References
- A.L. Bulta, G.A.W. Micheal, Evaluation of the efficiency of
ceramic filters for water treatment in Kambata Tabaro zone,
southern Ethiopia, Environ. Syst. Res., 8 (2019) 1, doi: 10.1186/s40068-018-0129-6.
- C. Farrow, E. McBean, G. Huang, A.L. Yang, Y.C. Wu, Z. Liu,
Z.N. Dai, H.Y. Fu, T. Cawte, Y.P. Li, Ceramic water filters: a
point-of-use water treatment technology to remove bacteria
from drinking water in Longhai City, Fujian Province,
China, J. Environ. Inf., 32 (2018) 63–68.
- P.-M. Nigay, A.A. Salifu, J.D. Obayemi, C.E. White, A. Nzihou,
W.O. Soboyejo, Ceramic water filters for the removal of
bacterial, chemical, and viral contaminants, J. Environ. Eng.,
145 (2019), doi: 10.1061/(ASCE)EE.1943-7870.0001579.
- S. Mauran, L. Rigaud, O. Coudevylle, Application of the
Carman–Kozeny correlation to a high‐porosity and anisotropic
consolidated medium: the compressed expanded natural
graphite, Transp. Porous Media, 43 (2001) 355–376.
- N.L.Q. Cuong, N.H. Minh, H.M. Cuong, P.N. Quoc, N.H. Van
Anh, N. Van Hieu, Porosity estimation from high resolution
CT SCAN images of rock samples by using housfield unit,
Open J. Geol., 8 (2018) 1019–1026.
- D. Mašín, C. Tamagnini, G. Viggiani, D. Costanzo, Directional
response of a reconstituted fine-grained soil—Part II:
performance of different constitutive models, Int. J. Numer.
Anal. Methods Geomech., 30 (2006) 1303–1336.
- A. du Plessis, C. Broeckhoven, A. Guelpa, S.G. le Roux,
Laboratory X-ray micro-computed tomography: a user
guideline for biological samples, Gigascience, 6 (2017) 1–11.
- C. Tien, B.V. Ramarao, Can filter cake porosity be estimated
based on the Kozeny–Carman equation?, Powder Technol.,
237 (2013) 233–240.
- A. Reichenbach, et al., Finding and discussion, Prog. Retin. Eye
Res., 561 (2019) S2–S3.
- H. Yang, S. Xu, D.E. Chitwood, Y. Wang, Ceramic water filter
for point-of-use water treatment in developing countries:
principles, challenges and opportunities, Front. Environ. Sci.
Eng., 14 (2020) 79, doi: 10.1007/s11783-020-1254-9.
- A.T. Ajibade, M.B. Amuda, O.T. Olurin, Dividend policy and
financial performance – a study of quoted manufacturing
firms in Nigeria and Kenya, South Asian J. Social Stud. Econ.,
3 (2019) 1–8.
- D.W. Robert, Development of a Ceramic Water Filter for Nepal,
Massachusetts Institute of Technology, Master Thesis, 2013,
p. 170.
- B.A. Ajayi, Y.D. Lamidi, Formulation of ceramic water
filter composition for the treatment of heavy metals and
correction of physiochemical parameters in household water,
Art Des. Rev., 3 (2015) 94–100.
- S. Gupta, R.K. Satankar, A. Kaurwar, U. Aravind, M. Sharif,
A. Plappally, Household production of ceramic water filters in
Western Rajasthan, India, Int. J. Serv. Learn. Eng. Humanit. Eng.
Soc. Entrep., 13 (2018) 53–66.
- I. Yakub, A. Plappally, M. Leftwich, K. Malatesta, K.C. Friedman,
S. Obwoya, F. Nyongesa, A.H. Maiga, A.B.O. Soboyejo,
S. Logothetis, W. Soboyejo, Porosity, flow, and filtration
characteristics of frustum-shaped ceramic water filters,
J. Environ. Eng., 139 (2013) 986–994.
- Q. Xiong, T.G. Baychev, A.P. Jivkov, Review of pore network
modelling of porous media: experimental characterisations,
network constructions and applications to reactive transport,
J. Contam. Hydrol., 192 (2016) 101–117.
- E. Walker, P.W.J. Glover, Permeability models of porous
media: characteristic length scales, scaling constants and
time-dependent electrokinetic coupling, Geophysics, 75 (2010)
E235–E246.
- A.A. Mohamad, Chapter 11 – Combustion in Porous Media:
Fundamentals and Applications, D.B. Ingham, I. Pop, Eds.,
Transport Phenomena in Porous Media III, Elsevier Ltd.,
Oxford, United Kingdom: Pergamon, 2005, pp. 287–304,
doi: 10.1016/B978-008044490-1/50015-6.
- A. Jahanbakhsh, K.L. Wlodarczyk, D.P. Hand, R.R.J. Maier,
M.M. Maroto-Valer, Review of microfluidic devices and
imaging techniques for fluid flow study in porous geomaterials,
Sensors (Switzerland), 20 (2020) 4030, doi: 10.3390/s20144030.
- S. Khirevich, M. Yutkin, T.W. Patzek, Correct estimation of
permeability using experiment and simulation, Phys. Fluids,
34 (2022) 123603, doi: 10.1063/5.0123673.
- S. Gärttner, F.O. Alpak, A. Meier, N. Ray, F. Frank, Estimating
permeability of 3D micro-CT images by physics-informed
CNNs based on DNS, Comput. Geosci., 27 (2023) 245–262.
- S.D. Goals, World Health Statistics, 2022.
- P.-M. Nigay, A. Salifu, J. Obayemi, C. White, A. Nzihou,
W. Soboyejo, Ceramic water filters for the removal of bacterial,
chemical, and viral contaminants, J. Environ. Eng., 145 (2019)
04019066, doi: 10.1061/(ASCE)EE.1943-7870.0001579.
- A.K. Plappally, J.H. Lienhard V, Costs for water supply,
treatment, end-use and reclamation, Desal. Water Treat.,
51 (2013) 200–232.
- S. Duhan, S.K. Adari, N. Kanwar, S. Gupta, A.K.P.M. Ahmad,
P.K. Dammala, M. Chhabra, A.K. Plappally, Suitability of
Clayey Soils from Jalore and Jodhpur, Rajasthan, India, for
the Production of 3-Litre Ceramic Water Filters, Desalination
for the Environment, Clean Water and Energy, Limassol,
Cyprus, May 22–May 26, 2023.
- M. Ahmad, S. Duhan, R.K. Satankar, A.K. Plappally, Long-
Term RELIABILITY assessment of Ceramic Water Filters:
Strength and Electro-kinetic Parameter Studies, Proceedings
of Desalination for the Environment, Clean Water and Energy,
Limassol, Cyprus May 22–May 26, 2023.
- D. van Halem, S.G.J. Heijman, A.I.A. Soppe, J.C. van Dijk,
G.L. Amy, Ceramic silver-impregnated pot filters for
household drinking water treatment in developing countries:
material characterization and performance study, Water Sci.
Technol. Water Supply, 7 (2007) 9–17.
- S. Murcott, Arsenic Contamination in the World: An
International Sourcebook 2012, Water Intelligence Online, 2012.
- A.K. Plappally, J.H. Lienhard V, Energy requirements for water
production, treatment, end use, reclamation, and disposal,
Renewable Sustainable Energy Rev., 16 (2012) 4818–4848.
- A. Plappally, I. Yakub, L.C. Brown, W.O. Soboyejo,
A.B.O. Soboyejo, Theoretical and experimental investigation
of water flow through porous ceramic clay composite
water filter, FDMP, 5 (2009) 373–398.
- E.A. Moreira, M.D.M. Innocentini, J.R. Coury, Permeability
of ceramic foams to compressible and incompressible flow,
J. Eur. Ceram. Soc., 24 (2004) 3209–3218.
- S. Duhan, A.K. Agrawal, A.K. Plappally, Structural and
Characterization Assessment of Clay Ceramic Water Filter
Materials From Locations Near the Thar Desert in India,
Proceedings of Desalination for the Environment, Clean Water
and Energy, Limassol, Cyprus May 22–May 26, 2023.
- R.G. Loucks, R.M. Reed, S.C. Ruppel, U. Hammes, Spectrum
of pore types and networks in mudrocks and a descriptive
classification for matrix-related mudrock pores, AAPG Bull.,
6 (2012) 1071–1098.
- J.M. Carcione, D. Gei, T. Yu, J. Ba, Effect of clay and mineralogy
on permeability, Pure Appl. Geophys., 176 (2019) 2581–2594.
- P. Iassonov, T. Gebrenegus, M. Tuller, Segmentation of
X-ray computed tomography images of porous materials:
a crucial step for characterization and quantitative
analysis of pore structures, Water Resour. Res., 45 (2009),
doi: 10.1029/2009WR008087.
- F. Attivissimo, G. Cavone, A.M.L. Lanzolla, M. Spadavecchia,
A technique to improve the image quality in computer
tomography, IEEE Trans. Instrum. Meas., 59 (2010) 1251–1257.
- C.R. Nithyananda, A.C. Ramachandra, Preethi, Review on
Histogram Equalization based Image Enhancement Techniques,
2016 International Conference on Electrical, Electronics, and
Optimization Techniques (ICEEOT), IEEE, Chennai, India,
2016, pp. 2512–2517.
- Z. Al-Ameen, G. Sulong, A. Rehman, A. Al-Dhelaan,
T. Saba, M. Al-Rodhaan, An innovative technique for contrast
enhancement of computed tomography images using
normalized gamma-corrected contrast-limited adaptive
histogram equalization, EURASIP J. Adv. Signal Process.,
2015 (2015) 32,
doi: 10.1186/s13634-015-0214-1.
- K. Zuiderveld, Graphics Gems IV, P.S. Heckbert, Ed., Academic
Press Professional, Inc., San Diego, CA, USA, 1994, pp. 474–485.
Available at http://dl.acm.org/citation.cfm?id=180895.180940
- L. Sun, Q. Lei, B. Peng, G.M. Kontogeorgis, X. Liang, An analysis
of the parameters in the Debye-Hückel theory, Fluid Phase
Equilib., 556 (2022) 113398, doi: 10.1016/j.fluid.2022.113398.
- A. Jacob, M. Peltz, S. Hale, F. Enzmann, O. Moravcova,
L.N. Warr, G. Grathoff, P. Blum, M. Kersten, Simulating
permeability reduction by clay mineral nanopores in a tight
sandstone by combining computer X-ray microtomography
and focussed ion beam scanning electron microscopy imaging,
Solid Earth, 12 (2021) 1–14.
- S.S. Patil, M.T. Dissertation, Voxel-Based Solid Models:
Representation, Display and Geometric Analysis, Indian
Institute of Technology, Bombay, 2005.
- P. Suchde, T. Jacquemin, O. Davydov, Point cloud generation
for meshfree methods: an overview, Arch. Comput.
Methods Eng., 30 (2023) 889–915.
- C. Newtonian, I. Newtonian, T. Navier, T. Navier, Derivation of
the Navier–Stokes Equations, 2015, pp. 1–8.
- A.J. Chorin, A numerical method for solving incompressible
viscous flow problems, J. Comput. Phys., 2 (1967) 12–26.
- V.-T. Nguyen, W.-G. Park, A review of preconditioning and
artificial compressibility dual-time Navier–Stokes solvers for
multiphase flows, Fluids, 8 (2023) 100, doi: 10.3390/fluids8030100.
- L.M. Anovitz, D.R. Cole, Characterization and analysis of
porosity and pore structures, Rev. Mineral. Geochem., 80 (2015)
61–164.
- S. Gaboreau, J.C. Robinet, D. Prêt, Optimization of porenetwork
characterization of a compacted clay material by
TEM and FIB/SEM imaging, Microporous Mesoporous Mater.,
224 (2016) 116–128.
- P.-E. Øren, S. Bakke, Process based reconstruction of sandstones
and prediction of transport properties, Transp. Porous Media,
46 (2002) 311–343.
- C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to
ImageJ: 25 years of image analysis, Nat. Methods, 9 (2012)
671–675.
- L.M. Keller, P. Schuetz, R. Erni, M.D. Rossell, F. Lucas, P. Gasser,
L. Holzer, Characterization of multi-scale microstructural
features in opalinus clay, Microporous Mesoporous Mater.,
170 (2013) 83–94.
- C. Chen, D. Hu, D. Westacott, D. Loveless, Nanometer-scale
characterization of microscopic pores in shale kerogen by
image analysis and pore-scale modeling, Geochem. Geophys.
Geosyst., 14 (2013) 4066–4075.
- R. Wakeman, The influence of particle properties on filtration,
Sep. Purif. Technol., 58 (2007) 234–241.
- E. Escalera, M.L. Antti, M. Odén, Thermal treatment and phase
formation in kaolinite and illite based clays from tropical
regions of Bolivia, IOP Conf. Ser.: Mater. Sci. Eng., 31 (2012)
012017,
doi: 10.1088/1757-899X/31/1/012017.
- FAO, Standard Operating Procedure for Cation Exchange
Capacity and Exchangeable Bases, The Food and Agriculture
Organization of the United Nations, 2022.
- D. Jaremko, D. Kalembasa, A comparison of methods for the
determination of cation exchange capacity of soils, Ecol. Chem.
Eng. S, 21 (2014) 487–498.
- V.A. Nguyen, M. Ramanathan, Application of Brunauer–Emmett–Teller (BET) theory and the Guggenheim–Anderson–
de Boer (GAB) equation for concentration-dependent, nonsaturable
cell–cell interaction dose-responses, J. Pharmacokinet.
Pharmacodyn., 47 (2020) 561–572.
- A. Tironi, M.A. Trezza, E.F. Irassar, A.N. Scian, Thermal
treatment of kaolin: effect on the pozzolanic activity, Procedia
Mater. Sci., 1 (2012) 343–350.
- W.F. Woodruff, A. Revil, CEC-normalized clay-water
sorption isotherm, Water Resour. Res., 47 (2011) 1–15,
doi: 10.1029/2011WR010919.
- BIS, Indian Standard Drinking Water Specification (Second
Revision), Bureau of Indian Standards, IS 10500, 2012, pp. 1–11.
- W. Wang, A.N. Kravchenko, A.J.M. Smucker, M.L. Rivers,
Comparison of image segmentation methods in simulated
2D and 3D microtomographic images of soil aggregates,
Geoderma, 162 (2011) 231–241.