References

  1. C.F. Bustillo-Lecompte, M. Mehrvar, Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: a review on trends and advances, J. Environ. Manage., 161 (2015) 287–302.
  2. A.J. Mohammed, Z.Z. Ismail, Slaughterhouse wastewater biotreatment associated with bioelectricity generation and nitrogen recovery in hybrid system of microbial fuel cell with aerobic and anoxic bioreactors, Ecol. Eng., 125 (2018) 119–130.
  3. J.H. Ryther, W.M. Dunstan, Nitrogen, phosphorus, and eutrophication in the coastal marine environment, Science, 171 (1971) 1008–1013.
  4. A. Aziz, F. Basheer, A. Sengar, S.U. Irfanullah Khan, I.H. Farooqi, Biological wastewater treatment (anaerobicaerobic) technologies for safe discharge of treated slaughterhouse and meat processing wastewater, Sci. Total Environ., 686 (2019) 681–708.
  5. B. Demirel, O. Yenigun, T.T. Onay, Anaerobic treatment of dairy wastewaters: a review, Process Biochem., 40 (2005) 2583–2595.
  6. C.F. Bustillo-Lecompte, M. Mehrvar, E. Quiñones-Bolaños, Combined anaerobic-aerobic and UV/H2O2 processes for the treatment of synthetic slaughterhouse wastewater, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 48 (2013) 1122–1135.
  7. Y.J. Chan, M.F. Chong, C.L. Law, D. Hassell, A review on anaerobic-aerobic treatment of industrial and municipal wastewater, Chem. Eng. J., 155 (2009) 1–18.
  8. C.F. Bustillo-Lecompte, M. Mehrvar, Treatment of actual slaughterhouse wastewater by combined anaerobic-aerobic processes for biogas generation and removal of organics and nutrients: an optimization study towards a cleaner production in the meat processing industry, J. Cleaner Prod., 141 (2017) 278–289.
  9. S. Tong, Y. Zhao, M. Zhu, J. Wei, S. Zhang, S. Li, S. Sun, Effect of the supernatant reflux position and ratio on the nitrogen removal performance of anaerobic-aerobic slaughterhouse wastewater treatment process, Environ. Eng. Res., 25 (2020) 309–315.
  10. M. Strous, J.J. Heijnen, J.G. Kuenen, M. Jetten, The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium oxidizing microorganisms, Appl. Microbiol. Biotechnol., 50 (1998) 589–596.
  11. R. Chen, J. Ji, Y. Chen, Y. Takemura, Y. Liu, K. Kubota, H. Ma, Y-Y. Li, Successful operation performance and syntrophic micro-granule in partial nitritation and Anammox reactor treating low-strength ammonia wastewater, Water Res., 155 (2019) 288–299.
  12. Y. Rong, X. Liu, L. Wen, X. Jin, X. Shi, P. Jin, Advanced nutrient removal in a continuous A2/O process based on partial nitrification-Anammox and denitrifying phosphorus removal, J. Water Process Eng., 36 (2020) 101245, doi: 10.1016/j.jwpe.2020.101245.
  13. R. Du, Y.Z. Peng, S.B. Cao, S.Y. Wang, C.C. Wu, Advanced nitrogen removal from wastewater by combining Anammox with partial denitrification, Bioresour. Technol., 179 (2015) 497–504.
  14. C.-J. Tang, P. Zheng, L.-Y. Chai, X.-B. Min, Thermodynamic and kinetic investigation of anaerobic bioprocesses on Anammox under high organic conditions, Chem. Eng. J., 230 (2013) 149–157.
  15. D.T. Shu, Y.L. He, H. Yue, L. Zhu, Q.Y. Wang, Metagenomic insights into the effects of volatile fatty acids on microbial community structures and functional genes in organotrophic Anammox process, Bioresour. Technol., 196 (2015) 621–633.
  16. B. Molinuevo, M.C. García, D. Karakashev, I. Angelidaki, Anammox for ammonia removal from pig manure effluents: effect of organic matter content on process performance, Bioresour. Technol., 100 (2009) 2171–2175.
  17. Z. Bi, M. Takekawa, G. Park, S. Soda, J. Zhou, S. Qiao, M. Ike, Effects of the C/N ratio and bacterial populations on nitrogen removal in the simultaneous Anammox and heterotrophic denitrification process: mathematic modeling and batch experiments, Chem. Eng. J., 280 (2015) 606–613.
  18. C.M. Castro-Barros, M. Jia, M.C.M. van Loosdrecht, E.I.P. Volcke, Evaluating the potential for dissimilatory nitrate reduction by Anammox bacteria for municipal wastewater treatment, Bioresour. Technol., 233 (2017) 363–372.
  19. S. Tong, S. Wang, Y. Zhao, C. Feng, B. Xu, M. Zhu, Enhanced alure-type biological system (E-ATBS) for carbon, nitrogen and phosphorus removal from slaughterhouse wastewater: a case study, Bioresour. Technol., 274 (2019) 244–251.
  20. Y. Zhao, Y. Feng, J. Li, Y. Guo, L. Chen, S. Liu, Insight into the aggregation capacity of Anammox consortia during reactor start-up, Environ. Sci. Technol., 52 (2018) 3685–3695.
  21. A. Al-Sayara, A. Marei, S. Khaya, B. Sonneveld, Optimization of removal thermotolerant coliform (TTC) from drinking water using bio-sand filter (BSF) Masafer Yatta/Hebron West Bank-occupied Palestinian territories, Desal. Water Treat., 275 (2022) 207–220.
  22. S. Tong, J.L. Stocks, L.C. Rodriguez-Gonzalez, C. Feng, S.J. Ergas, Effect of oyster shell medium and organic substrate on the performance of a particulate pyrite autotrophic denitrification (PPAD) process, Bioresour. Technol., 244 (2017) 296–303.
  23. S. Tong, N. Chen, H. Wang, H. Liu, C. Tao, C. Feng, B. Zhang, C. Hao, J. Pu, J. Zhao, Optimization of C/N and current density in a heterotrophic/biofilm-electrode autotrophic denitrification reactor (HAD-BER), Bioresour. Technol., 171 (2014) 389–395.
  24. S. Tong, L.C. Rodriguez-Gonzalez, K.A. Payne, J.L. Stocks, C. Feng, S.J. Ergas, Effect of pyrite pretreatment, particle size, dose and biomass concentration on particulate pyrite autotrophic denitrification (PPAD) of nitrified domestic wastewater, Environ. Eng. Sci., 35 (2018) 875–886.
  25. G.E.P. Box, D.W. Behnken, Some new three level design for the study of quantitative variables, Technometrics, 2 (1960) 455–475.
  26. G. Annadurai, R.Y. Sheeja, Use of Box–Behnken design of experiments for the adsorption of verofix red using biopolymer, Bioprocess Eng., 18 (1998) 463–466.
  27. USEPA, Methods for the Determination of Organic and Inorganic Compounds in Drinking Water, United States Environmental Protection Agency, EPA/815-R-00-014, Washington D.C., 1997.
  28. NEPA, Water and Wastewater Monitoring Analysis Method, 4th ed., China Environmental Science Press, Beijing, 2022.
  29. APHA, Standard Methods for the Examination of Water & Wastewater, American Public Health Association (APHA), American Water Works Association (AWWA) & Water Environment Federation (WEF), Washington D.C., USA, 2012.
  30. R. Du, S. Cao, S. Wang, M. Niu, Y. Peng, Performance of partial denitrification (PD)-Anammox process in simultaneously treating nitrate and low C/N domestic wastewater at low temperature, Bioresour. Technol., 219 (2016) 420–429.
  31. S. Tong, L.C. Rodriguez-Gonzalez, C. Feng, S.J. Ergas, Comparison of particulate pyrite autotrophic denitrification (PPAD) and sulfur oxidizing denitrification (SOD) for treatment of nitrified wastewater, Water Sci. Technol., 75 (2017) 239–246.
  32. B. Kartal, J.G. Kuenen, M.C.M. van Loosdrecht, Sewage treatment with Anammox, Science, 328 (2010) 702–703.
  33. S. Ghafoori, A. Mowla, R. Jahani, M. Mehrvar, P.K. Chan, Sonophotolytic degradation of synthetic pharmaceutical wastewater: statistical experimental design and modeling, J. Environ. Manage., 150 (2015) 128–137.
  34. Z. Wang, X. Wu, H. Zhang, P. Gao, J. Ma, C. Yin, S. Zhu, S. Li, Simultaneous Anammox and denitrification process: start-up performance and mathematical simulation, Desal. Water Treat., 245 (2022) 92–105.