCO3 nanocomposite physical properties and cytotoxicity against selected breast cancer cell lines, Sci. Rep., 11 (2021) 30, doi: 10.1038/s41598-020-78720-5.
  8. F.M. Castañeda de la Hoya, R. Castanedo-Pérez, J. Márquez- Marín, F.A. Hernández-García, G. Torres-Delgado, Study of the water content on the CdO + CdTiO3 crystalline grains distribution in thin films obtained by sol–gel and their effect on the morphological, optical, and photocatalytic properties, Colloids Surf., A, 662 (2023) 131033, doi: 10.1016/j.colsurfa.2023.131033.
  9. O. Ali Al Hattali, F. Al Marzouqi, S. Al Mamari, A.T. Kuvarega, R. Selvaraj, CdO nanoplates for photocatalytic degradation of Levofloxacin and Nizatidine under natural solar light irradiation, Inorg. Chem. Commun., 146 (2022) 110071, doi: 10.1016/j.inoche.2022.110071.
  10. Tripta, P.S. Rana, Suman, Tuning the morphological, optical, electrical, and structural properties of
    NiFe2O4@CdO nanocomposites and their photocatalytic application, Ceram. Int., 49 (2023) 18735–18744.
  11. A.A. Dakhel, Transparent conducting properties of samariumdoped CdO, J. Alloys Compd., 475 (2009) 51–54.
  12. A.A. Dakhel, Electrical and optical properties of iron-doped CdO, Thin Solid Films, 518 (2010) 1712–1715.
  13. J. Li, Y. Ni, J. Liu, J. Hong, Preparation, conversion, and comparison of the photocatalytic property of Cd(OH)2, CdO, CdS and CdSe, J. Phys. Chem. Solids, 70 (2009) 1285–1289.
  14. A. Tadjarodi, M. Imani, H. Kerdari, Experimental design to optimize the synthesis of CdO cauliflower-like nanostructure and high performance in photodegradation of toxic azo dyes, Mater. Res. Bull., 48 (2013) 935–942.
  15. S. Sivakumar, A. Venkatesan, P. Soundhirarajan, C.P. Khatiwada, Synthesis, characterizations and antibacterial activities of pure and Ag doped CdO nanoparticles by chemical precipitation method, Spectrochim. Acta, Part A, 136 (2015) 1751–1759.
  16. V.K. Gupta, A. Fakhri, S. Tahami, S. Agarwal, Zn doped CdO nanoparticles: structural, morphological, optical, photocatalytic and anti-bacterial properties, J. Colloid Interface Sci., 504 (2017) 164–170.
  17. R. Saravanan, H. Shankar, T. Prakash, V. Narayanan, A. Stephen, ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light, Mater. Chem. Phys., 125 (2011) 277–280.
  18. S. Kumar, A.K. Ojha, B. Walkenfort, Cadmium oxide nanoparticles grown in situ on reduced graphene oxide for enhanced photocatalytic degradation of methylene blue dye under ultraviolet irradiation, J. Photochem. Photobiol., B, 159 (2016) 111–119.
  19. P. Dhatshanamurthi, B. Subash, M. Shanthi, Investigation on UV-A light photocatalytic degradation of an azo dye in the presence of CdO/TiO2 coupled semiconductor, Mater. Sci. Semicond. Process., 35 (2015) 22–29.
  20. T. Linda, S. Muthupoongodi, X.S. Shajan, S. Balakumar, Fabrication and characterization of chitosan templated CdO/NiO nano composite for dye degradation, Optik, 127 (2016) 8287–8293.
  21. C. Venkata Reddy, N. Bandaru, J. Shim, S.V.P. Vattikuti, Synthesis of CdO/ZnS heterojunction for photodegradation of organic dye molecules, Appl. Phys. A, 123 (2017) 396, doi: 10.1007/s00339-017-1013-3.
  22. D.J. Jeejamol, K.S. Jai Aultrin, M. Dev Anand, Exploration of CdO properties favoring superior photocatalytic degradation of methylene blue dye by Al3+ doping, Opt. Quantum Electron., 54 (2022) 291, doi: 10.1007/s11082-022-03694-9.
  23. M. Mansour, I. Benyamina, B. Benalioua, A. Bentouami, B. Boury, H. Hentit, P.-E. Lippens, Combined effect between PVP and glass wool for improvement of the photocatalytic activity under visible light of bismuth(III) oxyhalide and access to α-Bi2O3-BiOI-BiOBr, Appl. Surf. Sci., 534 (2020) 147577, doi: 10.1016/j.apsusc.2020.147577.
  24. C. Li, Y. Ma, S. Zheng, C. Hu, F. Qin, L. Wei, C. Zhang, S. Duo, Q. Hu, One-pot synthesis of Bi2O3/Bi2O4 p-n heterojunction for highly efficient photocatalytic removal of organic pollutants under visible light irradiation, J. Phys. Chem. Solids, 140 (2020) 109376, doi: 10.1016/j.jpcs.2020.109376.
  25. A. Aranda-Aguirre, J.M. de Oca, A. Corzo, S. Garcia-Segura, H. Alarcon, Mixed metal oxide Bi2O3/Bi2WO6 thin films for the photoelectrocatalytic degradation of histamine, J. Electroanal. Chem., 919 (2022) 116528, doi: 10.1016/j.jelechem.2022.116528.
  26. Y. Zhang, M. Zhu, S. Zhang, Y. Cai, Z. Lv, M. Fang, X. Tan, X. Wang, Highly efficient removal of U(VI) by the photoreduction of SnO2/CdCO3/CdS nanocomposite under visible light irradiation, Appl. Catal., B, 279 (2020) 119390, doi: 10.1016/j.apcatb.2020.119390.
  27. S.G. Ruvalcaba-Manzo, S.J. Castillo, R. Ochoa-Landín, M. Flores-Acosta, R. Ramírez-Bon, Optical, structural, and morphological characterization of cadmium carbonate thin films by CBD two formulations, Opt. Mater., 109 (2020) 110295, doi: 10.1016/j.optmat.2020.110295.
  28. I. Benyamina, K. Manseri, M. Mansour, B. Benalioua, A. Bentouami, B. Boury, New Bi2O3-ZnO composite deposited on glass wool. Effect of the synthesis method on photocatalytic efficiency under visible light, Appl. Surf. Sci., 483 (2019) 859–869.
  29. N. Premalatha, L. Rose Miranda, Surfactant modified ZnO–Bi2O3 nanocomposite for degradation of lambda-cyhalothrin pesticide in visible light: a study of reaction kinetics and intermediates, J. Environ. Manage., 246 (2019) 259–266.
  30. S. Ramachandran, A. Sivasamy, Effective charge separation in binary ZnO-Bi2O3 photocatalytic material for the treatment of simulated wastewater, Mater. Today Proc., 17 (2019) 101–110.
  31. B.T. Huy, D.S. Paeng, C. Thi Bich Thao, N.T. Kim Phuong, Y.-I. Lee, ZnO-Bi2O3/graphitic carbon nitride photocatalytic system with H2O2-assisted enhanced degradation of Indigo carmine under visible light, Arabian J. Chem., 13 (2020) 3790–3800.
  32. N. Lakshmana Reddy, G. Krishna Reddy, K. Mahaboob Basha, P. Krishna Mounika, M.V. Shankar, Highly efficient hydrogen production using Bi2O3/TiO2 nanostructured photocatalysts under led light irradiation, Mater. Today Proc., 3 (2016) 1351–1358.
  33. Q. Huang, J. Ye, H. Si, B. Yang, T. Tao, Y. Zhao, M. Chen, H. Yang, Differences of characteristics and performance with Bi3+ and Bi2O3 doping over TiO2 for photocatalytic oxidation under visible light, Catal. Lett., 150 (2020) 1098–1110.
  34. H. Rongan, L. Haijuan, L. Huimin, X. Difa, Z. Liuyang, S-scheme photocatalyst Bi2O3/TiO2 nanofiber with improved photocatalytic performance, J. Mater. Sci. Technol., 52 (2020) 145–151.
  35. D. Wu, M. Long, Realizing visible-light-induced self-cleaning property of cotton through coating N-TiO2 film and loading AgI particles, ACS Appl. Mater. Interfaces, 3 (2011) 4770–4774.
  36. G. Xiao, X. Huang, X. Liao, B. Shi, One-pot facile synthesis of cerium-doped TiO2 mesoporous nanofibers using collagen fiber as the biotemplate and its application in visible light photocatalysis, J. Phys. Chem. C, 117 (2013) 9739–9746.
  37. H.F. Moafi, A.F. Shojaie, M.A. Zanjanchi, Titania and titania nanocomposites on cellulosic fibers: synthesis, characterization and comparative study of photocatalytic activity, Chem. Eng. J., 166 (2011) 413–419.
  38. D.-H. Yu, X. Yu, C. Wang, X.-C. Liu, Y. Xing, Synthesis of natural cellulose-templated TiO2/Ag nanosponge composites and photocatalytic properties, ACS Appl. Mater. Interfaces, 4 (2012) 2781–2787.
  39. T.-D. Pham, B.-K. Lee, Feasibility of silver doped TiO2/glass fiber photocatalyst under visible irradiation as an indoor air germicide, Int. J. Environ. Res. Public Health, 11 (2014) 3271–3288.
  40. T.-D. Pham, B.-K. Lee, Cu doped TiO2/GF for photocatalytic disinfection of Escherichia coli in bioaerosols under visible light irradiation: application and mechanism, Appl. Surf. Sci., 296 (2014) 15–23.
  41. P. Kongsong, L. Sikong, S. Niyomwas, V. Rachpech, Photocatalytic antibacterial performance of glass fibers thin film coated with N-doped SnO2/TiO2, Sci. World J., 2014 (2014) 869706, doi: 10.1155/2014/869706.
  42. R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Enhanced photocatalytic activity of TiO2-coated NaY and HY zeolites for the degradation of methylene blue in water, Ind. Eng. Chem. Res., 46 (2007) 369–376.
  43. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst, ACS Nano, 4 (2010) 380–386.
  44. S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. Balkus, Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity, ACS Catal., 2 (2012) 949–956.
  45. W. Qian, P.A. Greaney, S. Fowler, S.-K. Chiu, A.M. Goforth, J. Jiao, Low-temperature nitrogen doping in ammonia solution for production of N-doped TiO2-hybridized graphene as a highly efficient photocatalyst for water treatment, ACS Sustainable Chem. Eng., 2 (2014) 1802–1810.
  46. C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, Y. Feng, Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction, ACS Nano, 4 (2010) 6425–6432.
  47. M.S.A. Sher Shah, A.R. Park, K. Zhang, J.H. Park, P.J. Yoo, Green synthesis of biphasic TiO2–reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity, ACS Appl. Mater. Interfaces, 4 (2012) 3893–3901.
  48. B. Benalioua, I. Benyamina, M. Mansour, K. Mensri, A. Bentouami, B. Boury, Synthesis of a new multi-heterojunction photocatalyst BiOI/Bi2O3/MgO, and its photocatalytic efficiency in the degradation of Rhodamine B under visible light, Desal. Water Treat., 281 (2023) 265–275.
  49. F.-t. Li, X.-j. Wang, Y. Zhao, J.-x. Liu, Y.-j. Hao, R.-h. Liu, D.-s. Zhao, Ionic-liquid-assisted synthesis of high-visible-lightactivated N–B–F-tri-doped mesoporous TiO2 via a microwave route, Appl. Catal., B, 144 (2014) 442–453.
  50. G.-D. Lim, J.-H. Yoo, M. Ji, Y.-I. Lee, Visible light driven photocatalytic degradation enhanced by α/β phase heterojunctions on electrospun Bi2O3 nanofibers, J. Alloys Compd., 806 (2019) 1060–1067.
  51. Y. Jia, X.-Y. Yu, T. Luo, J.-H. Liu, X.-J. Huang, Shape-controlled synthesis of CdCO3 microcrystals and corresponding nanoporous CdO architectures, RSC Adv., 2 (2012) 10251–10254.
  52. S. Landi, I.R. Segundo, E. Freitas, M. Vasilevskiy, J. Carneiro, C.J. Tavares, Use and misuse of the Kubelka–Munk function to obtain the band gap energy from diffuse reflectance measurements, Solid State Commun., 341 (2022) 114573, doi: 10.1016/j.ssc.2021.114573.
  53. H. Jamil, I.M. Dildar, U. Ilyas, J.Z. Hashmi, S. Shaukat, M.N. Sarwar, M. Khaleeq-ur-Rahman, Microstructural and optical study of polycrystalline manganese oxide films using Kubelka–Munk function, Thin Solid Films, 732 (2021) 138796, doi: 10.1016/j.tsf.2021.138796.
  54. A. Escobedo-Morales, I.I. Ruiz-López, M.d. Ruiz-Peralta, L. Tepech-Carrillo, M. Sánchez-Cantú, J.E. Moreno-Orea, Automated method for the determination of the band gap energy of pure and mixed powder samples using diffuse reflectance spectroscopy, Heliyon, 5 (2019) e01505, doi: 10.1016/j.heliyon.2019.e01505.
  55. N. Sangiorgi, L. Aversa, R. Tatti, R. Verucchi, A. Sanson, Spectrophotometric method for optical band gap and electronic transitions determination of semiconductor materials, Opt. Mater., 64 (2017) 18–25.
  56. C. Xu, X. Wang, J. Zhu, Graphene−metal particle nanocomposites, J. Phys. Chem. C, 112 (2008) 19841–19845.
  57. T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, I. Dékány, Evolution of surface functional groups in a series of progressively oxidized graphite oxides, Chem. Mater., 18 (2006) 2740–2749.
  58. J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J.M.D. Tascón, Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide, Langmuir, 25 (2009) 5957–5968.
  59. C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, L. Niu, Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene, Anal. Chem., 81 (2009) 2378–2382.
  60. X. Liu, H. Deng, W. Yao, Q. Jiang, J. Shen, Preparation and photocatalytic activity of Y-doped Bi2O3, J. Alloys Compd., 651 (2015) 135–142.
  61. S. Zhu, L. Lu, Z. Zhao, T. Wang, X. Liu, H. Zhang, F. Dong, Y. Zhang, Mesoporous Ni-doped δ-Bi2O3 microspheres for enhanced solar-driven photocatalysis: a combined experimental and theoretical investigation, J. Phys. Chem. C, 121 (2017) 9394–9401.
  62. S.D. Khairnar, A.N. Kulkarni, S.G. Shinde, S.D. Marathe, Y.V. Marathe, S.D. Dhole, V.S. Shrivastava, Synthesis and characterization of 2-D La-doped Bi2O3 for photocatalytic degradation of organic dye and pesticide, J. Photochem. Photobiol., 6 (2021) 100030, doi: 10.1016/j.jpap.2021.100030.
  63. T. Munawar, M.N. ur Rehman, M.S. Nadeem, F. Mukhtar, S. Manzoor, M.N. Ashiq, F. Iqbal, Facile synthesis
    of Cr-Co co-doped CdO nanowires for photocatalytic, antimicrobial, and supercapacitor applications, J. Alloys Compd., 885 (2021) 160885, doi: 10.1016/j.jallcom.2021.160885.
  64. R.K. Mandal, P. Saha, T.P. Majumder, Structural, optical characterization of the synthesized Fe doped CdO nano particles, its application as a promising photocatalyst for degradation of the hazardous methyl violet dye, Optik, 246 (2021) 167795, doi: 10.1016/j.ijleo.2021.167795.