References

  1. W. An, J. Zhao, J. Lu, Y. Han, D. Li, Zero-liquid discharge technologies for desulfurization wastewater: a review, J. Environ. Manage., 321 (2022) 115953, doi: 10.1016/j.jenvman.2022.115953.
  2. E. Barbot, N.S. Vidic, K.B. Gregory, R.D. Vidic, Spatial and temporal correlation of water quality parameters of produced waters from Devonian-age shale following hydraulic fracturing, Environ. Sci. Technol., 47 (2013) 2562–2569.
  3. Z. Sun, H. Chen, N. Zhao, Y. Feng, F. Liu, C. Cai, G. Che, L. Yang, Experimental research and engineering application on the treatment of desulfurization wastewater from coal-fired power plants by spray evaporation, J. Water Process Eng., 40 (2021) 101960, doi: 10.1016/j.jwpe.2021.101960.
  4. S. Alzahrani, A.W. Mohammad, Challenges and trends in membrane technology implementation for produced water treatment: a review, J. Water Process Eng., 4 (2014) 107–133.
  5. M.A. Al-Ghouti, M.A. Al-Kaabi, M.Y. Ashfaq, D.A. Da’na, Produced water characteristics, treatment and reuse: a review, J. Water Process Eng., 28 (2019) 222–239.
  6. E. Obotey Ezugbe, S. Rathilal, Membrane technologies in wastewater treatment: a review, Membranes, 10 (2020) 89, doi: 10.3390/membranes10050089.
  7. Y. Suo, Y. Ren, Research on the mechanism of nanofiltration membrane fouling in zero discharge process of high salty wastewater from coal chemical industry, Chem. Eng. Sci., 245 (2021) 116810, doi: 10.1016/j.ces.2021.116810.
  8. F. Zhao, F. Ju, K. Huang, Y. Mao, X. Zhang, H. Ren, T. Zhang, Comprehensive insights into the key components of bacterial assemblages in pharmaceutical wastewater treatment plants, Sci. Total Environ., 651 (2019) 2148–2157.
  9. Z. Wu, J. Fang, Y. Xiang, C. Shang, X. Li, F. Meng, X. Yang, Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process: kinetics and transformation pathways, Water Res., 104 (2016) 272–282.
  10. H. Liu, Z. Hou, Y. Li, Y. Lei, Z. Xu, J. Gu, S. Tian, Modeling degradation kinetics of gemfibrozil and naproxen in the UV/chlorine system: roles of reactive species and effects of water matrix, Water Res., 202 (2021) 117445, doi: 10.1016/j.watres.2021.117445.
  11. A. Hassani, P. Eghbali, F. Mahdipour, S. Wacławek, K.-Y.A. Lin, F. Ghanbari, Insights into the synergistic role of photocatalytic activation of peroxymonosulfate by UVA-LED irradiation over CoFe2O4-rGO nanocomposite towards effective Bisphenol A degradation: performance, mineralization, and activation mechanism, Chem. Eng. J., 453 (2023) 139556, doi: 10.1016/j.cej.2022.139556.
  12. S. Madihi-Bidgoli, S. Asadnezhad, A. Yaghoot-Nezhad, A. Hassani, Azurobine degradation using
    Fe2O3@multiwalled carbon nanotube activated peroxymonosulfate (PMS) under UVA-LED irradiation: performance, mechanism and environmental application, J. Environ. Chem. Eng., 9 (2021) 106660, doi: 10.1016/j.jece.2021.106660.
  13. F. Ghanbari, Q. Wang, A. Hassani, S. Waclawek, J. Rodriguez- Chueca, K.A. Lin, Electrochemical activation of peroxides for treatment of contaminated water with landfill leachate: efficacy, toxicity and biodegradability evaluation, Chemosphere, 279 (2021) 130610, doi: 10.1016/j.chemosphere.2021.130610.
  14. G. Meng, Y. Wang, X. Li, H. Zhang, X. Zhou, Z. Bai, L. Wu, J. Bai, Treatment of landfill leachate evaporation concentrate by a modified electro-Fenton method, Environ. Technol., 43 (2022) 500–513.
  15. H. Liu, Y. Gao, J. Wang, D. Ma, Y. Wang, B. Gao, Q. Yue, X. Xu, The application of UV/O3 process on ciprofloxacin wastewater containing high salinity: performance and its degradation mechanism, Chemosphere, 276 (2021) 130220, doi: 10.1016/j.chemosphere.2021.130220.
  16. Y. Yang, J.J. Pignatello, J. Ma, W.A. Mitch, Effect of matrix components on UV/H2O2 and UV/S2O82– advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities, Water Res., 89 (2016) 192–200.
  17. B. Yang, Q. Luo, Q. Li, R. Jia, Y. Liu, X. Huang, M. Zhou, L. Li, Dye mineralization under UV/H2O2 promoted by chloride ion at high concentration and the generation of chlorinated byproducts, Sci. Total Environ., 857 (2022) 159453, doi: 10.1016/j.scitotenv.2022.159453.
  18. X. Lai, X.-A. Ning, Y. Zhang, Y. Li, R. Li, J. Chen, S. Wu, Treatment of simulated textile sludge using the Fenton/Cl system: the roles of chlorine radicals and superoxide anions on PAHs removal, Environ. Res., 197 (2021) 110997, doi: 10.1016/j.envres.2021.110997.
  19. C.M. Dominguez, A. Romero, D. Lorenzo, A. Santos, Thermally activated persulfate for the chemical oxidation of chlorinated organic compounds in groundwater, J. Environ. Manage., 261 (2020) 110240, doi: 10.1016/j.jenvman.2020.110240.
  20. Z. Li, L. Wang, Y. Liu, Q. Zhao, J. Ma, Unraveling the interaction of hydroxylamine and Fe(III) in Fe(II)/persulfate system: a kinetic and simulating study, Water Res., 168 (2020) 115093, doi: 10.1016/j.watres.2019.115093.
  21. X. Lei, Y. Lei, J.M. Guan, P. Westerho, X. Yang, Kinetics and transformations of diverse dissolved organic matter fractions with sulfate radicals, Environ. Sci. Technol., 56 (2022) 4457–4466.
  22. C. Tan, Y. Dong, D. Fu, N. Gao, J. Ma, X. Liu, Chloramphenicol removal by zero valent iron activated peroxymonosulfate system: kinetics and mechanism of radical generation, Chem. Eng. J., 334 (2018) 1006–1015.
  23. J. Deng, Y. Cheng, Y. Lu, J.C. Crittenden, S. Zhou, N. Gao, J. Li, Mesoporous manganese cobaltite nanocages as effective and reusable heterogeneous peroxymonosulfate activators for carbamazepine degradation, Chem. Eng. J., 330 (2017) 505–517.
  24. L.W. Matzek, K.E. Carter, Sustained persulfate activation using solid iron: kinetics and application to ciprofloxacin degradation, Chem. Eng. J., 307 (2017) 650–660.
  25. C. Liang, I.L. Lee, I.Y. Hsu, C. Liang, Y. Lin, Persulfate oxidation of trichloroethylene with and without iron activation in porous media, Chemosphere, 70 (2008) 426–435.
  26. X. Zeng, Y. Meng, X. Sun, F. Guo, M. Yang, Experimental and theoretical investigation on degradation of enoxacin in aqueous solution by UV-activated persulfate: kinetics, influencing factors and degradation pathways, J. Environ. Chem. Eng., 9 (2021) 106608, doi: 10.1016/j.jece.2021.106608.
  27. Z. Li, W. Qi, Y. Feng, Y. Liu, E. Shehata, J. Long, Degradation mechanisms of oxytetracycline in the environment, J. Integr. Agric., 18 (2019) 1953–1960.
  28. A. Ghauch, A.M. Tuqan, N. Kibbi, Ibuprofen removal by heated persulfate in aqueous solution: a kinetics study, Chem. Eng. J., 197 (2012) 483–492.
  29. K.H. Chan, W. Chu, Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process, Water Res., 43 (2009) 2513–2521.
  30. G.P. Anipsitakis, D.D. Dionysiou, M.A. Gonzalez, Cobaltmediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions, Environ. Sci. Technol., 40 (2006) 1000–1007.
  31. Y. Lei, S. Cheng, N. Luo, X. Yang, T. An, rate constants and mechanisms of the reactions of Cl and Cl2•– with trace organic contaminants, Environ. Sci. Technol., 53 (2019) 11170–11182.
  32. Y. Lei, X. Lei, P. Westerhoff, X. Zhang, X. Yang, Reactivity of chlorine radicals (Cl and Cl2•–) with dissolved organic matter and the formation of chlorinated byproducts, Environ. Sci. Technol., 55 (2021) 689–699.
  33. K. Hasegawa, P. Neta, Rate constants and mechanisms of reaction of chloride (Cl2) radicals, J. Phys. Chem., 82 (1978) 854–857.
  34. L. Liu, S. Lin, W. Zhang, U. Farooq, G. Shen, S. Hu, Kinetic and mechanistic investigations of the degradation of sulfachloropyridazine in heat-activated persulfate oxidation process, Chem. Eng. J., 346 (2018) 515–524.
  35. M. Xu, X. Gu, S. Lu, Z. Miao, X. Zang, X. Wu, Z. Qiu, Q. Sui, Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic acid, Front. Environ. Sci. Eng., 10 (2016) 438–446.
  36. Y. Feng, Q. Song, W. Lv, G. Liu, Degradation of ketoprofen by sulfate radical-based advanced oxidation processes: kinetics, mechanisms, and effects of natural water matrices, Chemosphere, 189 (2017) 643–651.
  37. Z. Wang, R. Yuan, Y. Guo, L. Xu, J. Liu, Effects of chloride ions on bleaching of azo dyes by Co2+/oxone regent: kinetic analysis, J. Hazard. Mater., 190 (2011) 1083–1087.
  38. H. Gao, J. Chen, Y. Zhang, X. Zhou, Sulfate radicals induced degradation of triclosan in thermally activated persulfate system, Chem. Eng. J., 306 (2016) 522–530.
  39. Y. Qian, G. Xue, J. Chen, J. Luo, X. Zhou, P. Gao, Q. Wang, Oxidation of cefalexin by thermally activated persulfate: kinetics, products, and antibacterial activity change, J. Hazard. Mater., 354 (2018) 153–160.
  40. C. Liang, Z. Wang, C.J. Bruell, Influence of pH on persulfate oxidation of TCE at ambient temperatures, Chemosphere, 66 (2007) 106–113.
  41. G. Fang, D.D. Dionysiou, Y. Wang, S.R. Al-Abed, D. Zhou, Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics, J. Hazard. Mater., 227 (2012) 394–401.
  42. Y. Wu, Y. Yang, Y. Liu, L. Zhang, L. Feng, Modelling study on the effects of chloride on the degradation of bezafibrate and carbamazepine in sulfate radical-based advanced oxidation processes: conversion of reactive radicals, Chem. Eng. J., 358 (2019) 1332–1341.
  43. G. Mark, M.N. Schuchmann, H.-P. Schuchmann, C. von Sonntag, The photolysis of potassium peroxodisulphate in aqueous solution in the presence of tert-butanol: a simple actinometer for 254 nm radiation, J. Photochem. Photobiol., A, 55 (1990) 157–168.
  44. R.O. Rahn, M.I. Stefan, J.R. Bolton, E. Goren, P.S. Shaw, K.R. Lykke, Quantum yield of the iodide-iodate chemical actinometer: dependence on wavelength and concentrations, Photochem. Photobiol., 78 (2003) 146–152.
  45. C. Liang, C.F. Huang, N. Mohanty, R.M. Kurakalva, A rapid spectrophotometric determination of persulfate anion in ISCO, Chemosphere, 73 (2008) 1540–1543.
  46. Y. Shih, Y. Li, Y. Huang, Application of UV/persulfate oxidation process for mineralization of
    2,2,3,3-tetrafluoro-1-propanol, J. Taiwan Inst. Chem. Eng., 44 (2013) 287–290.
  47. H. Guo, T. Ke, N. Gao, Y. Liu, X. Cheng, Enhanced degradation of aqueous norfloxacin and enrofloxacin
    by UV-activated persulfate: kinetics, pathways and deactivation, Chem. Eng. J., 316 (2017) 471–480.
  48. J. Wang, S. Wang, Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants, Chem. Eng. J., 334 (2018) 1502–1517.
  49. S. Guo, Q. Wang, C. Luo, J. Yao, Z. Qiu, Q. Li, Hydroxyl radicalbased and sulfate radical-based photocatalytic advanced oxidation processes for treatment of refractory organic matter in semi-aerobic aged refuse biofilter effluent arising from treating landfill leachate, Chemosphere, 243 (2020) 125390, doi: 10.1016/j.chemosphere.2019.125390.
  50. H. Zhang, Z. Wang, C. Liu, Y. Guo, N. Shan, C. Meng, L. Sun, Removal of COD from landfill leachate by an electro/Fe2+/peroxydisulfate process, Chem. Eng. J., 250 (2014) 76–82.
  51. T.N. Das, Reactivity and role of SO5•– radical in aqueous medium chain oxidation of sulfite to sulfate and atmospheric sulfuric acid generation, J. Phys. Chem. A, 105 (2001) 9142–9155.
  52. J. Lee, U. von Gunten, J.H. Kim, Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks, Environ. Sci. Technol., 54 (2020) 3064–3081.
  53. X.-Y. Yu, Z.-C. Bao, J.R. Barker, Free radical reactions involving Cl, Cl2•–, and SO4•– in the 248 nm photolysis of aqueous solutions containing S2O82– and Cl, J. Phys. Chem. A, 108 (2004) 295–308.
  54. N. Yousefi, S. Pourfadakari, S. Esmaeili, A.A. Babaei, Mineralization of high saline petrochemical wastewater using sonoelectro-activated persulfate: degradation mechanisms and reaction kinetics, Microchem. J., 147 (2019) 1075–1082.
  55. H.V. Lutze, N. Kerlin, T.C. Schmidt, Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate, Water Res., 72 (2015) 349–360.
  56. C. Zhu, F. Zhu, D.D. Dionysiou, D. Zhou, G. Fang, J. Gao, Contribution of alcohol radicals to contaminant degradation in quenching studies of persulfate activation process, Water Res., 139 (2018) 66–73.
  57. C. Zhu, F. Zhu, C. Liu, N. Chen, D. Zhou, G. Fang, J. Gao, Reductive hexachloroethane degradation by S2O8•– with thermal activation of persulfate under anaerobic conditions, Environ. Sci. Technol., 52 (2018) 8548–8557.
  58. J. Wang, S. Wang, Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants, Chem. Eng. J., 411 (2021) 128392, doi: 10.1016/j.cej.2020.128392.
  59. H. Zhang, C. Xie, L. Chen, J. Duan, F. Li, W. Liu, Different reaction mechanisms of SO4•– and OH with organic compound interpreted at molecular orbital level in Co(II)/peroxymonosulfate catalytic activation system, Water Res., 229 (2023) 119392, doi: 10.1016/j.watres.2022.119392.