References
- I.A. Obiora-Okafo, O.D. Onukwuli, Optimization of
coagulation-flocculation process for colour removal from azo
dye using natural polymers: response surface methodological
approach, Niger. J. Technol., 36 (2017) 482–495.
- M.A. Hassaan, A. El Nemr, Health and environmental impacts
of dyes: mini review, Am. J. Environ. Sci. Eng., 1 (2017) 64–67.
- D.J. Joo, W.S. Shin, J.-H. Choi, S.J. Choi, M.-C. Kim, M.H. Han,
T.W. Ha, Y.-H. Kim, Decolorization of reactive dyes using
inorganic coagulants and synthetic polymer, Dyes Pigm.,
73 (2007) 59–64.
- S. Mani, P. Chowdhary, R.N. Bharagava, Textile Wastewater
Dyes: Toxicity Profile and Treatment Approaches,
R. Bharagava, P. Chowdhary, Eds., Emerging and Eco-Friendly
Approaches for Waste Management, Springer, Singapore,
2019. doi: 10.1007/978-981-10-8669-4_11
- I.A. Obiora-Okafo, M.C. Menkiti, O.D. Onukwuli, Utilization
of response surface methodology and factor design in microorganic
particles removal from brewery wastewater by
coagulation/flocculation technique, Int. J. Appl. Sci. Math.,
1 (2014) 15–21.
- K. Al-Zawahreh, M.T. Barral, Y. Al-Degs, R. Paradelo,
Comparison of the sorption capacity of basic, acid, direct
and reactive dyes by compost in batch conditions, J. Environ.
Manage., 294 (2021) 113005, doi: 10.1016/j.jenvman.2021.113005.
- N. Rajesh Jesudoss Hynes, J. Senthil Kumar, H. Kamyab,
J. Angela Jennifa Sujana, O.A. Al-Khashman, Y. Kuslu, A. Ene,
B. Suresh Kumar, Modern enabling techniques and adsorbentsbased
dye removal with sustainability concerns in textile
industrial sector-a comprehensive review, J. Cleaner Prod.,
272 (2020) 122636, doi: 10.1016/j.jclepro.2020.122636.
- D. Bhatia, N.R. Sharma, J. Singh, R.S. Kanwar, Biological
methods for textile dye removal from wastewater: a review,
Crit. Rev. Env. Sci. Technol., 47 (2017) 1836–1876.
- E. Sharifpour, E. Alipanahpour Dil, A. Asfaram, M. Ghaedi,
A. Goudarzi, Optimizing adsorptive removal of malachite
green and methyl orange dyes from simulated wastewater
by Mn-doped CuO-nanoparticles loaded on activated carbon
using CCD-RSM: mechanism, regeneration, isotherm, kinetic,
and thermodynamic studies, Appl. Organomet. Chem.,
33 (2019) e4768, doi: 10.1002/aoc.4768.
- P. Arabkhani, A. Asfaram, M. Ateia, Easy-to-prepare graphene
oxide/sodium montmorillonite polymer nanocomposite with
enhanced adsorption performance, J. Water Process Eng.,
38 (2020) 101651, doi: 10.1016/j.jwpe.2020.101651.
- B. Shi, G. Li, D. Wang, C. Feng, H. Tang, Removal of direct
dyes by coagulation: the performance of preformed polymeric
aluminum species, J. Hazard. Mater., 143 (2007) 567–574.
- S. Arslan, M. Eyvaz, E. Gürbulak, E. Yüksel, A Review of
State-of-the-Art Technologies in Dye-Containing Wastewater
Treatment – The Textile Industry Case, E. P.A. Kumbasar,
A.E. Körlü, Eds., Textile Wastewater Treatment, InTechOpen,
2016.
- S.H. Lan, P. Ma, H.X. Lan, H. Zhang, X.W. Wu, Y.D. Wang, Study
on the flocculation treatment of simulative dyeing wastewater
by the dicyandiamide formaldehyde polymer, Appl. Mech.
Mater., 522 (2014) 192–195.
- N.A. Oladoja, Headway on natural polymeric coagulants in
water and wastewater treatment operations, J. Water Process
Eng., 6 (2015) 174–192.
- H. Rong, B. Gao, R. Li, Y. Wang, Q. Yue, Q. Li, Effect of
dose methods of a synthetic organic polymer and PFC on
floc properties in dyeing wastewater coagulation process,
Chem. Eng. J., 243 (2014) 169–175.
- E.K. Tetteh, S. Rathilal, Application of Organic Coagulants
in Water and Wastewater Treatment, A. Sand, E. Zaki,
Eds., Organic Polymers, InTechOpen, 2019.
- H. Zhang, H. Yang, J. Lu, Z. Wang, H. Gao, C. Liang,
Y. Sun, Preparation, application, and mechanism of starch
modified dicyandiamide formaldehyde polymer–bentonite
microparticle retention and drainage aid system, BioResources,
14 (2019) 5883–5899.
- S. Uzunsakal, S. Zeytinci, Ö.L. Uyanık, N. Uyanık, Adsorption
kinetics studies of polymeric nanocomposite coagulants,
Polym. Polym. Compos., 21 (2013) 161–170.
- M. Khayet, A.Y. Zahrim, N. Hilal, Modelling and optimization
of coagulation of highly concentrated industrial grade
leather dye by response surface methodology, Chem. Eng. J.,
167 (2011) 77–83.
- S. Ghafari, H.A. Aziz, M.H. Isa, A.A. Zinatizadeh, Application
of response surface methodology (RSM) to optimize
coagulation–flocculation treatment of leachate using polyaluminum
chloride (PAC) and alum, J. Hazard. Mater.,
163 (2009) 650–656.
- N. Nazeri, M.R. Avadi, M.A. Faramarzi, S. Safarian,
G. Tavoosidana, M.R. Khoshayand, A. Amani, Effect of
preparation parameters on ultra-low molecular weight
chitosan/hyaluronic acid nanoparticles, Int. J. Biol. Macromol.,
62 (2013) 642–646.
- A. Barazandeh, H.A. Jamali, H. Karyab, Equilibrium and
kinetic study of adsorption of diazinon from aqueous solutions
by nano-polypropylene-titanium dioxide: optimization of
adsorption based on response surface methodology (RSM)
and central composite design (CCD), Korean J. Chem. Eng.,
38 (2021) 2436–2445.
- H. Karyab, F. Karyab, R. Haji-Mirmohammad Ali, Optimization
of adsorption conditions for removal of total organic carbon
from drinking water using polypropylene and titanium
dioxide nano-composite by response surface methodology,
Desal. Water Treat., 98 (2017) 144–151.
- T.K. Kumaresan, S.A. Masilamani, K. Raman, S. Zh. Karazhanov,
R. Subashchandrabose, Dicyandiamide-formaldehyde and
Borassus Flabellifer inflorescence assisted preparation of low
surface area nitrogen-doped carbon as high-performance
anode for lithium-ion batteries, Mater. Lett., 276 (2020) 128218,
doi: 10.1016/j.matlet.2020.128218.
- L. Gao, L. Xuechuan, H. Song, C. Zhang, T. Wang, X. Gao,
Synthesis and decolorization performance of modified dicyandiamide-
formaldehyde decolorant, J. Liaoning Univ. Pet.
Chem. Technol., 41 (2021) 23–27.
- V. Saritha, N. Srinivas, N.V. Srikanth Vuppala, Analysis
and optimization of coagulation and flocculation process,
Appl. Water Sci., 7 (2017) 451–460.
- S. Papic, N. Koprivanac, A. Metes, Optimizing polymer-induced
flocculation process to remove reactive dyes from wastewater,
Environ. Technol., 21 (2000) 97–105.
- G. Miner, Standard methods for the examination of wat(er)
and wastewater, J. Am. Water Works Assn., 98 (2006) 130.
- M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar,
L.A. Escaleira, Response surface methodology (RSM) as a tool
for optimization in analytical chemistry, Talanta, 76 (2008)
965–977.
- S. Bhattacharya, Central Composite Design for Response Surface
Methodology and Its Application in Pharmacy, P. Kayaroganam,
Ed., Response Surface Methodology in Engineering Science,
InTechOpen, 2021.
- S.A. El-Mekkawi, R.A. Abdelghaffar, F. Abdelghaffar,
S.A. El-Enin, Application of response surface methodology for
color removing from dyeing effluent using de-oiled activated
algal biomass, Bull. Natl. Res. Cent., 45 (2021) 80, doi: 10.1186/
s42269-021-00542-w.
- M. Gholami, Z. Mosakhani, A. Barazandeh, H. Karyab,
Adsorption of organophosphorus malathion pesticide from
aqueous solutions using nano-polypropylene-titanium dioxide
composite: equilibrium, kinetics and optimization studies,
J. Environ. Health Sci. Eng., 21 (2023) 35–45.
- A. Barazandeh, H.A. Jamali, H. Karyab, Equilibrium and
kinetic study of adsorption of diazinon from aqueous solutions
by nano-polypropylene-titanium dioxide: optimization of
adsorption based on response surface methodology (RSM)
and central composite design (CCD), Korean J. Chem. Eng.,
38 (2021) 2436–2445.
- M. Sarabadan, H. Bashiri, S.M. Mousavi, Removal of crystal
violet dye by an efficient and low-cost adsorbent: modeling,
kinetic, equilibrium and thermodynamic studies, Korean J.
Chem. Eng., 36 (2019) 1575–1586.
- M. Wang, Y. Tian, X. Zhao. X. Li, The application of an efficient
modified decolorizer in coagulation treatment of high color
reclaimed water, Water Sci. Technol., 77 (2018) 2190–2203.
- R. Atakan, A. Bical, E. Celebi, G. Ozcan, N. Soydan, A.S. Sarac,
Development of a flame-retardant chemical for finishing of
cotton, polyester, and CO/PET blends, J. Ind. Text., 49 (2019)
141–161.
- M. Khosravi, S. Arabi, Application of response surface
methodology (RSM) for the removal of methylene blue dye
from water by nano zero-valent iron (NZVI), Water Sci.
Technol., 74 (2016) 343–352.
- Z. Yang, X. Lu, B. Gao, Y. Wang, Q. Yue, T. Chen, Fabrication
and characterization of poly (ferric chloride)-polyamine
flocculant and its application to the decolorization of reactive
dyes, J. Mater. Sci., 49 (2014) 4962–4972.
- T.Z. Mahmoudabadi, P. Talebi, M. Jalili, Removing Disperse red
60 and Reactive blue 19 dyes removal by using Alcea rosea root
mucilage as a natural coagulant, AMB Express, 9 (2019) 113,
doi: 10.1186/s13568-019-0839-9.
- M.J. Puchana-Rosero, E.C. Lima, B. Mella, D. da Costa, E. Poll,
M. Gutterres, A coagulation–flocculation process combined
with adsorption using activated carbon obtained from sludge
for dye removal from tannery wastewater, J. Chil. Chem. Soc.,
63 (2018) 3867–3874.
- N. Sakkayawong, P. Thiravetyan, W. Nakbanpote, Adsorption
mechanism of synthetic reactive dye wastewater by chitosan,
J. Colloid Interface Sci., 286 (2005) 36–42.
- Y.M. Slokar, A.M. Le Marechal, Methods of decoloration of
textile wastewaters, Dyes Pigm., 37 (1998) 335–356.
- X. Jiang, K. Cai, J. Zhang, Y. Shen, S. Wang, X. Tian, Synthesis
of a novel water-soluble chitosan derivative for flocculated
decolorization, J. Hazard. Mater., 185 (2011) 1482–1488.
- A. Assadi, A. Soudavari, M. Mohammadian, Comparison of
electrocoagulation and chemical coagulation processes in
removing Reactive red 196 from aqueous solution, J. Human
Environ. Health Promot., 1 (2016) 172–182.
- S.S. Moghaddam, M.A. Moghaddam, M. Arami, Coagulation/
flocculation process for dye removal using sludge from water
treatment plant: optimization through response surface
methodology, J. Hazard. Mater., 175 (2010) 651–657.
- M.A. Al-Ghouti, D.A. Da’ana, Guidelines for the use and
interpretation of adsorption isotherm models: a review,
J. Hazard. Mater., 393 (2020) 122383, doi: 10.1016/j.jhazmat.2020.122383.
- J. Wang, X. Guo, Adsorption isotherm models:
Classification, physical meaning, application and solving
method, Chemosphere, 258 (2020) 127279, doi: 10.1016/j.chemosphere.2020.127279.
- M.M. Majd, V. Kordzadeh-Kermani, V. Ghalandari, A. Askari,
M. Sillanpää, Adsorption isotherm models: a comprehensive
and systematic review (2010−2020), Sci. Total Environ.,
812 (2022) 151334, doi: 10.1016/j.scitotenv.2021.151334.
- J. Wang, X. Guo, Adsorption kinetic models: physical meanings,
applications, and solving methods, J. Hazard. Mater.,
390 (2020) 122156, doi: 10.1016/j.jhazmat.2020.122156.
- F.-C. Wu, R.-L. Tseng, S.-C. Huang, R.-S. Juang, Characteristics
of pseudo-second-order kinetic model for liquid-phase
adsorption: a mini-review, Chem. Eng. J., 151 (2009) 1–9.
- S.K. Milonjić, A consideration of the correct calculation of
thermodynamic parameters of adsorption, J. Serb. Chem. Soc.,
72 (2007) 1363–1367.
- A. Myers, Thermodynamics of adsorption in porous materials,
AlChE J., 48 (2002) 145–160.