References

  1. M. Kasinathan, S. Thiripuranthagan, A. Sivakumar, Fabrication of 3D/2D Bi2MoO6/g-C3N4 heterostructure with enhanced photocatalytic behavior in the degradation of harmful organics, Emergent Mater., 4 (2021) 1363–1376.
  2. X. Liu, W.Y. Huang, Q. Zhou, X.R. Chen, K. Yang, D. Li, D.D. Dionysiou, Ag-decorated 3D flower-like
    Bi2MoO6/rGO with boosted photocatalytic performance for removal of organic pollutants, Rare Met., 40 (2021) 1086–1098.
  3. N.V.T. Thu, K.D. Dinh, Modification of TiO2 with Ag nanoparticles using gamma irradiation method for photocatalytic degradation of azo dye, J. Aust. Ceram. Soc., 57 (2021) 1563–1570.
  4. A. Gulpiya, Z. Su, H. Pan, Hydrothermal synthesis of Ag2MoO4 with photocatalytic activity for Rhodamine B degradation, J. Aust. Ceram. Soc., 57 (2021) 91–96.
  5. B. Xu, Y. Li, Y. Gao, S. Liu, D. Lv, S. Zhao, H. Gao, G. Yang, N. Li, L. Ge, Ag-AgI/Bi3O4Cl for efficient visible light photocatalytic degradation of methyl orange: the surface plasmon resonance effect of Ag and mechanism insight, Appl. Catal., B, 246 (2019) 140–148.
  6. S. Gu, Y. Zhang, X. Zhou, K. Sun, D. Wu, K. Gao, X. Wang, Bi–MO bimetallic Co-catalyst modified Bi2MoO6 for enhancing photocatalytic performance, J. Mater. Res., 36 (2021) 646–656.
  7. A. Phuruangrat, T. Klangnoi, P. Patiphatpanya, P. Dumrongrojthanath, S. Thongtem, T. Thongtem, Sonochemical-assisted deposition synthesis of visible-light-driven Pd/Bi2MoO6 used for photocatalytic degradation of Rhodamine B, J. Electron. Mater., 49 (2020) 3684–3691.
  8. R. Yang, Q. Zhao, B. Liu, Two-step method to prepare the direct Z-scheme heterojunction hierarchical
    flower-like Ag@AgBr/Bi2MoO6 microsphere photocatalysts for wastewater treatment under visible light, J. Mater. Sci., 31 (2020) 5054–5067.
  9. M. Urbonavicius, S. Varnagiris, S. Tuckute, Sa. Sakalauskaite, E. Demikyte, M. Lelis, Visible-light-driven photocatalytic inactivation of bacteria, bacteriophages, and their mixtures using ZnO-coated HDPE beads as floating photocatalyst, Materials, 15 (2022) 1318, doi: 10.3390/ma15041318.
  10. A. Upadhyaya, G. Rincón, Visible-light-active noble-metal photocatalysts for water disinfection: a review, Water Resour. Prot., 11 (2019) 1207–1232.
  11. P. Intaphong, P. Suebsom, A. Phuruangrat, K. Akhbari, S. Thongtem, T. Thongtem, Visible-light-driven 5%
    Ag0.9Pd0.1/Bi2MoO6 nanocomposites produced by photoreduction method, Russ. J. Inorg. Chem., 66 (2021) 1600–1607.
  12. C. Huang, S. Ma, Y. Zong, J. Gu, J. Xue, M. Wang, Microwaveassisted synthesis of 3D Bi2MoO6 microspheres with oxygen vacancies for enhanced visible-light photocatalytic activity, Photochem. Photobiol. Sci., 19 (2020) 1697–1706.
  13. J. Guo, R. Liu, Y. Ma, M. Wang, J. Li, X. Wei, L. Zhao, Synthesis and characterization of SrFeO2.73/Bi2MoO6 heterojunction with enhanced photocatalytic activity, Catal. Lett., 151 (2021) 2176–2186.
  14. D. Li, P. Yan, Q. Zhao, X. Bai, X. Ma, J. Xue, Y. Zhang, M. Liu, Synthesis of Bi2WO6/Bi2MoO6 heterostructured nanosheet and activating peroxymonosulfate to enhance photocatalytic activity, J. Inorg. Organomet. Polym. Mater., 30 (2020) 5100–5107.
  15. X. Zhang, H. Zhang, H. Jiang, F. Yu, Z. Shang, Hydrothermal synthesis and characterization of Ce3+ doped
    Bi2MoO6 for water treatment, Catal. Lett., 150 (2020) 159–169.
  16. Q. Wang, Z. Chen, M. Shi, Y. Zhao, J. Ye, G. He, Q. Meng, H. Chen, Zn-doped Bi2MoO6 supported on reduced graphene oxide with increased surface active sites for degradation of ciprofloxacin, Environ. Sci. Pollut. Res., 29 (2022) 19835–19846.
  17. A. Phuruangrat, S. Buapoon, T. Bunluesak, P. Suebsom, S. Thongtem, T. Thongtem, Degradation of Rhodamine B photocatalyzed by hydrothermally prepared Pd-doped Bi2MoO6 nanoplates, J. Aust. Ceram. Soc., 58 (2022) 71–82.
  18. D. Wang, H. Shen, L. Guo, C. Wang, F. Fu, Y. Liang, La and F co-doped Bi2MoO6 architectures with enhanced photocatalytic performance via synergistic effect, RSC Adv., 6 (2016) 71052–71060.
  19. A. Phuruangrat, P. Dumrongrojthanath, T. Thongtem, S. Thongtem, Hydrothermal synthesis and characterization of visible-light driven 0–3 wt.% Br-doped Bi2MoO6 photocatalysts, J. Ceram. Soc. Jpn., 125 (2017) 513–515.
  20. Z. Liu, X. Liu, C. Yu, L. Wei, H. Ji, Fabrication and characterization of I doped Bi2MoO6 microspheres with distinct performance for removing antibiotics and Cr(VI) under visible light illumination, Sep. Purif. Technol., 247 (2020) 116951, doi: 10.1016/j.seppur.2020.11695.
  21. C. Ding, K. Fu, Y. Pan, J. Liu, H. Deng, J. Shi, Comparison of Ag and AgI-modified ZnO as heterogeneous photocatalysts for simulated sunlight driven photodegradation of metronidazole, Catalysts, 10 (2020) 1097, doi: 10.3390/catal10091097.
  22. Y. Wang, C.G. Niu, L. Zhang, Y. Wang, H. Zhang, D.W. Huang, X.G. Zhang, L. Wang, G.M. Zeng, High-efficiency visible-light AgI/Ag/Bi2MoO6 as a Z-scheme photocatalyst for environmental applications, RSC Adv., 6 (2016) 10221–10228.
  23. S. Li, B. Xue, G. Wu, Y. Liu, H. Zhang, D. Ma, J. Zuo, A novel flower-like Ag/AgCl/BiOCOOH ternary heterojunction photocatalyst: facile construction and its superior photocatalytic performance for the removal of toxic pollutants, Nanomaterials, 9 (2019) 1562, doi: 10.3390/nano9111562.
  24. W. Gan, J. Zhang, H. Niu, L. Bao, H. Hao, Y. Yan, K. Wu, X. Fu, Fabrication of Ag/AgBr/Bi2WO6 hierarchical composites with high visible light photocatalytic activity, Chem. Phys. Lett., 737 (2019) 136830, doi: 10.1016/j.cplett.2019.136830.
  25. Y. Liang, H. Wang, L. Liu, P. Wu, W. Cui, J.G. McEvoy, Z. Zhang, Microwave-assisted synthesis of a superfine
    Ag/AgI photocatalyst with high activity and excellent durability, J. Mater. Sci., 50 (2015) 6935–6946.
  26. Z. Song, P. Lin, Z. Ma, F. Wang, G.S. Huang, Construction and characterization of Ag/AgI/Ag3BiO3 heterojunction and its photocatalytic mechanism, J. Exp. Nanosci., 14 (2019) 56–68.
  27. S. Buapoon, A. Phuruangrat, P. Dumrongrojthanath, T. Thongtem, S. Thongtem, Sonochemical synthesis and characterization of Ag/ZnO heterostructure nanocomposites and their photocatalytic efficiencies, J. Electron. Mater., 50 (2021) 4524–4532.
  28. C. An, J. Wang, J. Liu, S. Wang, Q.H. Zhang, Plasmonic enhancement of photocatalysis over Ag incorporated AgI hollow nanostructures, RSC Adv., 4 (2014) 2409–2413.
  29. X. Ma, Y. Dai, M. Guo, B. Huang, The role of effective mass of carrier in the photocatalytic behavior of silver halide-based Ag@AgX (X = Cl, Br, I): a theoretical study, ChemPhysChem, 13 (2012) 2304–2309.
  30. D. Yu, J. Bai, H. Liang, J. Wang, C. Li, Fabrication of a novel visible-light-driven photocatalyst Ag-AgI-TiO2 nanoparticles supported on carbon nanofibers, Appl. Surf. Sci., 349 (2015) 241–250.
  31. Powder Diffract. File, JCPDS-ICDD, 12 Campus Blvd, Newtown Square, PA 19073–3273, U.S.A., 2001.
  32. Y. Chen, W. Yang, S. Gao, L. Zhu, C. Sun, Q. Li, Internal polarization modulation in Bi2MoO6 for photocatalytic performance enhancement under visible-light illumination, ChemSusChem, 11 (2018) 1521–1532.
  33. R. Wang, D. Li, H. Wang, C. Liu, L. Xu, Preparation, characterization, and performance analysis of S-doped Bi2MoO6 nanosheets, Nanomaterials, 9 (2019) 1341, doi: 10.3390/nano9091341.
  34. H. Yu, L. Jiang, H. Wang, B. Huang, X. Yuan, J. Huang, J. Zhang, G. Zeng, Modulation of Bi2MoO6-based materials for photocatalytic water splitting and environmental application: a critical review, Small, 15 (2019) 1901008, doi: 10.1002/smll.201901008.
  35. C. Kongmark, V. Martis, C. Pirovano, A. Löfberg, W. Beek, G. Sankar, A. Rubbens, S. Cristol, R.N. Vannier, E. Bordes-Richard, Synthesis of γ-Bi2MoO6 catalyst studied by combined high-resolution powder diffraction, XANES and Raman spectroscopy, Catal. Today, 157 (2010) 257–262.
  36. Y. Zheng, F. Duan, J. Wu, L. Liu, M. Chen, Y. Xie, Enhanced photocatalytic activity of bismuth molybdates with the preferentially exposed {010} surface under visible light irradiation, J. Mol. Catal. A: Chem., 303 (2009) 9–14.
  37. X. Wu, Y.H. Ng, W.H. Saputera, X. Wen, Y. Du, S.X. Dou, R. Amal, J.A. Scott, The dependence of Bi2MoO6 photocatalytic water oxidation capability on crystal facet engineering, ChemPhotoChem, 3 (2019) 1246–1253.
  38. J. Bao, S. Guo, J. Gao, T. Hu, L. Yang, C. Liu, J. Peng, C. Jiang, Synthesis of Ag2CO3/Bi2WO6 heterojunctions with enhanced photocatalytic activity and cycling stability, RSC Adv., 5 (2015) 97195–97204.
  39. J. Li, X. Liu, L. Pan, W. Qin, Z. Sun, Enhanced visible light photocatalytic degradation of Rhodamine B by
    Bi/Bi2MoO6 hollow microsphere composites, RSC Adv., 4 (2014) 62387–62392.
  40. S. Lin, L. Liu, J. Hu, Y. Liang, W. Cui, Photocatalytic activity of Ag@AgI sensitized K2Ti4O9 nanoparticles under visible light irradiation, J. Mol. Struct., 1081 (2015) 260–267.
  41. Z. Wu, X. He, Z. Gao, Y. Xue, X. Chen, L. Zhang, Synthesis and characterization of Ni-doped anatase TiO2 loaded on magnetic activated carbon for rapidly removing triphenylmethane dyes, Environ. Sci. Pollut. Res., 28 (2021) 3475–3483.
  42. J. Wang, F. Meng, W. Xie, C. Gao, Y. Zha, D. Liu, P. Wang, TiO2/CeO2 composite catalysts: synthesis, characterization and mechanism analysis, Appl. Phys. A, 124 (2018) 645, doi: 10.1007/s00339-018-2027-1.
  43. Y. Zhou, D. Li, L. Yang, C. Li, Y. Liu, J. Lu, Y. Wang, Preparation of 3D urchin-like RGO/ZnO and its photocatalytic activity, J. Mater. Sci., 28 (2017) 7935–7942.
  44. P. Chen, Z. Zhang, S. Yang, Y. Yang, Y. Sun, Synthesis of BiOCl/ZnMoO4 heterojunction with oxygen vacancy for enhanced photocatalytic activity, J. Mater. Sci., 32 (2021) 23189–23205.
  45. T. Liu, L. Wang, X. Lu, J. Fan, X. Cai, B. Gao, R. Miao, J. Wang, Y. Lv, Comparative study of the photocatalytic performance for the degradation of different dyes by ZnIn2S4: adsorption, active species, and pathways, RSC Adv., 7 (2017) 12292–12300.
  46. H. Yang, J. Yang, Photocatalytic degradation of Rhodamine B catalyzed by TiO2 films on a capillary column, RSC Adv., 8 (2018) 11921–11929.
  47. Y. Zhang, Y. Ma, L. Wang, Q. Sun, F. Zhang, J. Shi, Facile one-step hydrothermal synthesis of noble metal-free hetero-structural ternary composites and their application in photocatalytic water purification, RSC Adv., 7 (2017) 50701–50712.
  48. S. Manikandan, D. Sasikumar, P. Maadeswaran, Synthesis, structural and optical properties of phosphorus doped MnO2 nanorods as an under sunlight illumination with intensify photocatalytic for the degradation of organic dyes, Optik, 261 (2022) 169185, doi: 10.1016/j.ijleo.2022.169185.
  49. Y. Ma, C. Lv, J. Hou, S. Yuan, Y. Wang, P. Xu, G. Gao, J. Shi, 3D hollow hierarchical structures based on 1D BiOCl nanorods intersected with 2D Bi2WO6 nanosheets for efficient photocatalysis under visible light, Nanomaterials, 9 (2019) 322, doi: 10.3390/nano9030322.
  50. Q. Yan, M. Sun, T. Yan, M. Li, L. Yan, D. Wei, B. Du, Fabrication of a heterostructured Ag/AgCl/Bi2MoO6 plasmonic photocatalyst with efficient visible light activity towards dyes, RSC Adv., 5 (2015) 17245–17252.
  51. X. Li, S. Fang, L. Ge, C. Han, P. Qiu, W. Liu, Synthesis of flowerlike Ag/AgCl-Bi2MoO6 plasmonic photocatalysts with enhanced visible-light photocatalytic performance, Appl. Catal., B, 176–177 (2015) 62–69.