References

  1. I.A. Obiora-Okafo, O.D. Onukwuli, Optimization of coagulation-flocculation process for colour removal from azo dye using natural polymers: response surface methodological approach, Niger. J. Technol., 36 (2017) 482–495.
  2. M.A. Hassaan, A. El Nemr, Health and environmental impacts of dyes: mini review, Am. J. Environ. Sci. Eng., 1 (2017) 64–67.
  3. D.J. Joo, W.S. Shin, J.-H. Choi, S.J. Choi, M.-C. Kim, M.H. Han, T.W. Ha, Y.-H. Kim, Decolorization of reactive dyes using inorganic coagulants and synthetic polymer, Dyes Pigm., 73 (2007) 59–64.
  4. S. Mani, P. Chowdhary, R.N. Bharagava, Textile Wastewater Dyes: Toxicity Profile and Treatment Approaches, R. Bharagava, P. Chowdhary, Eds., Emerging and Eco-Friendly Approaches for Waste Management, Springer, Singapore, 2019. doi: 10.1007/978-981-10-8669-4_11
  5. I.A. Obiora-Okafo, M.C. Menkiti, O.D. Onukwuli, Utilization of response surface methodology and factor design in microorganic particles removal from brewery wastewater by coagulation/flocculation technique, Int. J. Appl. Sci. Math., 1 (2014) 15–21.
  6. K. Al-Zawahreh, M.T. Barral, Y. Al-Degs, R. Paradelo, Comparison of the sorption capacity of basic, acid, direct and reactive dyes by compost in batch conditions, J. Environ. Manage., 294 (2021) 113005, doi: 10.1016/j.jenvman.2021.113005.
  7. N. Rajesh Jesudoss Hynes, J. Senthil Kumar, H. Kamyab, J. Angela Jennifa Sujana, O.A. Al-Khashman, Y. Kuslu, A. Ene, B. Suresh Kumar, Modern enabling techniques and adsorbentsbased dye removal with sustainability concerns in textile industrial sector-a comprehensive review, J. Cleaner Prod., 272 (2020) 122636, doi: 10.1016/j.jclepro.2020.122636.
  8. D. Bhatia, N.R. Sharma, J. Singh, R.S. Kanwar, Biological methods for textile dye removal from wastewater: a review, Crit. Rev. Env. Sci. Technol., 47 (2017) 1836–1876.
  9. E. Sharifpour, E. Alipanahpour Dil, A. Asfaram, M. Ghaedi, A. Goudarzi, Optimizing adsorptive removal of malachite green and methyl orange dyes from simulated wastewater by Mn-doped CuO-nanoparticles loaded on activated carbon using CCD-RSM: mechanism, regeneration, isotherm, kinetic, and thermodynamic studies, Appl. Organomet. Chem., 33 (2019) e4768, doi: 10.1002/aoc.4768.
  10. P. Arabkhani, A. Asfaram, M. Ateia, Easy-to-prepare graphene oxide/sodium montmorillonite polymer nanocomposite with enhanced adsorption performance, J. Water Process Eng., 38 (2020) 101651, doi: 10.1016/j.jwpe.2020.101651.
  11. B. Shi, G. Li, D. Wang, C. Feng, H. Tang, Removal of direct dyes by coagulation: the performance of preformed polymeric aluminum species, J. Hazard. Mater., 143 (2007) 567–574.
  12. S. Arslan, M. Eyvaz, E. Gürbulak, E. Yüksel, A Review of State-of-the-Art Technologies in Dye-Containing Wastewater Treatment – The Textile Industry Case, E. P.A. Kumbasar, A.E. Körlü, Eds., Textile Wastewater Treatment, InTechOpen, 2016.
  13. S.H. Lan, P. Ma, H.X. Lan, H. Zhang, X.W. Wu, Y.D. Wang, Study on the flocculation treatment of simulative dyeing wastewater by the dicyandiamide formaldehyde polymer, Appl. Mech. Mater., 522 (2014) 192–195.
  14. N.A. Oladoja, Headway on natural polymeric coagulants in water and wastewater treatment operations, J. Water Process Eng., 6 (2015) 174–192.
  15. H. Rong, B. Gao, R. Li, Y. Wang, Q. Yue, Q. Li, Effect of dose methods of a synthetic organic polymer and PFC on floc properties in dyeing wastewater coagulation process, Chem. Eng. J., 243 (2014) 169–175.
  16. E.K. Tetteh, S. Rathilal, Application of Organic Coagulants in Water and Wastewater Treatment, A. Sand, E. Zaki, Eds., Organic Polymers, InTechOpen, 2019.
  17. H. Zhang, H. Yang, J. Lu, Z. Wang, H. Gao, C. Liang, Y. Sun, Preparation, application, and mechanism of starch modified dicyandiamide formaldehyde polymer–bentonite microparticle retention and drainage aid system, BioResources, 14 (2019) 5883–5899.
  18. S. Uzunsakal, S. Zeytinci, Ö.L. Uyanık, N. Uyanık, Adsorption kinetics studies of polymeric nanocomposite coagulants, Polym. Polym. Compos., 21 (2013) 161–170.
  19. M. Khayet, A.Y. Zahrim, N. Hilal, Modelling and optimization of coagulation of highly concentrated industrial grade leather dye by response surface methodology, Chem. Eng. J., 167 (2011) 77–83.
  20. S. Ghafari, H.A. Aziz, M.H. Isa, A.A. Zinatizadeh, Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using polyaluminum chloride (PAC) and alum, J. Hazard. Mater., 163 (2009) 650–656.
  21. N. Nazeri, M.R. Avadi, M.A. Faramarzi, S. Safarian, G. Tavoosidana, M.R. Khoshayand, A. Amani, Effect of preparation parameters on ultra-low molecular weight chitosan/hyaluronic acid nanoparticles, Int. J. Biol. Macromol., 62 (2013) 642–646.
  22. A. Barazandeh, H.A. Jamali, H. Karyab, Equilibrium and kinetic study of adsorption of diazinon from aqueous solutions by nano-polypropylene-titanium dioxide: optimization of adsorption based on response surface methodology (RSM) and central composite design (CCD), Korean J. Chem. Eng., 38 (2021) 2436–2445.
  23. H. Karyab, F. Karyab, R. Haji-Mirmohammad Ali, Optimization of adsorption conditions for removal of total organic carbon from drinking water using polypropylene and titanium dioxide nano-composite by response surface methodology, Desal. Water Treat., 98 (2017) 144–151.
  24. T.K. Kumaresan, S.A. Masilamani, K. Raman, S. Zh. Karazhanov, R. Subashchandrabose, Dicyandiamide-formaldehyde and Borassus Flabellifer inflorescence assisted preparation of low surface area nitrogen-doped carbon as high-performance anode for lithium-ion batteries, Mater. Lett., 276 (2020) 128218, doi: 10.1016/j.matlet.2020.128218.
  25. L. Gao, L. Xuechuan, H. Song, C. Zhang, T. Wang, X. Gao, Synthesis and decolorization performance of modified dicyandiamide- formaldehyde decolorant, J. Liaoning Univ. Pet. Chem. Technol., 41 (2021) 23–27.
  26. V. Saritha, N. Srinivas, N.V. Srikanth Vuppala, Analysis and optimization of coagulation and flocculation process, Appl. Water Sci., 7 (2017) 451–460.
  27. S. Papic, N. Koprivanac, A. Metes, Optimizing polymer-induced flocculation process to remove reactive dyes from wastewater, Environ. Technol., 21 (2000) 97–105.
  28. G. Miner, Standard methods for the examination of wat(er) and wastewater, J. Am. Water Works Assn., 98 (2006) 130.
  29. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76 (2008) 965–977.
  30. S. Bhattacharya, Central Composite Design for Response Surface Methodology and Its Application in Pharmacy, P. Kayaroganam, Ed., Response Surface Methodology in Engineering Science, InTechOpen, 2021.
  31. S.A. El-Mekkawi, R.A. Abdelghaffar, F. Abdelghaffar, S.A. El-Enin, Application of response surface methodology for color removing from dyeing effluent using de-oiled activated algal biomass, Bull. Natl. Res. Cent., 45 (2021) 80, doi: 10.1186/ s42269-021-00542-w.
  32. M. Gholami, Z. Mosakhani, A. Barazandeh, H. Karyab, Adsorption of organophosphorus malathion pesticide from aqueous solutions using nano-polypropylene-titanium dioxide composite: equilibrium, kinetics and optimization studies, J. Environ. Health Sci. Eng., 21 (2023) 35–45.
  33. A. Barazandeh, H.A. Jamali, H. Karyab, Equilibrium and kinetic study of adsorption of diazinon from aqueous solutions by nano-polypropylene-titanium dioxide: optimization of adsorption based on response surface methodology (RSM) and central composite design (CCD), Korean J. Chem. Eng., 38 (2021) 2436–2445.
  34. M. Sarabadan, H. Bashiri, S.M. Mousavi, Removal of crystal violet dye by an efficient and low-cost adsorbent: modeling, kinetic, equilibrium and thermodynamic studies, Korean J. Chem. Eng., 36 (2019) 1575–1586.
  35. M. Wang, Y. Tian, X. Zhao. X. Li, The application of an efficient modified decolorizer in coagulation treatment of high color reclaimed water, Water Sci. Technol., 77 (2018) 2190–2203.
  36. R. Atakan, A. Bical, E. Celebi, G. Ozcan, N. Soydan, A.S. Sarac, Development of a flame-retardant chemical for finishing of cotton, polyester, and CO/PET blends, J. Ind. Text., 49 (2019) 141–161.
  37. M. Khosravi, S. Arabi, Application of response surface methodology (RSM) for the removal of methylene blue dye from water by nano zero-valent iron (NZVI), Water Sci. Technol., 74 (2016) 343–352.
  38. Z. Yang, X. Lu, B. Gao, Y. Wang, Q. Yue, T. Chen, Fabrication and characterization of poly (ferric chloride)-polyamine flocculant and its application to the decolorization of reactive dyes, J. Mater. Sci., 49 (2014) 4962–4972.
  39. T.Z. Mahmoudabadi, P. Talebi, M. Jalili, Removing Disperse red 60 and Reactive blue 19 dyes removal by using Alcea rosea root mucilage as a natural coagulant, AMB Express, 9 (2019) 113,
    doi: 10.1186/s13568-019-0839-9.
  40. M.J. Puchana-Rosero, E.C. Lima, B. Mella, D. da Costa, E. Poll, M. Gutterres, A coagulation–flocculation process combined with adsorption using activated carbon obtained from sludge for dye removal from tannery wastewater, J. Chil. Chem. Soc., 63 (2018) 3867–3874.
  41. N. Sakkayawong, P. Thiravetyan, W. Nakbanpote, Adsorption mechanism of synthetic reactive dye wastewater by chitosan, J. Colloid Interface Sci., 286 (2005) 36–42.
  42. Y.M. Slokar, A.M. Le Marechal, Methods of decoloration of textile wastewaters, Dyes Pigm., 37 (1998) 335–356.
  43. X. Jiang, K. Cai, J. Zhang, Y. Shen, S. Wang, X. Tian, Synthesis of a novel water-soluble chitosan derivative for flocculated decolorization, J. Hazard. Mater., 185 (2011) 1482–1488.
  44. A. Assadi, A. Soudavari, M. Mohammadian, Comparison of electrocoagulation and chemical coagulation processes in removing Reactive red 196 from aqueous solution, J. Human Environ. Health Promot., 1 (2016) 172–182.
  45. S.S. Moghaddam, M.A. Moghaddam, M. Arami, Coagulation/ flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology, J. Hazard. Mater., 175 (2010) 651–657.
  46. M.A. Al-Ghouti, D.A. Da’ana, Guidelines for the use and interpretation of adsorption isotherm models: a review, J. Hazard. Mater., 393 (2020) 122383, doi: 10.1016/j.jhazmat.2020.122383.
  47. J. Wang, X. Guo, Adsorption isotherm models: Classification, physical meaning, application and solving method, Chemosphere, 258 (2020) 127279, doi: 10.1016/j.chemosphere.2020.127279.
  48. M.M. Majd, V. Kordzadeh-Kermani, V. Ghalandari, A. Askari, M. Sillanpää, Adsorption isotherm models: a comprehensive and systematic review (2010−2020), Sci. Total Environ., 812 (2022) 151334, doi: 10.1016/j.scitotenv.2021.151334.
  49. J. Wang, X. Guo, Adsorption kinetic models: physical meanings, applications, and solving methods, J. Hazard. Mater., 390 (2020) 122156, doi: 10.1016/j.jhazmat.2020.122156.
  50. F.-C. Wu, R.-L. Tseng, S.-C. Huang, R.-S. Juang, Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: a mini-review, Chem. Eng. J., 151 (2009) 1–9.
  51. S.K. Milonjić, A consideration of the correct calculation of thermodynamic parameters of adsorption, J. Serb. Chem. Soc., 72 (2007) 1363–1367.
  52. A. Myers, Thermodynamics of adsorption in porous materials, AlChE J., 48 (2002) 145–160.