References
- M. Kurihara, Seawater reverse osmosis desalination,
Membranes, 11 (2021) 243, doi: 10.3390/membranes11040243.
- A. Ruiz-García, N. Melián-Martel, I. Nuez, Short review on
predicting fouling in RO desalination, Membranes, 7 (2017) 62,
doi: 10.3390/membranes7040062.
- F. Leon, A. Ramos, J. Vaswani, C. Mendieta, S. Brito, Climate
change mitigation strategy through membranes replacement
and determination methodology of carbon footprint in reverse
osmosis RO desalination plants for islands and isolated
territories, Water, 13 (2021) 293, doi: 10.3390/w13030293.
- P. Simon, Ed., Tapped Out: The Coming World Crisis in Water
and What We Can Do About It, Rain Publishers, New York,
1988.
- M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization
as an electrochemical means of saving energy and delivering
clean water. Comparison to present desalination practices:
will it compete?, Electrochim. Acta, 55 (2010) 3845–3856.
- J.W. Blair, G.W. Murphy, Saline water conversion, 27 (1960)
206–223.
- A.M. Johnson, A.W. Venolia, R.G. Wilbourne, J. Newman,
C.M. Wong, W. Sherman Gillam, S. Johnson, R.H. Horowitz,
The Electrosorb Process for Desalting Water, Research
and Development Progress Report No. 516, United States
Department of the Interior, Washington, 1970.
- A.M. Johnson, J. Newman, Desalting by means of porous
carbon electrodes, J. Electrochem. Soc., 118 (1971) 510,
doi: 10.1149/1.2408094.
- Y. Oren, A. Soffer, Electrochemical parametric pumping,
J. Electrochem. Soc., 125 (1978) 869, doi: 10.1149/1.2131570.
- D.D. Caudle, J.H. Tucker, J.L. Cooper, B.B. Arnold,
A. Papastamataki, Electrochemical Demineralization of Water
with Carbon Electrodes, United States Department of the
Interior, Washington, 1966.
- H.M.N. AlMadani, Water desalination by solar powered
electrodialysis process, Renewable Energy, 28 (2003) 1915–1924.
- M. del Pilar Mier López, R.I. Mendizábal, I.O. Uribe,
M.J.R. Martínez, Electrodiálisis con membranas bipolares:
fundamentos y aplicaciones, Ing. Chim., 418 (2004) 166–182.
- S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel,
Review on the science and technology of water desalination by
capacitive deionization, Prog. Mater Sci., 58 (2013) 1388–1442.
- J.-B. Lee, K.-K. Park, H.-M. Eum, C.-W. Lee, Desalination of
a thermal power plant wastewater by membrane capacitive
deionization, Desalination, 196 (2006) 125–134.
- H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, Z. Sun, Electrosorptive
desalination by carbon nanotubes and nanofibres electrodes
and ion-exchange membranes, Water Res., 42 (2008) 4923–4928.
- P.M. Biesheuvel, A. van der Wal, Membrane capacitive
deionization, J. Membr. Sci., 346 (2010) 256–262.
- Y.-J. Kim, J.-H. Choi, Improvement of desalination efficiency
in capacitive deionization using a carbon electrode coated
with an ion-exchange polymer, Water Res., 44 (2010) 990–996.
- P.M. Biesheuvel, R. Zhao, S. Porada, A. van der Wal, Theory
of membrane capacitive deionization including the effect of
the electrode pore space, J. Colloid Interface Sci., 360 (2011)
239–248.
- Y. Bouhadana, M. Ben-Tzion, A. Soffer, D. Aurbach,
A control system for operating and investigating reactors: the
demonstration of parasitic reactions in the water desalination
by capacitive de-ionization, Desalination, 268 (2011) 253–261.
- O.N. Demirer, R.M. Naylor, C.A. Rios Perez, E. Wilkes,
C. Hidrovo, Energetic performance optimization of a
capacitive deionization system operating with transient cycles
and brackish water, Desalination, 314 (2013) 130–138.
- P. Długołęcki, A. van der Wal, Energy recovery in membrane
capacitive deionization, Environ. Sci. Technol., 47 (2013)
4904–4910.
- M.E. Suss, T.F. Baumann, W.L. Bourcier, C.M. Spadaccini,
K.A. Rose, J.G. Santiago, M. Stadermann, Capacitive
desalination with flow-through electrodes, Energy Environ.
Sci., 5 (2012) 9511–9519.
- Y. Bouhadana, E. Avraham, M. Noked, M. Ben-Tzion, A. Soffer,
D. Aurbach, Capacitive deionization of NaCl solutions at nonsteady-state conditions: inversion functionality of the carbon
electrodes, J. Phys. Chem. C, 115 (2011) 16567–16573.
- S.-i. Jeon, H.-r. Park, J.-g. Yeo, S.C. Yang, C.H. Cho,
M.H. Han, D.K. Kim, Desalination via a new membrane
capacitive deionization process utilizing flow-electrodes,
Energy Environ. Sci., 6 (2013) 1471–1475.
- J.W. Blair, G.W. Murphy, Electrochemical Demineralization
of Water with Porous Electrodes of Large Surface Area,
In: Saline Water Conversion, American Chemical Society,
New York, 1960, pp. 206–223.
- B.B. Arnold, G.W. Murphy, Studies on the electrochemistry
of carbon and chemically-modified carbon surfaces, J. Phys.
Chem., 65 (1961) 135–138.
- G.W. Murphy, J.L. Cooper, J.A. Hunter, Activated Carbon Used
as Electrodes in Electrochemical Demineralization of Saline
Water, United States Department of the Interior, Washington,
1969.
- G.W. Murphy, D.D. Caudle, Mathematical theory of
electrochemical demineralization in flowing systems,
Electrochim. Acta, 12 (1967) 1655–1664.
- S. Evans, W.S. Hamilton, The mechanism of demineralization
at carbon electrodes, J. Electrochem. Soc., 113 (1966) 1314,
doi: 10.1149/1.2423813.
- S. Evans, M.A. Accomazzo, J.E. Accomazzo, Electrochemically
controlled ion exchange, J. Electrochem. Soc., 116 (1969)
307–309.
- G.W. Reid, F.M. Townsend, A.M. Stevens, Field Operation
of a 20 Gallons Per Day Pilot Plant Unit for Electrochemical
Desalination of Brackish Water, University of Michigan Library,
1968
- A.I. Beliakov, A.M. Brintsev, 7th International Seminar on
Double Layer Capacitors and Similar Energy Storage Devices,
Florida Educational Seminars, Inc., Deerfield Beach (FL),
December 1997.
- L. Zubieta, R. Bonert, Characterization of Double-Layer
Capacitors for Power Electronics Applications, IEEE
Transactions on Industry Applications, IEEE, 2000, pp. 199–205.
- A. Lasia, Electrochemical Impedance Spectroscopy and Its
Applications, Modern Aspects of Electrochemistry, Kluwer
Academic/Plenum Publishers, New York, 1999.
- S. Buller, E. Karden, D. Kok, R.W. De Doncker, Modeling
the dynamic behavior of supercapacitors using impedance
spectroscopy, IEEE Trans. Ind. Appl., 38 (2002) 1622–1626.
- C. Schiller, Main error sources at AC measurements,
Electrochem. Appl., 1 (1997) 10–11.
- EN 62391-1:2006, Condensadores eléctricos fijos de doble capa
para su uso en equipos electrónicos. Parte 1: Especificación
genérica (IEC 62391-1:2006) (Ratificada por AENOR en
septiembre de 2006), 2006.
- EN 62391-2-1:2006, Condensadores eléctricos fijos de
doble capa para su uso en equipos electrónicos. Parte 2-1:
Especificación marco particular: Condensadores eléctricos de
doble capa para aplicación de potencia. Nivel de evaluación
EZ (IEC 62391-2-1:2006), 2006.
- EN 62391-2:2006, Condensadores eléctricos fijos de doble capa
para su uso en equipos electrónicos. Parte 2: Especificación
intermedia: Condensadores eléctricos de doble capa para
aplicación de potencia (IEC 62391-2:2006) (Ratificada por
AENOR en septiembre de 2006), 2006.
- EN 62576:2010, Condensadores eléctricos fijos de doble capa
para vehículos eléctricos híbridos. Métodos de ensayo de las
características eléctricas. (Ratificada por AENOR en febrero
de 2011), 2010.
- H. Gualous, D. Bouquain, A. Berthon, J.M. Kauffmann,
Experimental study of supercapacitor serial resistance and
capacitance variations with temperature, J. Power Sources,
123 (2003) 86–93.
- H. El Brouji, J.-M. Vinassa, O. Briat, N. Bertrand, E. Woirgard,
Ultracapacitors Self-Discharge Modelling Using a Physical
Description of Porous Electrode Impedance, 2008 IEEE Vehicle
Power and Propulsion Conference, IEEE, Harbin, China, 2008.
- W.G. Pell, B.E. Conway, Analysis of power limitations at
porous supercapacitor electrodes under cyclic voltammetry
modulation and DC charge, J. Power Sources, 96 (2001) 57–67.
- F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte,
J. Bisquert, Cyclic voltammetry studies of nanoporous
semiconductors. capacitive and reactive properties of nanocrystalline
TiO2 electrodes in aqueous electrolyte, J. Phys.
Chem. B, 107 (2003) 758–768.
- A. Burke, J. Miller, Testing of electrochemical capacitors:
capacitance, resistance, energy density and power capability,
Electrochim. Acta, 55 (2010) 7538–7548.
- R.R. Martín Hernández, Análisis, Modelado e Identificación
de los Condensadores Electroquímicos de Doble Capa,
Tesis Doctoral, 2014.
- Texas Instruments, OPA548 High-Voltage, High-Current
Operational Amplifier. Available at http://www.ti.com/lit/ds/symlink/opa548.pdf (May 2018).
- Arduino, Arduino Nano. Available at https://store.arduino.cc/usa/arduino-nano (March 2018).
- BQ, Arduino Nano Pinout. Available at https://www.bq.com/es/ (April 2018).
- Spark Fun Electronics, MCP4725. Available at https://www.sparkfun.com/datasheets/BreakoutBoards/MCP4725.pdf (April
2018).
- Adafruit, MCP4725 Breakout Board – 12-Bit DAC w/I2C
Interface. Available at https://www.adafruit.com/product/935
(June 2018).
- Texas Instruments, ADS111x Ultra-Small, Low-Power, I2CCompatible,
860-SPS, 16-Bit ADCs With Internal Reference,
Oscillator, and Programmable Comparator, Available at http://www.ti.com/lit/ds/symlink/ads1115.pdf (May 2018).
- Adafruit, ADS1115 16-Bit ADC - 4 Channel with Programmable
Gain Amplifier. Available at https://www.adafruit.com/product/1085 (June 2018).
- Texas Instruments, High Accuracy Instrumentation Amplifier.
Available at http://www.ti.com/lit/ds/sbos133/sbos133.pdf
(March 2018).
- Analog Devices, ADM3260. Available at http://www.analog.
com/en/products/interface-isolation/isolation/isopower/
adm3260.html#product-overview (June 2018).
- Texas Instruments, OPA549 High-Voltage, High-Current
Operational Amplifier. Available at http://www.ti.com/lit/ds/symlink/opa548.pdf (June 2018).
- R. Zhao, P.M. Biesheuvel, A. van der Wal, Energy consumption
and constant current operation in membrane capacitive
deionization, Energy Environ. Sci., 5 (2012) 9520–9527.