References
- J.-C. Tsai, M. Kumar, S.-Y. Chen, J.-G. Lin, Nano-bubble flotation
technology with coagulation process for the cost-effective
treatment of chemical mechanical polishing wastewater,
Sep. Purif. Technol., 58 (2007) 61–67.
- M. Takahashi, Base and technological application of microbubble
and nanobubble, Mater. Integr., 22 (2009) 2–19.
- A. Azevedo, R. Etchepare, J. Rubio, Raw water clarification
by flotation with microbubbles and nanobubbles generated
with a multiphase pump, Water Sci. Technol., 75 (2017)
2342–2349.
- V.R. Fanaie, M. Khiadani, G. Sun, Effect of salinity and
temperature on air dissolution in an unpacked air saturator of
a dissolved air flotation system, Desal. Water Treat., 170 (2019)
91–100.
- H.-S. Kim, J.-Y. Lim, S.-Y. Park, J.-H. Kim, Effects of distance
of breaker disk on performance of ejector type microbubble
generator, KSCE J. Civ. Eng., 22 (2018) 1096–1100.
- K. Ulatowski, P. Sobieszuk, Gas nanobubble dispersions as
the important agent in environmental processes–generation
methods review, Water Environ. J., 34 (2020) 772–790.
- A. Agarwal, W.J. Ng, Y. Liu, Principle and applications of
microbubble and nanobubble technology for water treatment,
Chemosphere, 84 (2011) 1175–1180.
- D. Kobayashi, Y. Hayashida, K. Sano, K. Terasaka,
Agglomeration and rapid ascent of microbubbles by ultrasonic
irradiation, Ultrason. Sonochem., 18 (2011) 1193–1196.
- R. Pérez-Garibay, E. Martínez-Ramos, J. Rubio, Gas dispersion
measurements in microbubble flotation systems, Miner. Eng.,
26 (2012) 34–40.
- V. Ross, A. Singh, K. Pillay, Improved flotation of PGM
tailings with a high-shear hydrodynamic cavitation device,
Miner. Eng., 137 (2019) 133–139.
- S. Burns, S. Yiacoumi, C. Tsouris, Microbubble generation for
environmental and industrial separations, Sep. Purif. Technol.,
11 (1997) 221–232.
- W.-H. Zhang, J. Zhang, B. Zhao, P. Zhu, Microbubble size
distribution measurement in a DAF system, Ind. Eng. Chem.
Res., 54 (2015) 5179–5183.
- N. Ahmed, G. Jameson, The effect of bubble size on the rate
of flotation of fine particles, Int. J. Miner. Process., 14 (1985)
195–215.
- G. Collins, G. Jameson, Experiments on the flotation of fine
particles: the influence of particle size and charge, Chem. Eng.
Sci., 31 (1976) 985–991.
- M. Alheshibri, A. Al Baroot, L. Shui, M. Zhang, Nanobubbles
and nanoparticles, Curr. Opin. Colloid Interface Sci.,
55 (2021) 101470, doi: 10.1016/j.cocis.2021.101470.
- M.-S. Kim, D.-H. Kwak, Comparative evaluation of particle
separation efficiency based on carbon dioxide and air bubble
sizes in flotation separation processes, Sep. Purif. Technol.,
138 (2014) 161–168.
- D.-H. Kwak, S.-J. Kim, H.-K. Lee, H.-J. Jung, J.-W. Lee,
P.-G. Chung, Hydrodynamic collision efficiency and flotation
characteristics of inorganic particles in DAF process, J. Korean
Soc. Water Wastewater, 16 (2002) 655–662.
- M.-S. Kim, M. Han, T.-I. Kim, J.-W. Lee, D.-H. Kwak, Effect of
nanobubbles for improvement of water quality in freshwater:
flotation model simulation, Sep. Purif. Technol., 241 (2020)
116731, doi: 10.1016/j.seppur.2020.116731.
- E.-J. Lee, Y.-H. Kim, H.-S. Kim, A. Jang, Influence of microbubble
in physical cleaning of MF membrane process for wastewater
reuse, Environ. Sci. Pollut. Res., 22 (2015) 8451–8459.
- R. Etchepare, A. Azevedo, S. Calgaroto, J. Rubio, Removal of
ferric hydroxide by flotation with micro and nanobubbles,
Sep. Purif. Technol., 184 (2017) 347–353.
- Z. Dai, D. Fornasiero, J. Ralston, Particle–bubble collision
models—a review, Adv. Colloid Interface Sci., 85 (2000) 231–256.
- D. Tao, A. Sobhy, Nanobubble effects on hydrodynamic
interactions between particles and bubbles, Powder Technol.,
346 (2019) 385–395.
- R. Ahmadi, D.A. Khodadadi, M. Abdollahy, M. Fan, Nanomicrobubble
flotation of fine and ultrafine chalcopyrite
particles, Int. J. Min. Sci. Technol., 24 (2014) 559–566.
- L.E. Barton, M. Therezien, M. Auffan, J.-Y. Bottero, M.R. Wiesner,
Theory and methodology for determining nanoparticle affinity
for heteroaggregation in environmental matrices using batch
measurements, Environ. Eng. Sci., 31 (2014) 421–427.
- J. Haarhoff, J.K. Edzwald, Dissolved air flotation modelling:
insights and shortcomings, J. Water Supply Res. Technol.
AQUA, 53 (2004) 127–150.
- S. Nazari, A. Hassanzadeh, Y. He, H. Khoshdast, P.B. Kowalczuk,
Recent developments in generation, detection and
application of nanobubbles in flotation, Minerals, 12 (2022) 462,
doi: 10.3390/min12040462.
- X. Ma, M. Li, X. Xu, C. Sun, On the role of surface charge
and surface tension tuned by surfactant in stabilizing bulk
nanobubbles, Appl. Surf. Sci., 608 (2023) 155232, doi: 10.1016/j.apsusc.2022.155232.
- W. Xu, Y. Wang, Q. Huang, X. Wang, L. Zhou, X. Wang, B. Wen,
N. Guan, J. Hu, X. Zhou, The generation and stability of bulk
nanobubbles by compression-decompression method: the
role of dissolved gas, Colloids Surf., A, 657 (2023) 130488,
doi: 10.1016/j.colsurfa.2022.130488.
- W. Shen, D. Mukherjee, N. Koirala, G. Hu, K. Lee, M. Zhao,
J. Li, Microbubble and nanobubble-based gas flotation for
oily wastewater treatment: a review, Environ. Rev., 30 (2022)
359–379.