References

  1. M. Kurihara, Seawater reverse osmosis desalination, Membranes, 11 (2021) 243, doi: 10.3390/membranes11040243.
  2. A. Ruiz-García, N. Melián-Martel, I. Nuez, Short review on predicting fouling in RO desalination, Membranes, 7 (2017) 62, doi: 10.3390/membranes7040062.
  3. F. Leon, A. Ramos, J. Vaswani, C. Mendieta, S. Brito, Climate change mitigation strategy through membranes replacement and determination methodology of carbon footprint in reverse osmosis RO desalination plants for islands and isolated territories, Water, 13 (2021) 293, doi: 10.3390/w13030293.
  4. P. Simon, Ed., Tapped Out: The Coming World Crisis in Water and What We Can Do About It, Rain Publishers, New York, 1988.
  5. M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete?, Electrochim. Acta, 55 (2010) 3845–3856.
  6. J.W. Blair, G.W. Murphy, Saline water conversion, 27 (1960) 206–223.
  7. A.M. Johnson, A.W. Venolia, R.G. Wilbourne, J. Newman, C.M. Wong, W. Sherman Gillam, S. Johnson, R.H. Horowitz, The Electrosorb Process for Desalting Water, Research and Development Progress Report No. 516, United States Department of the Interior, Washington, 1970.
  8. A.M. Johnson, J. Newman, Desalting by means of porous carbon electrodes, J. Electrochem. Soc., 118 (1971) 510, doi: 10.1149/1.2408094.
  9. Y. Oren, A. Soffer, Electrochemical parametric pumping, J. Electrochem. Soc., 125 (1978) 869, doi: 10.1149/1.2131570.
  10. D.D. Caudle, J.H. Tucker, J.L. Cooper, B.B. Arnold, A. Papastamataki, Electrochemical Demineralization of Water with Carbon Electrodes, United States Department of the Interior, Washington, 1966.
  11. H.M.N. AlMadani, Water desalination by solar powered electrodialysis process, Renewable Energy, 28 (2003) 1915–1924.
  12. M. del Pilar Mier López, R.I. Mendizábal, I.O. Uribe, M.J.R. Martínez, Electrodiálisis con membranas bipolares: fundamentos y aplicaciones, Ing. Chim., 418 (2004) 166–182.
  13. S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater Sci., 58 (2013) 1388–1442.
  14. J.-B. Lee, K.-K. Park, H.-M. Eum, C.-W. Lee, Desalination of a thermal power plant wastewater by membrane capacitive deionization, Desalination, 196 (2006) 125–134.
  15. H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, Z. Sun, Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes, Water Res., 42 (2008) 4923–4928.
  16. P.M. Biesheuvel, A. van der Wal, Membrane capacitive deionization, J. Membr. Sci., 346 (2010) 256–262.
  17. Y.-J. Kim, J.-H. Choi, Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer, Water Res., 44 (2010) 990–996.
  18. P.M. Biesheuvel, R. Zhao, S. Porada, A. van der Wal, Theory of membrane capacitive deionization including the effect of the electrode pore space, J. Colloid Interface Sci., 360 (2011) 239–248.
  19. Y. Bouhadana, M. Ben-Tzion, A. Soffer, D. Aurbach, A control system for operating and investigating reactors: the demonstration of parasitic reactions in the water desalination by capacitive de-ionization, Desalination, 268 (2011) 253–261.
  20. O.N. Demirer, R.M. Naylor, C.A. Rios Perez, E. Wilkes, C. Hidrovo, Energetic performance optimization of a capacitive deionization system operating with transient cycles and brackish water, Desalination, 314 (2013) 130–138.
  21. P. Długołęcki, A. van der Wal, Energy recovery in membrane capacitive deionization, Environ. Sci. Technol., 47 (2013) 4904–4910.
  22. M.E. Suss, T.F. Baumann, W.L. Bourcier, C.M. Spadaccini, K.A. Rose, J.G. Santiago, M. Stadermann, Capacitive desalination with flow-through electrodes, Energy Environ. Sci., 5 (2012) 9511–9519.
  23. Y. Bouhadana, E. Avraham, M. Noked, M. Ben-Tzion, A. Soffer, D. Aurbach, Capacitive deionization of NaCl solutions at nonsteady-state conditions: inversion functionality of the carbon electrodes, J. Phys. Chem. C, 115 (2011) 16567–16573.
  24. S.-i. Jeon, H.-r. Park, J.-g. Yeo, S.C. Yang, C.H. Cho, M.H. Han, D.K. Kim, Desalination via a new membrane capacitive deionization process utilizing flow-electrodes, Energy Environ. Sci., 6 (2013) 1471–1475.
  25. J.W. Blair, G.W. Murphy, Electrochemical Demineralization of Water with Porous Electrodes of Large Surface Area, In: Saline Water Conversion, American Chemical Society, New York, 1960, pp. 206–223.
  26. B.B. Arnold, G.W. Murphy, Studies on the electrochemistry of carbon and chemically-modified carbon surfaces, J. Phys. Chem., 65 (1961) 135–138.
  27. G.W. Murphy, J.L. Cooper, J.A. Hunter, Activated Carbon Used as Electrodes in Electrochemical Demineralization of Saline Water, United States Department of the Interior, Washington, 1969.
  28. G.W. Murphy, D.D. Caudle, Mathematical theory of electrochemical demineralization in flowing systems, Electrochim. Acta, 12 (1967) 1655–1664.
  29. S. Evans, W.S. Hamilton, The mechanism of demineralization at carbon electrodes, J. Electrochem. Soc., 113 (1966) 1314, doi: 10.1149/1.2423813.
  30. S. Evans, M.A. Accomazzo, J.E. Accomazzo, Electrochemically controlled ion exchange, J. Electrochem. Soc., 116 (1969) 307–309.
  31. G.W. Reid, F.M. Townsend, A.M. Stevens, Field Operation of a 20 Gallons Per Day Pilot Plant Unit for Electrochemical Desalination of Brackish Water, University of Michigan Library, 1968
  32. A.I. Beliakov, A.M. Brintsev, 7th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Florida Educational Seminars, Inc., Deerfield Beach (FL), December 1997.
  33. L. Zubieta, R. Bonert, Characterization of Double-Layer Capacitors for Power Electronics Applications, IEEE Transactions on Industry Applications, IEEE, 2000, pp. 199–205.
  34. A. Lasia, Electrochemical Impedance Spectroscopy and Its Applications, Modern Aspects of Electrochemistry, Kluwer Academic/Plenum Publishers, New York, 1999.
  35. S. Buller, E. Karden, D. Kok, R.W. De Doncker, Modeling the dynamic behavior of supercapacitors using impedance spectroscopy, IEEE Trans. Ind. Appl., 38 (2002) 1622–1626.
  36. C. Schiller, Main error sources at AC measurements, Electrochem. Appl., 1 (1997) 10–11.
  37. EN 62391-1:2006, Condensadores eléctricos fijos de doble capa para su uso en equipos electrónicos. Parte 1: Especificación genérica (IEC 62391-1:2006) (Ratificada por AENOR en septiembre de 2006), 2006.
  38. EN 62391-2-1:2006, Condensadores eléctricos fijos de doble capa para su uso en equipos electrónicos. Parte 2-1: Especificación marco particular: Condensadores eléctricos de doble capa para aplicación de potencia. Nivel de evaluación EZ (IEC 62391-2-1:2006), 2006.
  39. EN 62391-2:2006, Condensadores eléctricos fijos de doble capa para su uso en equipos electrónicos. Parte 2: Especificación intermedia: Condensadores eléctricos de doble capa para aplicación de potencia (IEC 62391-2:2006) (Ratificada por AENOR en septiembre de 2006), 2006.
  40. EN 62576:2010, Condensadores eléctricos fijos de doble capa para vehículos eléctricos híbridos. Métodos de ensayo de las características eléctricas. (Ratificada por AENOR en febrero de 2011), 2010.
  41. H. Gualous, D. Bouquain, A. Berthon, J.M. Kauffmann, Experimental study of supercapacitor serial resistance and capacitance variations with temperature, J. Power Sources, 123 (2003) 86–93.
  42. H. El Brouji, J.-M. Vinassa, O. Briat, N. Bertrand, E. Woirgard, Ultracapacitors Self-Discharge Modelling Using a Physical Description of Porous Electrode Impedance, 2008 IEEE Vehicle Power and Propulsion Conference, IEEE, Harbin, China, 2008.
  43. W.G. Pell, B.E. Conway, Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and DC charge, J. Power Sources, 96 (2001) 57–67.
  44. F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, J. Bisquert, Cyclic voltammetry studies of nanoporous semiconductors. capacitive and reactive properties of nanocrystalline TiO2 electrodes in aqueous electrolyte, J. Phys. Chem. B, 107 (2003) 758–768.
  45. A. Burke, J. Miller, Testing of electrochemical capacitors: capacitance, resistance, energy density and power capability, Electrochim. Acta, 55 (2010) 7538–7548.
  46. R.R. Martín Hernández, Análisis, Modelado e Identificación de los Condensadores Electroquímicos de Doble Capa, Tesis Doctoral, 2014.
  47. Texas Instruments, OPA548 High-Voltage, High-Current Operational Amplifier. Available at http://www.ti.com/lit/ds/symlink/opa548.pdf (May 2018).
  48. Arduino, Arduino Nano. Available at https://store.arduino.cc/usa/arduino-nano (March 2018).
  49. BQ, Arduino Nano Pinout. Available at https://www.bq.com/es/ (April 2018).
  50. Spark Fun Electronics, MCP4725. Available at https://www.sparkfun.com/datasheets/BreakoutBoards/MCP4725.pdf (April 2018).
  51. Adafruit, MCP4725 Breakout Board – 12-Bit DAC w/I2C Interface. Available at https://www.adafruit.com/product/935 (June 2018).
  52. Texas Instruments, ADS111x Ultra-Small, Low-Power, I2CCompatible, 860-SPS, 16-Bit ADCs With Internal Reference, Oscillator, and Programmable Comparator, Available at http://www.ti.com/lit/ds/symlink/ads1115.pdf (May 2018).
  53. Adafruit, ADS1115 16-Bit ADC - 4 Channel with Programmable Gain Amplifier. Available at https://www.adafruit.com/product/1085 (June 2018).
  54. Texas Instruments, High Accuracy Instrumentation Amplifier. Available at http://www.ti.com/lit/ds/sbos133/sbos133.pdf (March 2018).
  55. Analog Devices, ADM3260. Available at http://www.analog. com/en/products/interface-isolation/isolation/isopower/ adm3260.html#product-overview (June 2018).
  56. Texas Instruments, OPA549 High-Voltage, High-Current Operational Amplifier. Available at http://www.ti.com/lit/ds/symlink/opa548.pdf (June 2018).
  57. R. Zhao, P.M. Biesheuvel, A. van der Wal, Energy consumption and constant current operation in membrane capacitive deionization, Energy Environ. Sci., 5 (2012) 9520–9527.