References

  1. J.-C. Tsai, M. Kumar, S.-Y. Chen, J.-G. Lin, Nano-bubble flotation technology with coagulation process for the cost-effective treatment of chemical mechanical polishing wastewater, Sep. Purif. Technol., 58 (2007) 61–67.
  2. M. Takahashi, Base and technological application of microbubble and nanobubble, Mater. Integr., 22 (2009) 2–19.
  3. A. Azevedo, R. Etchepare, J. Rubio, Raw water clarification by flotation with microbubbles and nanobubbles generated with a multiphase pump, Water Sci. Technol., 75 (2017) 2342–2349.
  4. V.R. Fanaie, M. Khiadani, G. Sun, Effect of salinity and temperature on air dissolution in an unpacked air saturator of a dissolved air flotation system, Desal. Water Treat., 170 (2019) 91–100.
  5. H.-S. Kim, J.-Y. Lim, S.-Y. Park, J.-H. Kim, Effects of distance of breaker disk on performance of ejector type microbubble generator, KSCE J. Civ. Eng., 22 (2018) 1096–1100.
  6. K. Ulatowski, P. Sobieszuk, Gas nanobubble dispersions as the important agent in environmental processes–generation methods review, Water Environ. J., 34 (2020) 772–790.
  7. A. Agarwal, W.J. Ng, Y. Liu, Principle and applications of microbubble and nanobubble technology for water treatment, Chemosphere, 84 (2011) 1175–1180.
  8. D. Kobayashi, Y. Hayashida, K. Sano, K. Terasaka, Agglomeration and rapid ascent of microbubbles by ultrasonic irradiation, Ultrason. Sonochem., 18 (2011) 1193–1196.
  9. R. Pérez-Garibay, E. Martínez-Ramos, J. Rubio, Gas dispersion measurements in microbubble flotation systems, Miner. Eng., 26 (2012) 34–40.
  10. V. Ross, A. Singh, K. Pillay, Improved flotation of PGM tailings with a high-shear hydrodynamic cavitation device, Miner. Eng., 137 (2019) 133–139.
  11. S. Burns, S. Yiacoumi, C. Tsouris, Microbubble generation for environmental and industrial separations, Sep. Purif. Technol., 11 (1997) 221–232.
  12. W.-H. Zhang, J. Zhang, B. Zhao, P. Zhu, Microbubble size distribution measurement in a DAF system, Ind. Eng. Chem. Res., 54 (2015) 5179–5183.
  13. N. Ahmed, G. Jameson, The effect of bubble size on the rate of flotation of fine particles, Int. J. Miner. Process., 14 (1985) 195–215.
  14. G. Collins, G. Jameson, Experiments on the flotation of fine particles: the influence of particle size and charge, Chem. Eng. Sci., 31 (1976) 985–991.
  15. M. Alheshibri, A. Al Baroot, L. Shui, M. Zhang, Nanobubbles and nanoparticles, Curr. Opin. Colloid Interface Sci., 55 (2021) 101470, doi: 10.1016/j.cocis.2021.101470.
  16. M.-S. Kim, D.-H. Kwak, Comparative evaluation of particle separation efficiency based on carbon dioxide and air bubble sizes in flotation separation processes, Sep. Purif. Technol., 138 (2014) 161–168.
  17. D.-H. Kwak, S.-J. Kim, H.-K. Lee, H.-J. Jung, J.-W. Lee, P.-G. Chung, Hydrodynamic collision efficiency and flotation characteristics of inorganic particles in DAF process, J. Korean Soc. Water Wastewater, 16 (2002) 655–662.
  18. M.-S. Kim, M. Han, T.-I. Kim, J.-W. Lee, D.-H. Kwak, Effect of nanobubbles for improvement of water quality in freshwater: flotation model simulation, Sep. Purif. Technol., 241 (2020) 116731, doi: 10.1016/j.seppur.2020.116731.
  19. E.-J. Lee, Y.-H. Kim, H.-S. Kim, A. Jang, Influence of microbubble in physical cleaning of MF membrane process for wastewater reuse, Environ. Sci. Pollut. Res., 22 (2015) 8451–8459.
  20. R. Etchepare, A. Azevedo, S. Calgaroto, J. Rubio, Removal of ferric hydroxide by flotation with micro and nanobubbles, Sep. Purif. Technol., 184 (2017) 347–353.
  21. Z. Dai, D. Fornasiero, J. Ralston, Particle–bubble collision models—a review, Adv. Colloid Interface Sci., 85 (2000) 231–256.
  22. D. Tao, A. Sobhy, Nanobubble effects on hydrodynamic interactions between particles and bubbles, Powder Technol., 346 (2019) 385–395.
  23. R. Ahmadi, D.A. Khodadadi, M. Abdollahy, M. Fan, Nanomicrobubble flotation of fine and ultrafine chalcopyrite particles, Int. J. Min. Sci. Technol., 24 (2014) 559–566.
  24. L.E. Barton, M. Therezien, M. Auffan, J.-Y. Bottero, M.R. Wiesner, Theory and methodology for determining nanoparticle affinity for heteroaggregation in environmental matrices using batch measurements, Environ. Eng. Sci., 31 (2014) 421–427.
  25. J. Haarhoff, J.K. Edzwald, Dissolved air flotation modelling: insights and shortcomings, J. Water Supply Res. Technol. AQUA, 53 (2004) 127–150.
  26. S. Nazari, A. Hassanzadeh, Y. He, H. Khoshdast, P.B. Kowalczuk, Recent developments in generation, detection and application of nanobubbles in flotation, Minerals, 12 (2022) 462, doi: 10.3390/min12040462.
  27. X. Ma, M. Li, X. Xu, C. Sun, On the role of surface charge and surface tension tuned by surfactant in stabilizing bulk nanobubbles, Appl. Surf. Sci., 608 (2023) 155232, doi: 10.1016/j.apsusc.2022.155232.
  28. W. Xu, Y. Wang, Q. Huang, X. Wang, L. Zhou, X. Wang, B. Wen, N. Guan, J. Hu, X. Zhou, The generation and stability of bulk nanobubbles by compression-decompression method: the role of dissolved gas, Colloids Surf., A, 657 (2023) 130488, doi: 10.1016/j.colsurfa.2022.130488.
  29. W. Shen, D. Mukherjee, N. Koirala, G. Hu, K. Lee, M. Zhao, J. Li, Microbubble and nanobubble-based gas flotation for oily wastewater treatment: a review, Environ. Rev., 30 (2022) 359–379.