References
   -  M. Kurihara, Seawater reverse osmosis desalination,
    Membranes, 11 (2021) 243, doi: 10.3390/membranes11040243. 
 
  -  A. Ruiz-García, N. Melián-Martel, I. Nuez, Short review on
    predicting fouling in RO desalination, Membranes, 7 (2017) 62,
    doi: 10.3390/membranes7040062. 
 
  -  F. Leon, A. Ramos, J. Vaswani, C. Mendieta, S. Brito, Climate
    change mitigation strategy through membranes replacement
    and determination methodology of carbon footprint in reverse
    osmosis RO desalination plants for islands and isolated
    territories, Water, 13 (2021) 293, doi: 10.3390/w13030293. 
 
  -  P. Simon, Ed., Tapped Out: The Coming World Crisis in Water
    and What We Can Do About It, Rain Publishers, New York,
    1988. 
 
  -  M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization
    as an electrochemical means of saving energy and delivering
    clean water. Comparison to present desalination practices:
    will it compete?, Electrochim. Acta, 55 (2010) 3845–3856. 
 
  -  J.W. Blair, G.W. Murphy, Saline water conversion, 27 (1960)
    206–223. 
 
  -  A.M. Johnson, A.W. Venolia, R.G. Wilbourne, J. Newman,
    C.M. Wong, W. Sherman Gillam, S. Johnson, R.H. Horowitz,
    The Electrosorb Process for Desalting Water, Research
    and Development Progress Report No. 516, United States
    Department of the Interior, Washington, 1970. 
 
  -  A.M. Johnson, J. Newman, Desalting by means of porous
    carbon electrodes, J. Electrochem. Soc., 118 (1971) 510,
    doi: 10.1149/1.2408094. 
 
  -  Y. Oren, A. Soffer, Electrochemical parametric pumping,
    J. Electrochem. Soc., 125 (1978) 869, doi: 10.1149/1.2131570. 
 
  -  D.D. Caudle, J.H. Tucker, J.L. Cooper, B.B. Arnold,
    A. Papastamataki, Electrochemical Demineralization of Water
    with Carbon Electrodes, United States Department of the
    Interior, Washington, 1966. 
 
  -  H.M.N. AlMadani, Water desalination by solar powered
    electrodialysis process, Renewable Energy, 28 (2003) 1915–1924. 
 
  -  M. del Pilar Mier López, R.I. Mendizábal, I.O. Uribe,
    M.J.R. Martínez, Electrodiálisis con membranas bipolares:
    fundamentos y aplicaciones, Ing. Chim., 418 (2004) 166–182. 
 
  -  S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel,
    Review on the science and technology of water desalination by
    capacitive deionization, Prog. Mater Sci., 58 (2013) 1388–1442. 
 
  -  J.-B. Lee, K.-K. Park, H.-M. Eum, C.-W. Lee, Desalination of
    a thermal power plant wastewater by membrane capacitive
    deionization, Desalination, 196 (2006) 125–134. 
 
  -  H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, Z. Sun, Electrosorptive
    desalination by carbon nanotubes and nanofibres electrodes
    and ion-exchange membranes, Water Res., 42 (2008) 4923–4928. 
 
  -  P.M. Biesheuvel, A. van der Wal, Membrane capacitive
    deionization, J. Membr. Sci., 346 (2010) 256–262. 
 
  -  Y.-J. Kim, J.-H. Choi, Improvement of desalination efficiency
    in capacitive deionization using a carbon electrode coated
    with an ion-exchange polymer, Water Res., 44 (2010) 990–996. 
 
  -  P.M. Biesheuvel, R. Zhao, S. Porada, A. van der Wal, Theory
    of membrane capacitive deionization including the effect of
    the electrode pore space, J. Colloid Interface Sci., 360 (2011)
    239–248. 
 
  -  Y. Bouhadana, M. Ben-Tzion, A. Soffer, D. Aurbach,
    A control system for operating and investigating reactors: the
    demonstration of parasitic reactions in the water desalination
    by capacitive de-ionization, Desalination, 268 (2011) 253–261. 
 
  -  O.N. Demirer, R.M. Naylor, C.A. Rios Perez, E. Wilkes,
    C. Hidrovo, Energetic performance optimization of a
    capacitive deionization system operating with transient cycles
    and brackish water, Desalination, 314 (2013) 130–138. 
 
  -  P. Długołęcki, A. van der Wal, Energy recovery in membrane
    capacitive deionization, Environ. Sci. Technol., 47 (2013)
    4904–4910. 
 
  -  M.E. Suss, T.F. Baumann, W.L. Bourcier, C.M. Spadaccini,
    K.A. Rose, J.G. Santiago, M. Stadermann, Capacitive
    desalination with flow-through electrodes, Energy Environ.
    Sci., 5 (2012) 9511–9519. 
 
  -  Y. Bouhadana, E. Avraham, M. Noked, M. Ben-Tzion, A. Soffer,
    D. Aurbach, Capacitive deionization of NaCl solutions at nonsteady-state conditions: inversion functionality of the carbon
    electrodes, J. Phys. Chem. C, 115 (2011) 16567–16573. 
 
  -  S.-i. Jeon, H.-r. Park, J.-g. Yeo, S.C. Yang, C.H. Cho,
    M.H. Han, D.K. Kim, Desalination via a new membrane
    capacitive deionization process utilizing flow-electrodes,
    Energy Environ. Sci., 6 (2013) 1471–1475. 
 
  -  J.W. Blair, G.W. Murphy, Electrochemical Demineralization
    of Water with Porous Electrodes of Large Surface Area,
    In: Saline Water Conversion, American Chemical Society,
    New York, 1960, pp. 206–223. 
 
  -  B.B. Arnold, G.W. Murphy, Studies on the electrochemistry
    of carbon and chemically-modified carbon surfaces, J. Phys.
    Chem., 65 (1961) 135–138. 
 
  -  G.W. Murphy, J.L. Cooper, J.A. Hunter, Activated Carbon Used
    as Electrodes in Electrochemical Demineralization of Saline
    Water, United States Department of the Interior, Washington,
    1969. 
 
  -  G.W. Murphy, D.D. Caudle, Mathematical theory of
    electrochemical demineralization in flowing systems,
    Electrochim. Acta, 12 (1967) 1655–1664. 
 
  -  S. Evans, W.S. Hamilton, The mechanism of demineralization
    at carbon electrodes, J. Electrochem. Soc., 113 (1966) 1314,
    doi: 10.1149/1.2423813. 
 
  -  S. Evans, M.A. Accomazzo, J.E. Accomazzo, Electrochemically
    controlled ion exchange, J. Electrochem. Soc., 116 (1969)
    307–309. 
 
  -  G.W. Reid, F.M. Townsend, A.M. Stevens, Field Operation
    of a 20 Gallons Per Day Pilot Plant Unit for Electrochemical
    Desalination of Brackish Water, University of Michigan Library,
    1968 
 
  -  A.I. Beliakov, A.M. Brintsev, 7th International Seminar on
    Double Layer Capacitors and Similar Energy Storage Devices,
    Florida Educational Seminars, Inc., Deerfield Beach (FL),
    December 1997. 
 
  -  L. Zubieta, R. Bonert, Characterization of Double-Layer
    Capacitors for Power Electronics Applications, IEEE
    Transactions on Industry Applications, IEEE, 2000, pp. 199–205. 
 
  -  A. Lasia, Electrochemical Impedance Spectroscopy and Its
    Applications, Modern Aspects of Electrochemistry, Kluwer
    Academic/Plenum Publishers, New York, 1999. 
 
  -  S. Buller, E. Karden, D. Kok, R.W. De Doncker, Modeling
    the dynamic behavior of supercapacitors using impedance
    spectroscopy, IEEE Trans. Ind. Appl., 38 (2002) 1622–1626. 
 
  -  C. Schiller, Main error sources at AC measurements,
    Electrochem. Appl., 1 (1997) 10–11. 
 
  -  EN 62391-1:2006, Condensadores eléctricos fijos de doble capa
    para su uso en equipos electrónicos. Parte 1: Especificación
    genérica (IEC 62391-1:2006) (Ratificada por AENOR en
    septiembre de 2006), 2006. 
 
  -  EN 62391-2-1:2006, Condensadores eléctricos fijos de
    doble capa para su uso en equipos electrónicos. Parte 2-1:
    Especificación marco particular: Condensadores eléctricos de
    doble capa para aplicación de potencia. Nivel de evaluación
    EZ (IEC 62391-2-1:2006), 2006. 
 
  -  EN 62391-2:2006, Condensadores eléctricos fijos de doble capa
    para su uso en equipos electrónicos. Parte 2: Especificación
    intermedia: Condensadores eléctricos de doble capa para
    aplicación de potencia (IEC 62391-2:2006) (Ratificada por
    AENOR en septiembre de 2006), 2006. 
 
  -  EN 62576:2010, Condensadores eléctricos fijos de doble capa
    para vehículos eléctricos híbridos. Métodos de ensayo de las
    características eléctricas. (Ratificada por AENOR en febrero
    de 2011), 2010. 
 
  -  H. Gualous, D. Bouquain, A. Berthon, J.M. Kauffmann,
    Experimental study of supercapacitor serial resistance and
    capacitance variations with temperature, J. Power Sources,
    123 (2003) 86–93. 
 
  -  H. El Brouji, J.-M. Vinassa, O. Briat, N. Bertrand, E. Woirgard,
    Ultracapacitors Self-Discharge Modelling Using a Physical
    Description of Porous Electrode Impedance, 2008 IEEE Vehicle
    Power and Propulsion Conference, IEEE, Harbin, China, 2008. 
 
  -  W.G. Pell, B.E. Conway, Analysis of power limitations at
    porous supercapacitor electrodes under cyclic voltammetry
    modulation and DC charge, J. Power Sources, 96 (2001) 57–67. 
 
  -  F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte,
    J. Bisquert, Cyclic voltammetry studies of nanoporous
    semiconductors. capacitive and reactive properties of nanocrystalline
    TiO2 electrodes in aqueous electrolyte, J. Phys.
    Chem. B, 107 (2003) 758–768. 
 
  -  A. Burke, J. Miller, Testing of electrochemical capacitors:
    capacitance, resistance, energy density and power capability,
    Electrochim. Acta, 55 (2010) 7538–7548. 
 
  -  R.R. Martín Hernández, Análisis, Modelado e Identificación
    de los Condensadores Electroquímicos de Doble Capa,
    Tesis Doctoral, 2014. 
 
  -  Texas Instruments, OPA548 High-Voltage, High-Current
    Operational Amplifier. Available at http://www.ti.com/lit/ds/symlink/opa548.pdf (May 2018). 
 
  -  Arduino, Arduino Nano. Available at https://store.arduino.cc/usa/arduino-nano (March 2018). 
 
  -  BQ, Arduino Nano Pinout. Available at https://www.bq.com/es/ (April 2018). 
 
  -  Spark Fun Electronics, MCP4725. Available at https://www.sparkfun.com/datasheets/BreakoutBoards/MCP4725.pdf (April
    2018). 
 
  -  Adafruit, MCP4725 Breakout Board – 12-Bit DAC w/I2C
    Interface. Available at https://www.adafruit.com/product/935
    (June 2018). 
 
  -  Texas Instruments, ADS111x Ultra-Small, Low-Power, I2CCompatible,
    860-SPS, 16-Bit ADCs With Internal Reference,
    Oscillator, and Programmable Comparator, Available at http://www.ti.com/lit/ds/symlink/ads1115.pdf (May 2018). 
 
  -  Adafruit, ADS1115 16-Bit ADC - 4 Channel with Programmable
    Gain Amplifier. Available at https://www.adafruit.com/product/1085 (June 2018). 
 
  -  Texas Instruments, High Accuracy Instrumentation Amplifier.
    Available at http://www.ti.com/lit/ds/sbos133/sbos133.pdf
    (March 2018). 
 
  -  Analog Devices, ADM3260. Available at http://www.analog.
    com/en/products/interface-isolation/isolation/isopower/
    adm3260.html#product-overview (June 2018). 
 
  -  Texas Instruments, OPA549 High-Voltage, High-Current
    Operational Amplifier. Available at http://www.ti.com/lit/ds/symlink/opa548.pdf (June 2018). 
 
  -  R. Zhao, P.M. Biesheuvel, A. van der Wal, Energy consumption
    and constant current operation in membrane capacitive
	  deionization, Energy Environ. Sci., 5 (2012) 9520–9527.