References

  1. A.L. Bulta, G.A.W. Micheal, Evaluation of the efficiency of ceramic filters for water treatment in Kambata Tabaro zone, southern Ethiopia, Environ. Syst. Res., 8 (2019) 1, doi: 10.1186/s40068-018-0129-6.
  2. C. Farrow, E. McBean, G. Huang, A.L. Yang, Y.C. Wu, Z. Liu, Z.N. Dai, H.Y. Fu, T. Cawte, Y.P. Li, Ceramic water filters: a point-of-use water treatment technology to remove bacteria from drinking water in Longhai City, Fujian Province, China, J. Environ. Inf., 32 (2018) 63–68.
  3. P.-M. Nigay, A.A. Salifu, J.D. Obayemi, C.E. White, A. Nzihou, W.O. Soboyejo, Ceramic water filters for the removal of bacterial, chemical, and viral contaminants, J. Environ. Eng., 145 (2019), doi: 10.1061/(ASCE)EE.1943-7870.0001579.
  4. S. Mauran, L. Rigaud, O. Coudevylle, Application of the Carman–Kozeny correlation to a high‐porosity and anisotropic consolidated medium: the compressed expanded natural graphite, Transp. Porous Media, 43 (2001) 355–376.
  5. N.L.Q. Cuong, N.H. Minh, H.M. Cuong, P.N. Quoc, N.H. Van Anh, N. Van Hieu, Porosity estimation from high resolution CT SCAN images of rock samples by using housfield unit, Open J. Geol., 8 (2018) 1019–1026.
  6. D. Mašín, C. Tamagnini, G. Viggiani, D. Costanzo, Directional response of a reconstituted fine-grained soil—Part II: performance of different constitutive models, Int. J. Numer. Anal. Methods Geomech., 30 (2006) 1303–1336.
  7. A. du Plessis, C. Broeckhoven, A. Guelpa, S.G. le Roux, Laboratory X-ray micro-computed tomography: a user guideline for biological samples, Gigascience, 6 (2017) 1–11.
  8. C. Tien, B.V. Ramarao, Can filter cake porosity be estimated based on the Kozeny–Carman equation?, Powder Technol., 237 (2013) 233–240.
  9. A. Reichenbach, et al., Finding and discussion, Prog. Retin. Eye Res., 561 (2019) S2–S3.
  10. H. Yang, S. Xu, D.E. Chitwood, Y. Wang, Ceramic water filter for point-of-use water treatment in developing countries: principles, challenges and opportunities, Front. Environ. Sci. Eng., 14 (2020) 79, doi: 10.1007/s11783-020-1254-9.
  11. A.T. Ajibade, M.B. Amuda, O.T. Olurin, Dividend policy and financial performance – a study of quoted manufacturing firms in Nigeria and Kenya, South Asian J. Social Stud. Econ., 3 (2019) 1–8.
  12. D.W. Robert, Development of a Ceramic Water Filter for Nepal, Massachusetts Institute of Technology, Master Thesis, 2013, p. 170.
  13. B.A. Ajayi, Y.D. Lamidi, Formulation of ceramic water filter composition for the treatment of heavy metals and correction of physiochemical parameters in household water, Art Des. Rev., 3 (2015) 94–100.
  14. S. Gupta, R.K. Satankar, A. Kaurwar, U. Aravind, M. Sharif, A. Plappally, Household production of ceramic water filters in Western Rajasthan, India, Int. J. Serv. Learn. Eng. Humanit. Eng. Soc. Entrep., 13 (2018) 53–66.
  15. I. Yakub, A. Plappally, M. Leftwich, K. Malatesta, K.C. Friedman, S. Obwoya, F. Nyongesa, A.H. Maiga, A.B.O. Soboyejo, S. Logothetis, W. Soboyejo, Porosity, flow, and filtration characteristics of frustum-shaped ceramic water filters, J. Environ. Eng., 139 (2013) 986–994.
  16. Q. Xiong, T.G. Baychev, A.P. Jivkov, Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport, J. Contam. Hydrol., 192 (2016) 101–117.
  17. E. Walker, P.W.J. Glover, Permeability models of porous media: characteristic length scales, scaling constants and time-dependent electrokinetic coupling, Geophysics, 75 (2010) E235–E246.
  18. A.A. Mohamad, Chapter 11 – Combustion in Porous Media: Fundamentals and Applications, D.B. Ingham, I. Pop, Eds., Transport Phenomena in Porous Media III, Elsevier Ltd., Oxford, United Kingdom: Pergamon, 2005, pp. 287–304, doi: 10.1016/B978-008044490-1/50015-6.
  19. A. Jahanbakhsh, K.L. Wlodarczyk, D.P. Hand, R.R.J. Maier, M.M. Maroto-Valer, Review of microfluidic devices and imaging techniques for fluid flow study in porous geomaterials, Sensors (Switzerland), 20 (2020) 4030, doi: 10.3390/s20144030.
  20. S. Khirevich, M. Yutkin, T.W. Patzek, Correct estimation of permeability using experiment and simulation, Phys. Fluids, 34 (2022) 123603, doi: 10.1063/5.0123673.
  21. S. Gärttner, F.O. Alpak, A. Meier, N. Ray, F. Frank, Estimating permeability of 3D micro-CT images by physics-informed CNNs based on DNS, Comput. Geosci., 27 (2023) 245–262.
  22. S.D. Goals, World Health Statistics, 2022.
  23. P.-M. Nigay, A. Salifu, J. Obayemi, C. White, A. Nzihou, W. Soboyejo, Ceramic water filters for the removal of bacterial, chemical, and viral contaminants, J. Environ. Eng., 145 (2019) 04019066, doi: 10.1061/(ASCE)EE.1943-7870.0001579.
  24. A.K. Plappally, J.H. Lienhard V, Costs for water supply, treatment, end-use and reclamation, Desal. Water Treat., 51 (2013) 200–232.
  25. S. Duhan, S.K. Adari, N. Kanwar, S. Gupta, A.K.P.M. Ahmad, P.K. Dammala, M. Chhabra, A.K. Plappally, Suitability of Clayey Soils from Jalore and Jodhpur, Rajasthan, India, for the Production of 3-Litre Ceramic Water Filters, Desalination for the Environment, Clean Water and Energy, Limassol, Cyprus, May 22–May 26, 2023.
  26. M. Ahmad, S. Duhan, R.K. Satankar, A.K. Plappally, Long- Term RELIABILITY assessment of Ceramic Water Filters: Strength and Electro-kinetic Parameter Studies, Proceedings of Desalination for the Environment, Clean Water and Energy, Limassol, Cyprus May 22–May 26, 2023.
  27. D. van Halem, S.G.J. Heijman, A.I.A. Soppe, J.C. van Dijk, G.L. Amy, Ceramic silver-impregnated pot filters for household drinking water treatment in developing countries: material characterization and performance study, Water Sci. Technol. Water Supply, 7 (2007) 9–17.
  28. S. Murcott, Arsenic Contamination in the World: An International Sourcebook 2012, Water Intelligence Online, 2012.
  29. A.K. Plappally, J.H. Lienhard V, Energy requirements for water production, treatment, end use, reclamation, and disposal, Renewable Sustainable Energy Rev., 16 (2012) 4818–4848.
  30. A. Plappally, I. Yakub, L.C. Brown, W.O. Soboyejo, A.B.O. Soboyejo, Theoretical and experimental investigation of water flow through porous ceramic clay composite water filter, FDMP, 5 (2009) 373–398.
  31. E.A. Moreira, M.D.M. Innocentini, J.R. Coury, Permeability of ceramic foams to compressible and incompressible flow, J. Eur. Ceram. Soc., 24 (2004) 3209–3218.
  32. S. Duhan, A.K. Agrawal, A.K. Plappally, Structural and Characterization Assessment of Clay Ceramic Water Filter Materials From Locations Near the Thar Desert in India, Proceedings of Desalination for the Environment, Clean Water and Energy, Limassol, Cyprus May 22–May 26, 2023.
  33. R.G. Loucks, R.M. Reed, S.C. Ruppel, U. Hammes, Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores, AAPG Bull., 6 (2012) 1071–1098.
  34. J.M. Carcione, D. Gei, T. Yu, J. Ba, Effect of clay and mineralogy on permeability, Pure Appl. Geophys., 176 (2019) 2581–2594.
  35. P. Iassonov, T. Gebrenegus, M. Tuller, Segmentation of X-ray computed tomography images of porous materials: a crucial step for characterization and quantitative analysis of pore structures, Water Resour. Res., 45 (2009), doi: 10.1029/2009WR008087.
  36. F. Attivissimo, G. Cavone, A.M.L. Lanzolla, M. Spadavecchia, A technique to improve the image quality in computer tomography, IEEE Trans. Instrum. Meas., 59 (2010) 1251–1257.
  37. C.R. Nithyananda, A.C. Ramachandra, Preethi, Review on Histogram Equalization based Image Enhancement Techniques, 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), IEEE, Chennai, India, 2016, pp. 2512–2517.
  38. Z. Al-Ameen, G. Sulong, A. Rehman, A. Al-Dhelaan, T. Saba, M. Al-Rodhaan, An innovative technique for contrast enhancement of computed tomography images using normalized gamma-corrected contrast-limited adaptive histogram equalization, EURASIP J. Adv. Signal Process., 2015 (2015) 32,
    doi: 10.1186/s13634-015-0214-1.
  39. K. Zuiderveld, Graphics Gems IV, P.S. Heckbert, Ed., Academic Press Professional, Inc., San Diego, CA, USA, 1994, pp. 474–485. Available at http://dl.acm.org/citation.cfm?id=180895.180940
  40. L. Sun, Q. Lei, B. Peng, G.M. Kontogeorgis, X. Liang, An analysis of the parameters in the Debye-Hückel theory, Fluid Phase Equilib., 556 (2022) 113398, doi: 10.1016/j.fluid.2022.113398.
  41. A. Jacob, M. Peltz, S. Hale, F. Enzmann, O. Moravcova, L.N. Warr, G. Grathoff, P. Blum, M. Kersten, Simulating permeability reduction by clay mineral nanopores in a tight sandstone by combining computer X-ray microtomography and focussed ion beam scanning electron microscopy imaging, Solid Earth, 12 (2021) 1–14.
  42. S.S. Patil, M.T. Dissertation, Voxel-Based Solid Models: Representation, Display and Geometric Analysis, Indian Institute of Technology, Bombay, 2005.
  43. P. Suchde, T. Jacquemin, O. Davydov, Point cloud generation for meshfree methods: an overview, Arch. Comput. Methods Eng., 30 (2023) 889–915.
  44. C. Newtonian, I. Newtonian, T. Navier, T. Navier, Derivation of the Navier–Stokes Equations, 2015, pp. 1–8.
  45. A.J. Chorin, A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 2 (1967) 12–26.
  46. V.-T. Nguyen, W.-G. Park, A review of preconditioning and artificial compressibility dual-time Navier–Stokes solvers for multiphase flows, Fluids, 8 (2023) 100, doi: 10.3390/fluids8030100.
  47. L.M. Anovitz, D.R. Cole, Characterization and analysis of porosity and pore structures, Rev. Mineral. Geochem., 80 (2015) 61–164.
  48. S. Gaboreau, J.C. Robinet, D. Prêt, Optimization of porenetwork characterization of a compacted clay material by TEM and FIB/SEM imaging, Microporous Mesoporous Mater., 224 (2016) 116–128.
  49. P.-E. Øren, S. Bakke, Process based reconstruction of sandstones and prediction of transport properties, Transp. Porous Media, 46 (2002) 311–343.
  50. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 9 (2012) 671–675.
  51. L.M. Keller, P. Schuetz, R. Erni, M.D. Rossell, F. Lucas, P. Gasser, L. Holzer, Characterization of multi-scale microstructural features in opalinus clay, Microporous Mesoporous Mater., 170 (2013) 83–94.
  52. C. Chen, D. Hu, D. Westacott, D. Loveless, Nanometer-scale characterization of microscopic pores in shale kerogen by image analysis and pore-scale modeling, Geochem. Geophys. Geosyst., 14 (2013) 4066–4075.
  53. R. Wakeman, The influence of particle properties on filtration, Sep. Purif. Technol., 58 (2007) 234–241.
  54. E. Escalera, M.L. Antti, M. Odén, Thermal treatment and phase formation in kaolinite and illite based clays from tropical regions of Bolivia, IOP Conf. Ser.: Mater. Sci. Eng., 31 (2012) 012017,
    doi: 10.1088/1757-899X/31/1/012017.
  55. FAO, Standard Operating Procedure for Cation Exchange Capacity and Exchangeable Bases, The Food and Agriculture Organization of the United Nations, 2022.
  56. D. Jaremko, D. Kalembasa, A comparison of methods for the determination of cation exchange capacity of soils, Ecol. Chem. Eng. S, 21 (2014) 487–498.
  57. V.A. Nguyen, M. Ramanathan, Application of Brunauer–Emmett–Teller (BET) theory and the Guggenheim–Anderson– de Boer (GAB) equation for concentration-dependent, nonsaturable cell–cell interaction dose-responses, J. Pharmacokinet. Pharmacodyn., 47 (2020) 561–572.
  58. A. Tironi, M.A. Trezza, E.F. Irassar, A.N. Scian, Thermal treatment of kaolin: effect on the pozzolanic activity, Procedia Mater. Sci., 1 (2012) 343–350.
  59. W.F. Woodruff, A. Revil, CEC-normalized clay-water sorption isotherm, Water Resour. Res., 47 (2011) 1–15, doi: 10.1029/2011WR010919.
  60. BIS, Indian Standard Drinking Water Specification (Second Revision), Bureau of Indian Standards, IS 10500, 2012, pp. 1–11.
  61. W. Wang, A.N. Kravchenko, A.J.M. Smucker, M.L. Rivers, Comparison of image segmentation methods in simulated 2D and 3D microtomographic images of soil aggregates, Geoderma, 162 (2011) 231–241.