References
- C.F. Bustillo-Lecompte, M. Mehrvar, Slaughterhouse
wastewater characteristics, treatment, and management in the
meat processing industry: a review on trends and advances,
J. Environ. Manage., 161 (2015) 287–302.
- A.J. Mohammed, Z.Z. Ismail, Slaughterhouse wastewater
biotreatment associated with bioelectricity generation and
nitrogen recovery in hybrid system of microbial fuel cell with
aerobic and anoxic bioreactors, Ecol. Eng., 125 (2018) 119–130.
- J.H. Ryther, W.M. Dunstan, Nitrogen, phosphorus, and
eutrophication in the coastal marine environment, Science,
171 (1971) 1008–1013.
- A. Aziz, F. Basheer, A. Sengar, S.U. Irfanullah Khan,
I.H. Farooqi, Biological wastewater treatment (anaerobicaerobic)
technologies for safe discharge of treated
slaughterhouse and meat processing wastewater, Sci. Total
Environ., 686 (2019) 681–708.
- B. Demirel, O. Yenigun, T.T. Onay, Anaerobic treatment of dairy
wastewaters: a review, Process Biochem., 40 (2005) 2583–2595.
- C.F. Bustillo-Lecompte, M. Mehrvar, E. Quiñones-Bolaños,
Combined anaerobic-aerobic and UV/H2O2 processes for the
treatment of synthetic slaughterhouse wastewater, J. Environ.
Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng.,
48 (2013) 1122–1135.
- Y.J. Chan, M.F. Chong, C.L. Law, D. Hassell, A review on
anaerobic-aerobic treatment of industrial and municipal
wastewater, Chem. Eng. J., 155 (2009) 1–18.
- C.F. Bustillo-Lecompte, M. Mehrvar, Treatment of actual
slaughterhouse wastewater by combined anaerobic-aerobic
processes for biogas generation and removal of organics and
nutrients: an optimization study towards a cleaner production
in the meat processing industry, J. Cleaner Prod., 141 (2017)
278–289.
- S. Tong, Y. Zhao, M. Zhu, J. Wei, S. Zhang, S. Li, S. Sun, Effect
of the supernatant reflux position and ratio on the nitrogen
removal performance of anaerobic-aerobic slaughterhouse
wastewater treatment process, Environ. Eng. Res., 25 (2020)
309–315.
- M. Strous, J.J. Heijnen, J.G. Kuenen, M. Jetten, The sequencing
batch reactor as a powerful tool for the study of slowly
growing anaerobic ammonium oxidizing microorganisms,
Appl. Microbiol. Biotechnol., 50 (1998) 589–596.
- R. Chen, J. Ji, Y. Chen, Y. Takemura, Y. Liu, K. Kubota, H. Ma,
Y-Y. Li, Successful operation performance and syntrophic
micro-granule in partial nitritation and Anammox reactor
treating low-strength ammonia wastewater, Water Res.,
155 (2019) 288–299.
- Y. Rong, X. Liu, L. Wen, X. Jin, X. Shi, P. Jin, Advanced
nutrient removal in a continuous A2/O process based on
partial nitrification-Anammox and denitrifying phosphorus
removal, J. Water Process Eng., 36 (2020) 101245, doi: 10.1016/j.jwpe.2020.101245.
- R. Du, Y.Z. Peng, S.B. Cao, S.Y. Wang, C.C. Wu, Advanced
nitrogen removal from wastewater by combining Anammox
with partial denitrification, Bioresour. Technol., 179 (2015)
497–504.
- C.-J. Tang, P. Zheng, L.-Y. Chai, X.-B. Min, Thermodynamic and
kinetic investigation of anaerobic bioprocesses on Anammox
under high organic conditions, Chem. Eng. J., 230 (2013)
149–157.
- D.T. Shu, Y.L. He, H. Yue, L. Zhu, Q.Y. Wang, Metagenomic
insights into the effects of volatile fatty acids on microbial
community structures and functional genes in organotrophic
Anammox process, Bioresour. Technol., 196 (2015) 621–633.
- B. Molinuevo, M.C. García, D. Karakashev, I. Angelidaki,
Anammox for ammonia removal from pig manure effluents:
effect of organic matter content on process performance,
Bioresour. Technol., 100 (2009) 2171–2175.
- Z. Bi, M. Takekawa, G. Park, S. Soda, J. Zhou, S. Qiao, M. Ike,
Effects of the C/N ratio and bacterial populations on nitrogen
removal in the simultaneous Anammox and heterotrophic
denitrification process: mathematic modeling and batch
experiments, Chem. Eng. J., 280 (2015) 606–613.
- C.M. Castro-Barros, M. Jia, M.C.M. van Loosdrecht, E.I.P. Volcke,
Evaluating the potential for dissimilatory nitrate reduction
by Anammox bacteria for municipal wastewater treatment,
Bioresour. Technol., 233 (2017) 363–372.
- S. Tong, S. Wang, Y. Zhao, C. Feng, B. Xu, M. Zhu, Enhanced
alure-type biological system (E-ATBS) for carbon, nitrogen and
phosphorus removal from slaughterhouse wastewater: a case
study, Bioresour. Technol., 274 (2019) 244–251.
- Y. Zhao, Y. Feng, J. Li, Y. Guo, L. Chen, S. Liu, Insight into the
aggregation capacity of Anammox consortia during reactor
start-up, Environ. Sci. Technol., 52 (2018) 3685–3695.
- A. Al-Sayara, A. Marei, S. Khaya, B. Sonneveld, Optimization
of removal thermotolerant coliform (TTC) from drinking
water using bio-sand filter (BSF) Masafer Yatta/Hebron West
Bank-occupied Palestinian territories, Desal. Water Treat.,
275 (2022) 207–220.
- S. Tong, J.L. Stocks, L.C. Rodriguez-Gonzalez, C. Feng, S.J. Ergas,
Effect of oyster shell medium and organic substrate on the
performance of a particulate pyrite autotrophic denitrification
(PPAD) process, Bioresour. Technol., 244 (2017) 296–303.
- S. Tong, N. Chen, H. Wang, H. Liu, C. Tao, C. Feng, B. Zhang,
C. Hao, J. Pu, J. Zhao, Optimization of C/N and current density
in a heterotrophic/biofilm-electrode autotrophic denitrification
reactor (HAD-BER), Bioresour. Technol., 171 (2014) 389–395.
- S. Tong, L.C. Rodriguez-Gonzalez, K.A. Payne, J.L. Stocks,
C. Feng, S.J. Ergas, Effect of pyrite pretreatment, particle
size, dose and biomass concentration on particulate pyrite
autotrophic denitrification (PPAD) of nitrified domestic
wastewater, Environ. Eng. Sci., 35 (2018) 875–886.
- G.E.P. Box, D.W. Behnken, Some new three level design for the
study of quantitative variables, Technometrics, 2 (1960) 455–475.
- G. Annadurai, R.Y. Sheeja, Use of Box–Behnken design of
experiments for the adsorption of verofix red using biopolymer,
Bioprocess Eng., 18 (1998) 463–466.
- USEPA, Methods for the Determination of Organic and
Inorganic Compounds in Drinking Water, United States
Environmental Protection Agency, EPA/815-R-00-014,
Washington D.C., 1997.
- NEPA, Water and Wastewater Monitoring Analysis Method,
4th ed., China Environmental Science Press, Beijing, 2022.
- APHA, Standard Methods for the Examination of Water &
Wastewater, American Public Health Association (APHA),
American Water Works Association (AWWA) & Water
Environment Federation (WEF), Washington D.C., USA, 2012.
- R. Du, S. Cao, S. Wang, M. Niu, Y. Peng, Performance of partial
denitrification (PD)-Anammox process in simultaneously
treating nitrate and low C/N domestic wastewater at low
temperature, Bioresour. Technol., 219 (2016) 420–429.
- S. Tong, L.C. Rodriguez-Gonzalez, C. Feng, S.J. Ergas,
Comparison of particulate pyrite autotrophic denitrification
(PPAD) and sulfur oxidizing denitrification (SOD) for
treatment of nitrified wastewater, Water Sci. Technol., 75 (2017)
239–246.
- B. Kartal, J.G. Kuenen, M.C.M. van Loosdrecht, Sewage
treatment with Anammox, Science, 328 (2010) 702–703.
- S. Ghafoori, A. Mowla, R. Jahani, M. Mehrvar, P.K. Chan,
Sonophotolytic degradation of synthetic pharmaceutical
wastewater: statistical experimental design and modeling,
J. Environ. Manage., 150 (2015) 128–137.
- Z. Wang, X. Wu, H. Zhang, P. Gao, J. Ma, C. Yin, S. Zhu, S. Li,
Simultaneous Anammox and denitrification process: start-up
performance and mathematical simulation, Desal. Water Treat.,
245 (2022) 92–105.