References

  1. J.L. Wittliff, S.A. Andres, Estrogens V: Xenoestrogens, P. Wexler, Ed., Reference Module in Biomedical Sciences: Encyclopedia of Toxicology (3rd ed.), Elsevier, 2014, pp. 480–484.
    doi: 10.1016/B978-0-12-386454-3.01018-6
  2. A.C. De la Parra-Guerra, R. Acevedo-Barrios, Studies of endocrine disruptors: nonylphenol and isomers in biological models, Environ. Toxicol. Chem., 42 (2023) 1439–1450.
  3. P.D. Darbre, Environmental Contaminants: Environmental Estrogens - Hazard Characterization, in: Encyclopaedia of Food Safety, Academic Press (Elsevier), Wathem MA, 2014, pp. 323–331. doi: 10.1016/B978-0-12-378612-8.00196-7
  4. C.L. Yuan, Z.Z. Xu, M.X. Fan, H.Y. Liu, Y.H. Xie, T. Zhu, Study on characteristics and harm of surfactants, J. Chem. Pharm. Res., 6 (2014) 2233–2237.
  5. M. Ahel, W. Giger, C. Schaffner, Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment—II. Occurrence and transformation in rivers, Water Res., 28 (1994) 1143–1152.
  6. M. Khajvand, P. Drogui, L. Pichon, A. Ali El Khakani, R.D. Tyagi, E. Brien, Removal of nonylphenol ethoxylate from laundry wastewater using modified and functionalized activated carbon, Environ. Sci. Water Res. Technol., 9 (2023) 2338–2354.
  7. G.-G. Ying, B. Williams, R. Kookana, Environmental fate of alkylphenols and alkylphenol ethoxylates—a review, Environ. Int., 28 (2002) 215–226.
  8. J. Newsted, D. Tazelaar, L. Kristofco, B. Losey, A meta-analysis of the occurrence of alkylphenols and alkylphenol ethoxylates in surface waters and sediments in the United States between 2010 and 2020, Environ. Pollut., 330 (2023) 121757, doi: 10.1016/j.envpol.2023.121757.
  9. A. Beryani, K. Flanagan, M. Viklander, G.-T. Blecken, Occurrence and concentrations of organic micropollutants (OMPs) in highway stormwater: a comparative field study in Sweden, Environ. Sci. Pollut. Res., 30 (2023) 77299–77317.
  10. C.-Y. Chen, T.-Y. Wen, G.-S. Wang, H.-W. Cheng, Y.-H. Lin, G.-W. Lien, Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry, Sci. Total Environ., 378 (2007) 352–365.
  11. P.-D. Nguyen, T.-M.-T. Le, T.-K.-Q. Vo, P.-T. Nguyen, T.-D.-H. Vo, B.-T. Dang, N.-T. Son, D.D. Nguyen, X.-T. Bui, Submerged membrane filtration process coupled with powdered activated carbon for nonylphenol ethoxylates removal, Water Sci. Technol., 84 (2021) 1793–1803.
  12. M. Ahel, C. Schaffner, W. Giger, Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment—III. Occurrence and elimination of their persistent metabolites during infiltration of river water to groundwater, Water Res., 30 (1996) 37–46.
  13. B. Shao, J. Hu, M. Yang, Nonylphenol ethoxylates and their biodegradation intermediates in water and sludge of a sewage treatment plant, Bull. Environ. Contam. Toxicol., 70 (2003) 527–532.
  14. X. He, B. Yan, J. Jiang, Y. Ouyang, D. Wang, P. Liu, X.-X. Zhang, Identification of key degraders for controlling toxicity risks of disguised toxic pollutants with division of labor mechanisms in activated sludge microbiomes: using nonylphenol ethoxylate as an example, J. Hazard. Mater., 457 (2023) 131740, doi: 10.1016/j.jhazmat.2023.131740.
  15. Y.-D. Dai, K.J. Shah, C.P. Huang, H. Kim, P.-C. Chiang, Adsorption of nonylphenol to multi-walled carbon nanotubes: kinetics and isotherm study, Appl. Sci., 8 (2018) 2295, doi: 10.3390/app8112295.
  16. S. Khandaker, Y. Toyohara, G.C. Saha, Md. Rabiul Awual, T. Kuba, Development of synthetic zeolites from bio-slag for cesium adsorption: kinetic, isotherm and thermodynamic studies, J. Water Process Eng., 33 (2020) 101055, doi: 10.1016/j.jwpe.2019.101055.
  17. M. Sayın, M. Can, M. İmamoğlu, Adsorption of Pd(II) and Au(III) ions by commercial tris(2-aminoethyl) amine polystyrene polymer beads, J. Chem. Eng. Data, 66 (2021) 1132–1143.
  18. F.E. Titchou, R.A. Akbour, A. Assabbane, M. Hamdani, Removal of cationic dye from aqueous solution using Moroccan pozzolana as adsorbent: isotherms, kinetic studies, and application on real textile wastewater treatment, Groundwater Sustainable Dev., 11 (2020) 100405, doi: 10.1016/j.gsd.2020.100405.
  19. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Colloid Interface Sci., 209 (2014) 172–184.
  20. S. Paria, P.K. Yuet, Adsorption of non-ionic surfactants onto sand and its importance in naphthalene removal, Ind. Eng. Chem. Res., 46 (2007) 108–113.
  21. M. Ghiaci, R.J. Kalbasi, A. Abbaspour, Adsorption isotherms of non-ionic surfactants on Na-bentonite (Iran) and evaluation of thermodynamic parameters, Colloids Surf., A, 297 (2007) 105–113.
  22. L. Lou, Q. Huang, Y. Lou, J. Lu, B. Hu, Q. Lin, Adsorption and degradation in the removal of nonylphenol from water by cells immobilized on biochar, Chemosphere, 228 (2019) 676–684.
  23. J. Fan, W. Yang, A. Li, Adsorption of phenol, bisphenol A and nonylphenol ethoxylates onto hypercrosslinked and aminated adsorbents, React. Funct. Polym., 71 (2011) 994–1000.
  24. Å. Stenholm, M. Hedeland, T. Arvidsson, C.E. Pettersson, Removal of nonylphenol polyethoxylates by adsorption on polyurethane foam and biodegradation using immobilized Trametes versicolor, Sci. Total Environ., 724 (2020) 138159, doi: 10.1016/j.scitotenv.2020.138159.
  25. Z. Jin, X. Wang, Y. Sun, Y. Ai, X. Wang, Adsorption of 4-n-nonylphenol and bisphenol-a on magnetic reduced graphene oxides: a combined experimental and theoretical studies, Environ. Sci. Technol., 49 (2015) 9168–9175.
  26. D.M. John, W. Alan House, G.F. White, Environmental fate of nonylphenol ethoxylates: differential adsorption of homologs to components of river sediment, Environ. Toxicol. Chem., 19 (2000) 293–300.
  27. R. Zhang, P. Somasundaran, Aggregate formation of binary nonionic surfactant mixtures on hydrophilic surfaces, Langmuir, 21 (2005) 4868–4873.
  28. D.D.L. Chung, Review graphite, J. Mater. Sci., 37 (2002) 1475–1489.
  29. A. Goshadrou, A. Moheb, Continuous fixed bed adsorption of C.I. Acid Blue 92 by exfoliated graphite: an experimental and modeling study, Desalination, 269 (2011) 170–176.
  30. N.B. Hoang, T.T. Nguyen, T.S. Nguyen, T.P.Q. Bui, L.G. Bach, N.D. Duc, The application of expanded graphite fabricated by microwave method to eliminate organic dyes in aqueous solution, Cogent Eng., 6 (2019) 1–13, doi: 10.1080/23311916.2019.1584939.
  31. B. Özmen-Monkul, M.M. Lerner, The first graphite intercalation compounds containing tris(pentafluoroethyl) trifluorophosphate, Carbon N. Y., 48 (2010) 3205–3210.
  32. Y.-P. Zheng, H.-N. Wang, F.-Y. Kang, L.-N. Wang, M. Inagaki, Sorption capacity of exfoliated graphite for oils-sorption in and among worm-like particles, Carbon N. Y., 42 (2004) 2603–2607.
  33. A. Celzard, J.F. Marêché, G. Furdin, Surface area of compressed expanded graphite, Carbon N. Y., 40 (2002) 2713–2718.
  34. H. Horacek, Gaskets with expandable graphite treated with nitric, sulphuric, phosphoric acids and ferric chloride, Open Access Lib. J., 2 (2015) 1–21.
  35. Y. Matsuo, Y. Sugie, Electrochemical lithiation of carbon prepared from pyrolysis of graphite oxide, J. Electrochem. Soc., 146 (1999) 2011, doi: 10.1149/1.1391883.
  36. S. Chehreh Chelgani, M. Rudolph, R. Kratzsch, D. Sandmann, J. Gutzmer, A review of graphite beneficiation techniques, Miner. Process. Extr. Metall. Rev.: An Int. J., 37 (2016) 58–68.
  37. I. Cameán, P. Lavela, J.L. Tirado, A.B. García, On the electrochemical performance of anthracite-based graphite materials as anodes in lithium-ion batteries, Fuel, 89 (2010) 986–991.
  38. I. Cameán, A.B. Garcia, Graphite materials prepared by HTT of unburned carbon from coal combustion fly ashes: performance as anodes in lithium-ion batteries, J. Power Sources, 196 (2011) 4816–4820.
  39. G. Feng, Q. Jiangying, Z. Zongbin, Z. Quan, L. Beibei, Q. Jieshan, A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application, Carbon N. Y., 80 (2014) 640–650.
  40. B. Xing, C. Zhang, Y. Cao, G. Huang, Q. Liu, C. Zhang, Z. Chen, G. Yi, L. Chen, J. Yu, Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries, Fuel Process. Technol., 172 (2018) 162–171.
  41. Q. Zhou, Z. Zhao, Y. Zhang, B. Meng, A. Zhou, J. Qiu, Graphene sheets from graphitized anthracite coal: preparation, decoration, and application, Energy Fuels, 26 (2012) 5186–5192.
  42. T. Qiu, J.-G. Yang, X.-J. Bai, Y.-L. Wang, The preparation of synthetic graphite materials with hierarchical pores from lignite by one-step impregnation and their characterization as dye absorbents, RSC Adv., 9 (2019) 12737–12746.
  43. S. Shrestha, G. Son, S.H. Lee, T.G. Lee, Isotherm and thermodynamic studies of Zn(II) adsorption on lignite and coconut shell-based activated carbon fiber, Chemosphere, 92 (2013) 1053–1061.
  44. E.M. Suuberg, W.A. Peters, J.B. Howard, Product composition and kinetics of lignite pyrolysis, Ind. Eng. Chem. Process Des. Dev., 17 (1978) 37–46.
  45. C.-X. Pan, X.-Y. Wei, H.-F. Shui, Z.-C. Wang, J. Gao, C. Wei, X.-Z. Cao, Z.-M. Zong, Investigation on the macromolecular network structure of Xianfeng lignite by a new two-step depolymerization, Fuel, 109 (2013) 49–53.
  46. A. Tahmasebi, J. Yu, Y. Han, F. Yin, S. Bhattacharya, D. Stokie, Study of chemical structure changes of chinese lignite upon drying in superheated steam, microwave, and hot air, Energy Fuels, 26 (2012) 3651–3660.
  47. L. Lv, H. Liu, Q. Li, J. Liu, Y. Zhang, Y. Wang, Effective adsorption of Pb(II) from wastewater using facile enclosed pyrolysis strategy for defect-rich lignite-based carbon-coated zero-valent iron, J. Anal. Appl. Pyrolysis, 169 (2023) 105823, doi: 10.1016/j.jaap.2022.105823.
  48. M. Sun, S. Gu, X. Liu, J. Zheng, Z. Xu, Y. Chen, H. He, L. Wang, Adsorption mechanism of ammonia nitrogen and phenol on lignite surface: molecular dynamics simulations and quantum chemical calculations, Fuel, 337 (2023) 127157, doi: 10.1016/j.fuel.2022.127157.
  49. T. Depci, Comparison of activated carbon and iron impregnated activated carbon derived from Gölbaşı lignite to remove cyanide from water, Chem. Eng. J., 181–182 (2012) 467–478.
  50. G. Skodras, Th. Orfanoudaki, E. Kakaras, G.P. Sakellaropoulos, Production of special activated carbon from lignite for environmental purposes, Fuel Process. Technol. 77–78 (2002) 75–87.
  51. J.O. Besenhard, E. Theodoridou, H. Möhwald, J.J. Nickl, Electrochemical applications of graphite intercalation compounds, Synth. Met., 4 (1982) 211–223.
  52. N.E. Sorokina, N.V. Maksimova, V.V. Avdeev, Anodic oxidation of graphite in 10 to 98% HNO3, Inorg. Mater., 37 (2001) 360–365.
  53. L. Zhao, N. Guanhua, W. Hui, S. Qian, W. Gang, J. Bingyou, Z. Chao, Molecular structure characterization of lignite treated with ionic liquid via FTIR and XRD spectroscopy, Fuel, 272 (2020) 117705, doi: 10.1016/j.fuel.2020.117705.
  54. Y.-M. Wang, C.-H. Zhang, Study on structural evolution of synthetic graphite derived from lignite prepared by high temperature–high pressure method, Crystals, 12 (2022) 464, doi: 10.3390/cryst12040464.
  55. H. Badenhorst, Microstructure of natural graphite flakes revealed by oxidation: limitations of XRD and Raman techniques for crystallinity estimates, Carbon N. Y., 66 (2014) 674–690.
  56. M.S. Nyathi, C.B. Clifford, H.H. Schobert, Characterization of graphitic materials prepared from different rank Pennsylvania anthracites, Fuel, 114 (2013) 244–250.
  57. R. Krishna, J. Wade, A.N. Jones, M. Lasithiotakis, P.M. Mummery, B.J. Marsden, An understanding of lattice strain, defects and disorder in nuclear graphite, Carbon N. Y., 124 (2017) 314–333.
  58. F.M. Uhl, Q. Yao, H. Nakajima, E. Manias, C.A. Wilkie, Expandable graphite/polyamide-6 nanocomposites, Polym. Degrad. Stab., 89 (2005) 70–84.
  59. I.M. Afanasov, O.N. Shornikova, D.A. Kirilenko, I.I. Vlasov, L. Zhang, J. Verbeeck, V.V. Avdeev, G. Van Tendeloo, Graphite structural transformations during intercalation by HNO3 and exfoliation, Carbon N. Y., 48 (2010) 1862–1865.
  60. R.B. Valapa, G. Pugazhenthi, V. Katiyar, Effect of graphene content on the properties of poly(lactic acid) nanocomposites, RSC Adv., 5 (2015) 28410–28423.
  61. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985) 603–619.
  62. X. Li, D. Tan, L. Xie, H. Sun, S. Sun, G. Zhong, P. Ren, Effect of surface property of halloysite on the crystallization behavior of PBAT, Appl. Clay Sci., 157 (2018) 218–226.
  63. J. Chen, W. Chen, D. Zhu, Adsorption of nonionic aromatic compounds to single-walled carbon nanotubes: effects of aqueous solution chemistry, Environ. Sci. Technol., 42 (2008) 7225–7230.
  64. Z. Li, C. Ma, J. Wang, X. Lyu, Q. Zhang, X. You, L. Li, Investigation of nonylphenol ethoxylate on the surface characteristics of low rank coal, Part. Sci. Technol.: An Int. J., 38 (2020) 1012–1018.
  65. T. Svitova, R.M. Hill, C.J. Radke, Adsorption layer structures and spreading behavior of aqueous non-ionic surfactants on graphite, Colloids Surf., A, 183–185 (2001) 607–620.
  66. M.D. Vo, D.V. Papavassiliou, Effects of temperature and shear on the adsorption of surfactants on carbon nanotubes, J. Phys. Chem. C, 121 (2017) 14339–14348.
  67. X. Yuan, W. Xing, S.P. Zhuo, W. Si, X. Gao, Z. Han, Z.F. Yan, Adsorption of bulky molecules of nonylphenol ethoxylate on ordered mesoporous carbons, J. Colloid Interface Sci., 322 (2008) 558–565.
  68. D. Tang, Z. Zheng, K. Lin, J. Luan, J. Zhang, Adsorption of p-nitrophenol from aqueous solutions onto activated carbon fiber, J. Hazard. Mater., 143 (2007) 49–56.
  69. Y.A. Aydin, N.D. Aksoy, Adsorption of chromium on chitosan: optimization, kinetics and thermodynamics, Chem. Eng. J., 151 (2009) 188–194.
  70. M. Zhao, P. Liu, Adsorption of methylene blue from aqueous solutions by modified expanded graphite powder, Desalination, 249 (2009) 331–336.
  71. D. Ursueguía, E. Díaz, S. Ordóñez, Adsorption of methane and nitrogen on basolite MOFs: equilibrium and kinetic studies, Microporous Mesoporous Mater., 298 (2020) 110048, doi: 10.1016/j.micromeso.2020.110048.
  72. Sk. Taheruddin Ahamed, C. Kulsi, Kirti, D. Banerjee, D.N. Srivastava, A. Mondal, Synthesis of multifunctional CdSe and Pd quantum dot decorated CdSe thin films for photocatalytic,electrocatalytic and thermoelectric applications, Surf. Interfaces, 25 (2021) 101149, doi: 10.1016/j.surfin.2021.101149.
  73. A.S. Eltaweil, H. Ali Mohamed, E.M. Abd El-Monaem, G.M. El-Subruiti, Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: characterization, adsorption kinetics, thermodynamics and isotherms, Adv. Powder Technol., 31 (2020) 1253–1263.
  74. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms, J. Chem., 2017 (2017) 3039817, doi: 10.1155/2017/3039817.
  75. S. Mondal, S.K. Majumder, Honeycomb-like porous activated carbon for efficient copper(II) adsorption synthesized from natural source: kinetic study and equilibrium isotherm analysis, J. Environ. Chem. Eng., 7 (2019) 103236, doi: 10.1016/j.jece.2019.103236.
  76. Z. Si-ning, G. Hui, L. Jin-Ming, P. Zhe-min, Absorption of the non-ionic surfactants with expanded graphite, Guangzhou Chem., (2009), doi: 10.16560/j.cnki.gzhx.2009.02.001.
  77. H.N. Catherine, M.-H. Ou, B. Manu, Y.-h. Shih, Adsorption mechanism of emerging and conventional phenolic compounds on graphene oxide nanoflakes in water, Sci. Total Environ., 635 (2018) 629–638.
  78. C.D. Atemkeng, G.S. Anagho, R.F.T. Tagne, L.A. Amola, A. Bopda, T. Kamgaing, Optimization of 4-nonylphenol adsorption on activated carbons derived from safou seeds using response surface methodology, Carbon Trends, 4 (2021) 100052, doi: 10.1016/j.cartre.2021.100052.
  79. H.T. Thi, A. Le Hoang, T.P. Huu, T.N. Dinh, S.W. Chang, W.J. Chung, D. Duc Nguyen, Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste, Sci. Total Environ., 725 (2020) 138325, doi: 10.1016/j.scitotenv.2020.138325.
  80. Y. Liu, Y. Xiong, P. Xu, Y. Pang, C. Du, Enhancement of Pb(II) adsorption by boron doped ordered mesoporous carbon: isotherm and kinetics modeling, Sci. Total Environ., 708 (2020) 134918, doi: 10.1016/j.scitotenv.2019.134918.
  81. K.U. Ahamad, R. Singh, I. Baruah, H. Choudhury, M.R. Sharma, Equilibrium and kinetics modeling of fluoride adsorption onto activated alumina, alum and brick powder, Groundwater Sustainable Dev., 7 (2018) 452–458.
  82. E. Salehi, N. Gavari, A. Chehrei, S. Amani, N. Amani, K. Zaghi, Efficient separation of triglyceride from blood serum using Cinnamon as a novel biosorbent: adsorption thermodynamics, kinetics, isothermal and process optimization using response surface methodology, Process Biochem., 77 (2019) 122–136.