References
- J.L. Wittliff, S.A. Andres, Estrogens V: Xenoestrogens, P. Wexler,
Ed., Reference Module in Biomedical Sciences: Encyclopedia
of Toxicology (3rd ed.), Elsevier, 2014, pp. 480–484.
doi: 10.1016/B978-0-12-386454-3.01018-6
- A.C. De la Parra-Guerra, R. Acevedo-Barrios, Studies of
endocrine disruptors: nonylphenol and isomers in biological
models, Environ. Toxicol. Chem., 42 (2023) 1439–1450.
- P.D. Darbre, Environmental Contaminants: Environmental
Estrogens - Hazard Characterization, in: Encyclopaedia
of Food Safety, Academic Press (Elsevier), Wathem MA,
2014, pp. 323–331. doi: 10.1016/B978-0-12-378612-8.00196-7
- C.L. Yuan, Z.Z. Xu, M.X. Fan, H.Y. Liu, Y.H. Xie, T. Zhu, Study
on characteristics and harm of surfactants, J. Chem. Pharm.
Res., 6 (2014) 2233–2237.
- M. Ahel, W. Giger, C. Schaffner, Behaviour of alkylphenol
polyethoxylate surfactants in the aquatic environment—II.
Occurrence and transformation in rivers, Water Res., 28 (1994)
1143–1152.
- M. Khajvand, P. Drogui, L. Pichon, A. Ali El Khakani, R.D. Tyagi,
E. Brien, Removal of nonylphenol ethoxylate from laundry
wastewater using modified and functionalized activated
carbon, Environ. Sci. Water Res. Technol., 9 (2023) 2338–2354.
- G.-G. Ying, B. Williams, R. Kookana, Environmental fate
of alkylphenols and alkylphenol ethoxylates—a review,
Environ. Int., 28 (2002) 215–226.
- J. Newsted, D. Tazelaar, L. Kristofco, B. Losey, A meta-analysis
of the occurrence of alkylphenols and alkylphenol ethoxylates
in surface waters and sediments in the United States
between 2010 and 2020, Environ. Pollut., 330 (2023) 121757,
doi: 10.1016/j.envpol.2023.121757.
- A. Beryani, K. Flanagan, M. Viklander, G.-T. Blecken,
Occurrence and concentrations of organic micropollutants
(OMPs) in highway stormwater: a comparative field study in
Sweden, Environ. Sci. Pollut. Res., 30 (2023) 77299–77317.
- C.-Y. Chen, T.-Y. Wen, G.-S. Wang, H.-W. Cheng, Y.-H. Lin,
G.-W. Lien, Determining estrogenic steroids in Taipei waters
and removal in drinking water treatment using high-flow
solid-phase extraction and liquid chromatography/tandem
mass spectrometry, Sci. Total Environ., 378 (2007) 352–365.
- P.-D. Nguyen, T.-M.-T. Le, T.-K.-Q. Vo, P.-T. Nguyen,
T.-D.-H. Vo, B.-T. Dang, N.-T. Son, D.D. Nguyen, X.-T. Bui,
Submerged membrane filtration process coupled with
powdered activated carbon for nonylphenol ethoxylates
removal, Water Sci. Technol., 84 (2021) 1793–1803.
- M. Ahel, C. Schaffner, W. Giger, Behaviour of alkylphenol
polyethoxylate surfactants in the aquatic environment—III.
Occurrence and elimination of their persistent metabolites
during infiltration of river water to groundwater, Water Res.,
30 (1996) 37–46.
- B. Shao, J. Hu, M. Yang, Nonylphenol ethoxylates and their
biodegradation intermediates in water and sludge of a sewage
treatment plant, Bull. Environ. Contam. Toxicol., 70 (2003)
527–532.
- X. He, B. Yan, J. Jiang, Y. Ouyang, D. Wang, P. Liu, X.-X. Zhang,
Identification of key degraders for controlling toxicity risks of
disguised toxic pollutants with division of labor mechanisms
in activated sludge microbiomes: using nonylphenol
ethoxylate as an example, J. Hazard. Mater., 457 (2023) 131740,
doi: 10.1016/j.jhazmat.2023.131740.
- Y.-D. Dai, K.J. Shah, C.P. Huang, H. Kim, P.-C. Chiang,
Adsorption of nonylphenol to multi-walled carbon nanotubes:
kinetics and isotherm study, Appl. Sci., 8 (2018) 2295,
doi: 10.3390/app8112295.
- S. Khandaker, Y. Toyohara, G.C. Saha, Md. Rabiul Awual,
T. Kuba, Development of synthetic zeolites from bio-slag for
cesium adsorption: kinetic, isotherm and thermodynamic
studies, J. Water Process Eng., 33 (2020) 101055, doi: 10.1016/j.jwpe.2019.101055.
- M. Sayın, M. Can, M. İmamoğlu, Adsorption of Pd(II) and Au(III)
ions by commercial tris(2-aminoethyl) amine polystyrene
polymer beads, J. Chem. Eng. Data, 66 (2021) 1132–1143.
- F.E. Titchou, R.A. Akbour, A. Assabbane, M. Hamdani,
Removal of cationic dye from aqueous solution using
Moroccan pozzolana as adsorbent: isotherms, kinetic
studies, and application on real textile wastewater treatment,
Groundwater Sustainable Dev., 11 (2020) 100405, doi: 10.1016/j.gsd.2020.100405.
- M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal
from aqueous solution by adsorption: a review, Adv. Colloid
Interface Sci., 209 (2014) 172–184.
- S. Paria, P.K. Yuet, Adsorption of non-ionic surfactants onto
sand and its importance in naphthalene removal, Ind. Eng.
Chem. Res., 46 (2007) 108–113.
- M. Ghiaci, R.J. Kalbasi, A. Abbaspour, Adsorption isotherms
of non-ionic surfactants on Na-bentonite (Iran) and evaluation
of thermodynamic parameters, Colloids Surf., A, 297 (2007)
105–113.
- L. Lou, Q. Huang, Y. Lou, J. Lu, B. Hu, Q. Lin, Adsorption and
degradation in the removal of nonylphenol from water by cells
immobilized on biochar, Chemosphere, 228 (2019) 676–684.
- J. Fan, W. Yang, A. Li, Adsorption of phenol, bisphenol A and
nonylphenol ethoxylates onto hypercrosslinked and aminated
adsorbents, React. Funct. Polym., 71 (2011) 994–1000.
- Å. Stenholm, M. Hedeland, T. Arvidsson, C.E. Pettersson,
Removal of nonylphenol polyethoxylates by adsorption on
polyurethane foam and biodegradation using immobilized
Trametes versicolor, Sci. Total Environ., 724 (2020) 138159,
doi: 10.1016/j.scitotenv.2020.138159.
- Z. Jin, X. Wang, Y. Sun, Y. Ai, X. Wang, Adsorption of
4-n-nonylphenol and bisphenol-a on magnetic reduced
graphene oxides: a combined experimental and theoretical
studies, Environ. Sci. Technol., 49 (2015) 9168–9175.
- D.M. John, W. Alan House, G.F. White, Environmental fate of
nonylphenol ethoxylates: differential adsorption of homologs
to components of river sediment, Environ. Toxicol. Chem.,
19 (2000) 293–300.
- R. Zhang, P. Somasundaran, Aggregate formation of binary
nonionic surfactant mixtures on hydrophilic surfaces,
Langmuir, 21 (2005) 4868–4873.
- D.D.L. Chung, Review graphite, J. Mater. Sci., 37 (2002)
1475–1489.
- A. Goshadrou, A. Moheb, Continuous fixed bed adsorption of
C.I. Acid Blue 92 by exfoliated graphite: an experimental and
modeling study, Desalination, 269 (2011) 170–176.
- N.B. Hoang, T.T. Nguyen, T.S. Nguyen, T.P.Q. Bui,
L.G. Bach, N.D. Duc, The application of expanded graphite
fabricated by microwave method to eliminate organic
dyes in aqueous solution, Cogent Eng., 6 (2019) 1–13,
doi: 10.1080/23311916.2019.1584939.
- B. Özmen-Monkul, M.M. Lerner, The first graphite intercalation
compounds containing tris(pentafluoroethyl)
trifluorophosphate, Carbon N. Y., 48 (2010) 3205–3210.
- Y.-P. Zheng, H.-N. Wang, F.-Y. Kang, L.-N. Wang, M. Inagaki,
Sorption capacity of exfoliated graphite for oils-sorption
in and among worm-like particles, Carbon N. Y., 42 (2004)
2603–2607.
- A. Celzard, J.F. Marêché, G. Furdin, Surface area of compressed
expanded graphite, Carbon N. Y., 40 (2002) 2713–2718.
- H. Horacek, Gaskets with expandable graphite treated
with nitric, sulphuric, phosphoric acids and ferric chloride,
Open Access Lib. J., 2 (2015) 1–21.
- Y. Matsuo, Y. Sugie, Electrochemical lithiation of carbon
prepared from pyrolysis of graphite oxide, J. Electrochem. Soc.,
146 (1999) 2011, doi: 10.1149/1.1391883.
- S. Chehreh Chelgani, M. Rudolph, R. Kratzsch, D. Sandmann,
J. Gutzmer, A review of graphite beneficiation techniques,
Miner. Process. Extr. Metall. Rev.: An Int. J., 37 (2016) 58–68.
- I. Cameán, P. Lavela, J.L. Tirado, A.B. García, On the
electrochemical performance of anthracite-based graphite
materials as anodes in lithium-ion batteries, Fuel, 89 (2010)
986–991.
- I. Cameán, A.B. Garcia, Graphite materials prepared by HTT
of unburned carbon from coal combustion fly ashes: performance
as anodes in lithium-ion batteries, J. Power Sources,
196 (2011) 4816–4820.
- G. Feng, Q. Jiangying, Z. Zongbin, Z. Quan, L. Beibei, Q. Jieshan,
A green strategy for the synthesis of graphene supported
Mn3O4 nanocomposites from graphitized coal and their
supercapacitor application, Carbon N. Y., 80 (2014) 640–650.
- B. Xing, C. Zhang, Y. Cao, G. Huang, Q. Liu, C. Zhang, Z. Chen,
G. Yi, L. Chen, J. Yu, Preparation of synthetic graphite from
bituminous coal as anode materials for high performance
lithium-ion batteries, Fuel Process. Technol., 172 (2018)
162–171.
- Q. Zhou, Z. Zhao, Y. Zhang, B. Meng, A. Zhou, J. Qiu,
Graphene sheets from graphitized anthracite coal: preparation,
decoration, and application, Energy Fuels, 26 (2012)
5186–5192.
- T. Qiu, J.-G. Yang, X.-J. Bai, Y.-L. Wang, The preparation of
synthetic graphite materials with hierarchical pores from
lignite by one-step impregnation and their characterization as
dye absorbents, RSC Adv., 9 (2019) 12737–12746.
- S. Shrestha, G. Son, S.H. Lee, T.G. Lee, Isotherm and
thermodynamic studies of Zn(II) adsorption on lignite and
coconut shell-based activated carbon fiber, Chemosphere,
92 (2013) 1053–1061.
- E.M. Suuberg, W.A. Peters, J.B. Howard, Product composition
and kinetics of lignite pyrolysis, Ind. Eng. Chem. Process Des.
Dev., 17 (1978) 37–46.
- C.-X. Pan, X.-Y. Wei, H.-F. Shui, Z.-C. Wang, J. Gao, C. Wei,
X.-Z. Cao, Z.-M. Zong, Investigation on the macromolecular
network structure of Xianfeng lignite by a new two-step
depolymerization, Fuel, 109 (2013) 49–53.
- A. Tahmasebi, J. Yu, Y. Han, F. Yin, S. Bhattacharya, D. Stokie,
Study of chemical structure changes of chinese lignite upon
drying in superheated steam, microwave, and hot air,
Energy Fuels, 26 (2012) 3651–3660.
- L. Lv, H. Liu, Q. Li, J. Liu, Y. Zhang, Y. Wang, Effective
adsorption of Pb(II) from wastewater using facile enclosed
pyrolysis strategy for defect-rich lignite-based carbon-coated
zero-valent iron, J. Anal. Appl. Pyrolysis, 169 (2023) 105823,
doi: 10.1016/j.jaap.2022.105823.
- M. Sun, S. Gu, X. Liu, J. Zheng, Z. Xu, Y. Chen, H. He, L. Wang,
Adsorption mechanism of ammonia nitrogen and phenol on
lignite surface: molecular dynamics simulations and quantum
chemical calculations, Fuel, 337 (2023) 127157, doi: 10.1016/j.fuel.2022.127157.
- T. Depci, Comparison of activated carbon and iron impregnated
activated carbon derived from Gölbaşı lignite to remove
cyanide from water, Chem. Eng. J., 181–182 (2012) 467–478.
- G. Skodras, Th. Orfanoudaki, E. Kakaras, G.P. Sakellaropoulos,
Production of special activated carbon from lignite for
environmental purposes, Fuel Process. Technol. 77–78 (2002)
75–87.
- J.O. Besenhard, E. Theodoridou, H. Möhwald, J.J. Nickl,
Electrochemical applications of graphite intercalation
compounds, Synth. Met., 4 (1982) 211–223.
- N.E. Sorokina, N.V. Maksimova, V.V. Avdeev, Anodic oxidation
of graphite in 10 to 98% HNO3, Inorg. Mater., 37 (2001) 360–365.
- L. Zhao, N. Guanhua, W. Hui, S. Qian, W. Gang, J. Bingyou,
Z. Chao, Molecular structure characterization of lignite
treated with ionic liquid via FTIR and XRD spectroscopy, Fuel,
272 (2020) 117705, doi: 10.1016/j.fuel.2020.117705.
- Y.-M. Wang, C.-H. Zhang, Study on structural evolution of
synthetic graphite derived from lignite prepared by high
temperature–high pressure method, Crystals, 12 (2022) 464,
doi: 10.3390/cryst12040464.
- H. Badenhorst, Microstructure of natural graphite flakes
revealed by oxidation: limitations of XRD and Raman
techniques for crystallinity estimates, Carbon N. Y., 66 (2014)
674–690.
- M.S. Nyathi, C.B. Clifford, H.H. Schobert, Characterization of
graphitic materials prepared from different rank Pennsylvania
anthracites, Fuel, 114 (2013) 244–250.
- R. Krishna, J. Wade, A.N. Jones, M. Lasithiotakis, P.M. Mummery,
B.J. Marsden, An understanding of lattice strain, defects and
disorder in nuclear graphite, Carbon N. Y., 124 (2017) 314–333.
- F.M. Uhl, Q. Yao, H. Nakajima, E. Manias, C.A. Wilkie,
Expandable graphite/polyamide-6 nanocomposites, Polym.
Degrad. Stab., 89 (2005) 70–84.
- I.M. Afanasov, O.N. Shornikova, D.A. Kirilenko, I.I. Vlasov,
L. Zhang, J. Verbeeck, V.V. Avdeev, G. Van Tendeloo, Graphite
structural transformations during intercalation by HNO3 and
exfoliation, Carbon N. Y., 48 (2010) 1862–1865.
- R.B. Valapa, G. Pugazhenthi, V. Katiyar, Effect of graphene
content on the properties of poly(lactic acid) nanocomposites,
RSC Adv., 5 (2015) 28410–28423.
- K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti,
J. Rouquerol, T. Siemieniewska, Reporting physisorption
data for gas/solid systems with special reference to the
determination of surface area and porosity, Pure Appl. Chem.,
57 (1985) 603–619.
- X. Li, D. Tan, L. Xie, H. Sun, S. Sun, G. Zhong, P. Ren, Effect
of surface property of halloysite on the crystallization
behavior of PBAT, Appl. Clay Sci., 157 (2018) 218–226.
- J. Chen, W. Chen, D. Zhu, Adsorption of nonionic aromatic
compounds to single-walled carbon nanotubes: effects of
aqueous solution chemistry, Environ. Sci. Technol., 42 (2008)
7225–7230.
- Z. Li, C. Ma, J. Wang, X. Lyu, Q. Zhang, X. You, L. Li, Investigation
of nonylphenol ethoxylate on the surface characteristics of
low rank coal, Part. Sci. Technol.: An Int. J., 38 (2020) 1012–1018.
- T. Svitova, R.M. Hill, C.J. Radke, Adsorption layer structures
and spreading behavior of aqueous non-ionic surfactants on
graphite, Colloids Surf., A, 183–185 (2001) 607–620.
- M.D. Vo, D.V. Papavassiliou, Effects of temperature and
shear on the adsorption of surfactants on carbon nanotubes,
J. Phys. Chem. C, 121 (2017) 14339–14348.
- X. Yuan, W. Xing, S.P. Zhuo, W. Si, X. Gao, Z. Han, Z.F. Yan,
Adsorption of bulky molecules of nonylphenol ethoxylate
on ordered mesoporous carbons, J. Colloid Interface Sci.,
322 (2008) 558–565.
- D. Tang, Z. Zheng, K. Lin, J. Luan, J. Zhang, Adsorption of
p-nitrophenol from aqueous solutions onto activated carbon
fiber, J. Hazard. Mater., 143 (2007) 49–56.
- Y.A. Aydin, N.D. Aksoy, Adsorption of chromium on chitosan:
optimization, kinetics and thermodynamics, Chem. Eng. J.,
151 (2009) 188–194.
- M. Zhao, P. Liu, Adsorption of methylene blue from
aqueous solutions by modified expanded graphite powder,
Desalination, 249 (2009) 331–336.
- D. Ursueguía, E. Díaz, S. Ordóñez, Adsorption of methane
and nitrogen on basolite MOFs: equilibrium and kinetic
studies, Microporous Mesoporous Mater., 298 (2020) 110048,
doi: 10.1016/j.micromeso.2020.110048.
- Sk. Taheruddin Ahamed, C. Kulsi, Kirti, D. Banerjee,
D.N. Srivastava, A. Mondal, Synthesis of multifunctional
CdSe and Pd quantum dot decorated CdSe thin films
for photocatalytic,electrocatalytic and thermoelectric
applications, Surf. Interfaces, 25 (2021) 101149, doi: 10.1016/j.surfin.2021.101149.
- A.S. Eltaweil, H. Ali Mohamed, E.M. Abd El-Monaem,
G.M. El-Subruiti, Mesoporous magnetic biochar composite for
enhanced adsorption of malachite green dye: characterization,
adsorption kinetics, thermodynamics and isotherms,
Adv. Powder Technol., 31 (2020) 1253–1263.
- N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and
interpretation of adsorption isotherms, J. Chem., 2017 (2017)
3039817, doi: 10.1155/2017/3039817.
- S. Mondal, S.K. Majumder, Honeycomb-like porous activated
carbon for efficient copper(II) adsorption synthesized from
natural source: kinetic study and equilibrium isotherm
analysis, J. Environ. Chem. Eng., 7 (2019) 103236, doi: 10.1016/j.jece.2019.103236.
- Z. Si-ning, G. Hui, L. Jin-Ming, P. Zhe-min, Absorption of the
non-ionic surfactants with expanded graphite, Guangzhou
Chem., (2009), doi: 10.16560/j.cnki.gzhx.2009.02.001.
- H.N. Catherine, M.-H. Ou, B. Manu, Y.-h. Shih, Adsorption
mechanism of emerging and conventional phenolic
compounds on graphene oxide nanoflakes in water, Sci. Total
Environ., 635 (2018) 629–638.
- C.D. Atemkeng, G.S. Anagho, R.F.T. Tagne, L.A. Amola,
A. Bopda, T. Kamgaing, Optimization of 4-nonylphenol adsorption
on activated carbons derived from safou seeds using
response surface methodology, Carbon Trends, 4 (2021) 100052,
doi: 10.1016/j.cartre.2021.100052.
- H.T. Thi, A. Le Hoang, T.P. Huu, T.N. Dinh, S.W. Chang,
W.J. Chung, D. Duc Nguyen, Adsorption isotherms and
kinetic modeling of methylene blue dye onto a carbonaceous
hydrochar adsorbent derived from coffee husk waste,
Sci. Total Environ., 725 (2020) 138325, doi: 10.1016/j.scitotenv.2020.138325.
- Y. Liu, Y. Xiong, P. Xu, Y. Pang, C. Du, Enhancement of Pb(II)
adsorption by boron doped ordered mesoporous carbon:
isotherm and kinetics modeling, Sci. Total Environ., 708 (2020)
134918, doi: 10.1016/j.scitotenv.2019.134918.
- K.U. Ahamad, R. Singh, I. Baruah, H. Choudhury, M.R. Sharma,
Equilibrium and kinetics modeling of fluoride adsorption
onto activated alumina, alum and brick powder, Groundwater
Sustainable Dev., 7 (2018) 452–458.
- E. Salehi, N. Gavari, A. Chehrei, S. Amani, N. Amani, K. Zaghi,
Efficient separation of triglyceride from blood serum using
Cinnamon as a novel biosorbent: adsorption thermodynamics,
kinetics, isothermal and process optimization using response
surface methodology, Process Biochem., 77 (2019) 122–136.