References

  1. R. Shen, Y. Liu, H. Wen, T. Liu, Z. Peng, X. Wu, X. Ge, S. Mehdi, H. Cao, E. Liang, J. Jiang, B. Li, Engineering VO-Ti ensemble to boost the activity of Ru towards water dissociation for catalytic hydrogen generation, Appl. Catal., B, 306 (2022) 121100, doi: 10.1016/j.apcatb.2022.121100.
  2. K. Qi, C. Zhuang, M. Zhang, P. Gholami, A. Khataee, Sonochemical synthesis of photocatalysts and their applications, J. Mater. Sci. Technol., 123 (2022) 243–256.
  3. X.-J. Fang, L.-P. Ren, F. Li, Z.-X. Jiang, Z.-G. Wang, Modulating electronic structure of CoSe2 by Ni doping for efficient electrocatalyst for hydrogen evolution reaction, Rare Met., 41 (2022) 901–910.
  4. C. Li, J. Zhou, W. Gao, J. Zhao, J. Liu, Y. Zhao, M. Wei, D.G. Evans, X. Duan, Binary Cu–Co catalysts derived from hydrotalcites with excellent activity and recyclability towards NH3BH3 dehydrogenation, J. Mater. Chem. A, 1 (2013) 5370–5376.
  5. A. Kantürk Figen, M.B. Pişkin, B. Coşkuner, V. İmamoğlu, Synthesis, structural characterization, and hydrolysis of ammonia borane (NH3BH3) as a hydrogen storage carrier, Int. J. Hydrogen Energy, 38 (2013) 16215–16228.
  6. W. Cheng, S. Lee, How green are the national hydrogen strategies?, Sustainability, 14 (2022) 1930, doi: 10.3390/su14031930.
  7. A.B. Burg, H.I. Schlesinger, Hydrides of boron. VII. Evidence of the transitory existence of borine (BH3): borine carbonyl and borine trimethylammine, J. Am. Chem. Soc., 59 (1937) 780–787.
  8. F. Li, J. Li, L. Chen, Y. Dong, P. Xie, Q. Li, Preparation of CoB nanoparticles decorated PANI nanotubes as catalysts for hydrogen generation from NaBH4 hydrolysis, J. Taiwan Inst. Chem. Eng., 122 (2021) 148–156.
  9. C. Wang, Q. Wang, F. Fu, D. Astruc, Hydrogen generation upon nanocatalyzed hydrolysis of hydrogen-rich boron derivatives: recent developments, Acc. Chem. Res., 53 (2020) 2483–2493.
  10. M.L. Meena, K. Kumar, P. Saini, M. Sethi, S. Saini, A. Mohapatra, S. Som, R.-Y. Lin, C.-W. Chu, C.-H. Lu, S.D. Lin, V. Parewa, Competent production of hydrogen and hydrogenation of carboxylic acids using urea-rich waste water over visible-lightresponsive rare earth doped photocatalyst, J. Taiwan Inst. Chem. Eng., 144 (2023) 104734, doi: 10.1016/j.jtice.2023.104734.
  11. Z. Li, W. Wang, Q. Qian, Y. Zhu, Y. Feng, Y. Zhang, H. Zhang, M. Cheng, G. Zhang, Magic hybrid structure as multifunctional electrocatalyst surpassing benchmark Pt/C enables practical hydrazine fuel cell integrated with energy-saving H2 production, eScience, 2 (2022) 416–427.
  12. Y.M. Shi, B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction, Chem. Soc. Rev., 45 (2016) 1529–1541.
  13. C. Wang, X. Yu, X. Zhang, Z. Lu, X. Wang, X. Han, J. Zhao, L. Li, X. Yang, Enhanced hydrogen production from ammonia borane over CuNi alloy nanoparticles supported on TiO2(B)/anatase mixed-phase nanofibers with high specific surface area, J. Alloys Compd., 815 (2020) 152431, doi: 10.1016/j.jallcom.2019.152431.
  14. S.G. Shore, R.W. Parry, The crystalline compound ammoniaborane, NH3BH3, J. Am. Chem. Soc., 77 (1955) 6084–6085.
  15. Y. Yuan, L. Sun, G. Wu, Y. Yuan, W. Zhan, X. Wang, X. Han, Engineering nickel/palladium heterojunctions for dehydrogenation of ammonia borane: improving the catalytic performance with 3D mesoporous structures and external nitrogen-doped carbon layers, Inorg. Chem., 59 (2020) 2104–2110.
  16. L. Cui, Y.H. Xu, L. Niu, W.R. Yang, J.Q. Liu, Monolithically integrated CoP nanowire array: an on/off switch for effective on-demand hydrogen generation via hydrolysis of NaBH4 and NH3BH3, Nano Res., 10 (2017) 595–604.
  17. T. Umegaki, J.M. Yan, X.B. Zhang, H. Shioyama, N. Kuriyama, Q.A. Xu, Co-SiO2 nanosphere-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage, J. Power Sources, 195 (2010) 8209–8214.
  18. D. Lim, G. Özkan, G. Özkan, Ni-B and Zr–Ni–B in-situ catalytic performance for hydrogen generation from sodium borohydride, ammonia borane and their mixtures, Int. J. Hydrogen Energy, 47 (2022) 3396–3408.
  19. Q. Xu, M. Chandra, Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia–borane at room temperature, J. Power Sources, 163 (2006) 364–370.
  20. J.-M. Yan, X.-B. Zhang, H. Shioyama, Q. Xu, Room temperature hydrolytic dehydrogenation of ammonia borane catalyzed by Co nanoparticles, J. Power Sources, 195 (2010) 1091–1094.
  21. F.Y. Qiu, Y.J. Wang, Y.P. Wang, L. Li, G. Liu, C. Yan, L.F. Jiao, H.T. Yuan, Dehydrogenation of ammonia borane catalyzed by in-situ synthesized Fe–Co nano-alloy in aqueous solution, Catal. Today, 170 (2011) 64–68.
  22. O. Ozay, E. Inger, N. Aktas, N. Sahiner, Hydrogen production from ammonia borane via hydrogel template synthesized Cu, Ni, Co composites, Int. J. Hydrogen Energy, 36 (2011) 8209–8216.
  23. W. Wei, Z. Wang, J. Xu, L. Zong, K. Zhao, H. Wang, H. Li, R. Yu, Cobalt hollow nanospheres: controlled synthesis, modification and highly catalytic performance for hydrolysis of ammonia borane, Sci. Bull., 62 (2017) 326–331.
  24. Q. Yao, Z.-H. Lu, Z. Zhang, X. Chen, Y. Lan, One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane, Sci. Rep., 4 (2014) 7597, doi: 10.1038/srep07597.
  25. N. Sahiner, D. Alpaslan, Metal-ion-containing ionic liquid hydrogels and their application to hydrogen production, J. Appl. Polym. Sci., 131 (2014) 40183, doi: 10.1002/app.40183.
  26. S.B. Kalidindi, M. Indirani, B.R. Jagirdar, First row transition metal ion-assisted ammonia-borane hydrolysis for hydrogen generation, Inorg. Chem., 47 (2008) 7424–7429.
  27. H. Wang, L. Zhou, M. Han, Z. Tao, F. Cheng, J. Chen, CuCo nanoparticles supported on hierarchically porous carbon as catalysts for hydrolysis of ammonia borane, J. Alloys Compd., 651 (2015) 382–388.
  28. A. Kantürk Figen, Dehydrogenation characteristics of ammonia borane via boron-based catalysts (Co-B, Ni-B, Cu-B) under different hydrolysis conditions, Int. J. Hydrogen Energy, 38 (2013) 9186–9197.
  29. R. Fernandes, N. Patel, A. Miotello, L. Calliari, Co–Mo–B–P alloy with enhanced catalytic properties for H2 production by hydrolysis of ammonia borane, Top. Catal., 55 (2012) 1032–1039.
  30. N. Patel, R. Fernandes, G. Guella, A. Miotello, Nanoparticleassembled Co-B thin film for the hydrolysis of ammonia borane: a highly active catalyst for hydrogen production, Appl. Catal., B, 95 (2010) 137–143.
  31. Z.-H. Lu, J. Li, A. Zhu, Q. Yao, W. Huang, R. Zhou, R. Zhou, X. Chen, Catalytic hydrolysis of ammonia borane via magnetically recyclable copper iron nanoparticles for chemical hydrogen storage, Int. J. Hydrogen Energy, 38 (2013) 5330–5337.
  32. F. Qiu, Y. Dai, L. Li, C. Xu, Y. Huang, C. Chen, Y. Wang, L. Jiao, H. Yuan, Synthesis of Cu@FeCo core–shell nanoparticles for the catalytic hydrolysis of ammonia borane, Int. J. Hydrogen Energy, 39 (2014) 436–441.
  33. C. Wang, H. Wang, Z. Wang, X. Li, Y. Chi, M. Wang, D. Gao, Z. Zhao, Mo remarkably enhances catalytic activity of Cu@ MoCo core-shell nanoparticles for hydrolytic dehydrogenation of ammonia borane, Int. J. Hydrogen Energy, 43 (2018) 7347–7355.
  34. J.-M. Yan, X.-B. Zhang, S. Han, H. Shioyama, Q. Xu, Magnetically recyclable Fe–Ni alloy catalyzed dehydrogenation of ammonia borane in aqueous solution under ambient atmosphere, J. Power Sources, 194 (2009) 478–481.
  35. J. Du, F. Cheng, M. Si, J. Liang, Z. Tao, J. Chen, Nanoporous Ni-based catalysts for hydrogen generation from hydrolysis of ammonia borane, Int. J. Hydrogen Energy, 38 (2013) 5768–5774.
  36. X. Feng, Y. Zhao, D. Liu, Y. Mo, Y. Liu, X. Chen, W. Yan, X. Jin, B. Chen, X. Duan, D. Chen, C. Yang, Towards high activity of hydrogen production from ammonia borane over efficient non-noble Ni5P4 catalyst, Int. J. Hydrogen Energy, 43 (2018) 17112–17120.
  37. C. Wan, Y. Liang, L. Zhou, J. Huang, J. Wang, F. Chen, X. Zhan, D.-g. Cheng, Integration of morphology and electronic structure modulation on cobalt phosphide nanosheets to boost photocatalytic hydrogen evolution from ammonia borane hydrolysis, Green Energy Environ., (2022), doi: 10.1016/j.gee.2022.06.007 (in press).
  38. C.Y. Peng, L. Kang, S. Cao, Y. Chen, Z.S. Lin, W.F. Fu, Nanostructured Ni2P as a robust catalyst for the hydrolytic dehydrogenation of ammonia–borane, Angew. Chem. Int. Ed., 54 (2015) 15725–15729.
  39. D. Sun, Y. Hao, C. Wang, X. Zhang, X. Yu, X. Yang, L. Li, Z. Lu, W. Shang, TiO2–CdS supported CuNi nanoparticles as a highly efficient catalyst for hydrolysis of ammonia borane under visible-light irradiation, Int. J. Hydrogen Energy, 45 (2020) 4390–4402.
  40. H. Cao, W. Wang, T. Cui, H. Wang, G. Zhu, X. Ren, Enhancing CO2 hydrogenation to methane by Ni-based catalyst with V species using 3D-mesoporous KIT-6 as support, Energies, 13 (2020) 2235, doi: 10.3390/en13092235.
  41. W. Li, X. Nie, X. Jiang, A. Zhang, F. Ding, M. Liu, Z. Liu, X. Guo, C. Song, ZrO2 support imparts superior activity and stability of Co catalysts for CO2 methanation, Appl. Catal., B, 220 (2018) 397–408.
  42. Y. Lv, C. Han, Y. Zhu, T. Zhang, S. Yao, Z. He, L. Dai, L. Wang, Recent advances in metals and metal oxides as catalysts for vanadium redox flow battery: properties, structures, and perspectives, J. Mater. Sci. Technol., 75 (2021) 96–109.
  43. H. Wu, M. Wu, B. Wang, X. Yong, Y. Liu, B. Li, B. Liu, S. Lu, Interface electron collaborative migration
    of Co–Co3O4/carbon dots: boosting the hydrolytic dehydrogenation of ammonia borane, J. Energy Chem., 48 (2020) 43–53.
  44. J. Zhu, L. Ma, J. Feng, T. Geng, W. Wei, J. Xie, Facile synthesis of Cu nanoparticles on different morphology ZrO2 supports for catalytic hydrogen generation from ammonia borane, J. Mater. Sci.: Mater. Electron., 29 (2018) 14971–14980.
  45. D.R. Abd El-Hafiz, G. Eshaq, A.E. ElMetwally, Recent enhancement of ammonia borane hydrolysis using spinel-type metal ferrites nano-catalysts, Mater. Chem. Phys., 217 (2018) 562–569.
  46. Q. Zhou, C. Xu, Nanoporous PtCo/Co3O4 composites with high catalytic activities toward hydrolytic dehydrogenation of ammonia borane, J. Colloid Interface Sci., 508 (2017) 542–550.
  47. S. Akbayrak, Y. Tonbul, S. Özkar, Ceria supported rhodium nanoparticles: superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane, Appl. Catal., B, 198 (2016) 162–170.
  48. A. Yousef, N.A.M. Barakat, M.H. El-Newehy, M.M. Ahmed, H.Y. Kim, Catalytic hydrolysis of ammonia borane for hydrogen generation using Cu(0) nanoparticles supported on TiO2 nanofibers, Colloids Surf., A, 470 (2015) 194–201.
  49. S. Akbayrak, O. Taneroğlu, S. Özkar, Nanoceria supported cobalt(0) nanoparticles: a magnetically separable and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane, New J. Chem., 41 (2017) 6546–6552.
  50. Y. Guo, J. Qian, A. Iqbal, L. Zhang, W. Liu, W. Qin, Pd nanoparticles immobilized on magnetic carbon
    dots@Fe3O4 nanocubes as a synergistic catalyst for hydrogen generation, Int. J. Hydrogen Energy, 42 (2017) 15167–15177.
  51. Y. Tonbul, S. Akbayrak, S. Özkar, Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane, J. Colloid Interface Sci., 553 (2019) 581–587.
  52. A. Yousef, N.A.M. Barakat, K.A. Khalil, A.R. Unnithan, G. Panthi, B. Pant, H.Y. Kim, Photocatalytic release of hydrogen from ammonia borane-complex using Ni(0)-doped TiO2/C electrospun nanofibers, Colloids Surf., A, 410 (2012) 59–65.
  53. Y. Feng, H. Wang, X. Chen, F. Lv, Y. Li, Y. Zhu, C. Xu, X. Zhang, H.-R. Liu, H. Li, Simple synthesis of Cu2O–CoO nanoplates with enhanced catalytic activity for hydrogen production from ammonia borane hydrolysis, Int. J. Hydrogen Energy, 45 (2020) 17164–17173.
  54. B. Zhao, J. Liu, L. Zhou, D. Long, K. Feng, X. Sun, J. Zhong, Probing the electronic structure of M-graphene oxide (M = Ni, Co, NiCo) catalysts for hydrolytic dehydrogenation of ammonia borane, Appl. Surf. Sci., 362 (2016) 79–85.
  55. J. Wang, D. Ke, Y. Li, H. Zhang, C. Wang, X. Zhao, Y. Yuan, S. Han, Efficient hydrolysis of alkaline sodium borohydride catalyzed by cobalt nanoparticles supported on three–dimensional graphene oxide, Mater. Res. Bull., 95 (2017) 204–210.
  56. D. Ke, Y. Tao, Y. Li, X. Zhao, L. Zhang, J. Wang, S. Han, Kinetics study on hydrolytic dehydrogenation of alkaline sodium borohydride catalyzed by Mo-modified Co-B nanoparticles, Int. J. Hydrogen Energy, 40 (2015) 7308–7317.
  57. A. Zou, X. Xu, L. Zhou, L. Lin, Z. Kang, Preparation of graphene-supported Co-CeOx nanocomposites as a catalyst for the hydrolytic dehydrogenation of ammonia borane, J. Fuel Chem. Technol., 49 (2021) 1371–1378.
  58. C. Cui, Y. Liu, S. Mehdi, H. Wen, B. Zhou, J. Li, B. Li, Enhancing effect of Fe-doping on the activity of nano Ni catalyst towards hydrogen evolution from NH3BH3, Appl. Catal., B, 265 (2020) 118612, doi: 10.1016/j.apcatb.2020.118612.
  59. X. Zhao, D. Ke, S. Han, Y. Li, H. Zhang, Y. Cai, Reduced graphene oxide sheets supported waxberry-like Co catalysts for improved hydrolytic dehydrogenation of ammonia borane, ChemistrySelect, 4 (2019) 2513–2518.
  60. L. Yang, N. Cao, C. Du, H. Dai, K. Hu, W. Luo, G. Cheng, Graphene supported cobalt(0) nanoparticles for hydrolysis of ammonia borane, Mater. Lett., 115 (2014) 113–116.
  61. Y.-H. Zhou, Z. Zhang, S. Wang, N. Williams, Y. Cheng, S. Luo, J. Gu, rGO supported PdNi-CeO2 nanocomposite as an efficient catalyst for hydrogen evolution from the hydrolysis of NH3BH3, Int. J. Hydrogen Energy, 43 (2018) 18745–18753.
  62. R. Zhang, J. Zheng, T. Chen, G. Ma, W. Zhou, RGO-wrapped Ni-P hollow octahedrons as noble-metal-free catalysts to boost the hydrolysis of ammonia borane toward hydrogen generation, J. Alloys Compd., 763 (2018) 538–545.
  63. W. Feng, L. Yang, N. Cao, C. Du, H. Dai, W. Luo, G. Cheng, In-situ facile synthesis of bimetallic CoNi catalyst supported on graphene for hydrolytic dehydrogenation of amine borane, Int. J. Hydrogen Energy, 39 (2014) 3371–3380.
  64. N.S. Çiftci, Ö. Metin, Monodisperse nickel–palladium alloy nanoparticles supported on reduced graphene oxide as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane, Int. J. Hydrogen Energy, 39 (2014) 18863–18870.
  65. X. Qu, R. Jiang, Q. Li, F. Zeng, X. Zheng, Z. Xu, C. Chen, J. Peng, The hydrolysis of ammonia borane catalyzed by NiCoP/OPC-300 nanocatalysts: high selectivity and efficiency, and mechanism, Green Chem., 21 (2019) 850–860.
  66. Y. Zou, Y. Gao, C. Xiang, H. Chu, S. Qiu, E. Yan, F. Xu, C. Tang, L. Sun, Cobalt-nickel-boron supported over polypyrrolederived activated carbon for hydrolysis of ammonia borane, Metals, 6 (2016) 154, doi: 10.3390/met6070154.
  67. L. Xu, L. Yang, L. Shang, J. Chen, Novel Ni-based catalysts for hydrogen generation from hydrolysis of ammonia borane, IOP Conf. Ser.: Mater. Sci. Eng., 382 (2018) 022097,
    doi: 10.1088/1757-899X/382/2/022097.
  68. Y.-T. Li, X.-L. Zhang, Z.-K. Peng, P. Liu, X.-C. Zheng, Highly efficient hydrolysis of ammonia borane using ultrafine bimetallic RuPd nanoalloys encapsulated in porous g-C3N4, Fuel, 277 (2020) 118243, doi: 10.1016/j.fuel.2020.118243.
  69. R. Lu, M. Hu, C. Xu, Y. Wang, Y. Zhang, B. Xu, D. Gao, J. Bi, G. Fan, Hydrogen evolution from hydrolysis of ammonia borane catalyzed by Rh/g-C3N4 under mild conditions, Int. J. Hydrogen Energy, 43 (2018) 7038–7045.
  70. Y. Fan, X. Li, X. He, C. Zeng, G. Fan, Q. Liu, D. Tang, Effective hydrolysis of ammonia borane catalyzed by ruthenium nanoparticles immobilized on graphic carbon nitride, Int. J. Hydrogen Energy, 39 (2014) 19982–19989.
  71. M. Navlani-García, P. Verma, Y. Kuwahara, T. Kamegawa, K. Mori, H. Yamashita, Visible-light-enhanced catalytic activity of Ru nanoparticles over carbon modified g-C3N4, J. Photochem. Photobiol., A, 358 (2018) 327–333.
  72. H. Kahri, M. Sevim, Ö. Metin, Enhanced catalytic activity of monodispersed AgPd alloy nanoparticles assembled on mesoporous graphitic carbon nitride for the hydrolytic dehydrogenation of ammonia borane under sunlight, Nano Res., 10 (2016) 1627–1640.
  73. Y.-T. Li, S.-H. Zhang, G.-P. Zheng, P. Liu, Z.-K. Peng, X.-C. Zheng, Ultrafine Ru nanoparticles anchored to porous g-C3N4 as efficient catalysts for ammonia borane hydrolysis, Appl. Catal., A, 595 (2020) 117511, doi: 10.1016/j.apcata.2020.117511.
  74. M. Gao, Y. Yu, W. Yang, J. Li, S. Xu, M. Feng, H. Li, Ni nanoparticles supported on graphitic carbon nitride as visible light catalysts for hydrolytic dehydrogenation of ammonia borane, Nanoscale, 11 (2019) 3506–3513.
  75. J. Li, F. Li, J. Liao, Q. Liu, H. Li, Cu0.4Co0.6MoO4 nanorods supported on graphitic carbon nitride as a highly active catalyst for the hydrolytic dehydrogenation of ammonia borane, Catalysts, 9 (2019) 714, doi: 10.3390/catal9090714.
  76. D. Li, H.-Q. Xu, L. Jiao, H.-L. Jiang, Metal-organic frameworks for catalysis: state of the art, challenges, and opportunities, EnergyChem, 1 (2019) 100005, doi: 10.1016/j.enchem.2019.100005.
  77. Y.-H. Zhou, X. Cao, J. Ning, C. Ji, Y. Cheng, J. Gu, Pd-doped Cu nanoparticles confined by ZIF-67@ZIF-8 for efficient dehydrogenation of ammonia borane, Int. J. Hydrogen Energy, 45 (2020) 31440–31451.
  78. H. Wang, F. Zheng, G. Xue, Y. Wang, G. Li, Z. Tang, Recent advances in hollow metal-organic frameworks and their composites for heterogeneous thermal catalysis, Sci. China Chem., 64 (2021) 1854–1874.
  79. D. Gao, Y. Zhang, L. Zhou, K. Yang, CuNi NPs supported on MIL-101 as highly active catalysts for the hydrolysis of ammonia borane, Appl. Surf. Sci., 427 (2018) 114–122.
  80. Y. Li, S. Li, Low-cost CuFeCo@MIL-101 as an efficient catalyst for catalytic hydrolysis of ammonia borane, Int. J. Hydrogen Energy, 45 (2020) 10433–10441.
  81. Z. Liang, X. Xiao, X. Yu, X. Huang, Y. Jiang, X. Fan, L. Chen, Non-noble trimetallic Cu-Ni-Co nanoparticles supported on metal-organic frameworks as highly efficient catalysts for hydrolysis of ammonia borane, J. Alloys Compd., 741 (2018) 501–508.
  82. K. Yang, L. Zhou, X. Xiong, M. Ye, L. Li, Q. Xia, RuCuCo nanoparticles supported on MIL-101 as a novel highly efficient catalysts for the hydrolysis of ammonia borane, Microporous Mesoporous Mater., 225 (2016) 1–8.
  83. D. Lu, G. Yu, Y. Li, M. Chen, Y. Pan, L. Zhou, K. Yang, X. Xiong, P. Wu, Q. Xia, RuCo NPs supported on MIL-96(Al) as highly active catalysts for the hydrolysis of ammonia borane, J. Alloys Compd., 694 (2017) 662–671.
  84. L. Wen, J. Su, X. Wu, P. Cai, W. Luo, G. Cheng, Ruthenium supported on MIL-96: an efficient catalyst for hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage, Int. J. Hydrogen Energy, 39 (2014) 17129–17135.
  85. M. Chen, L. Zhou, D. Lu, L. Yue, H. Ning, Y. Pan, H. Xu, W. Peng, S. Zhang, RuCo bimetallic alloy nanoparticles immobilized on multi-porous MIL-53(Al) as a highly efficient catalyst for the hydrolytic reaction of ammonia borane, Int. J. Hydrogen Energy, 43 (2018) 1439–1450.
  86. P.-Z. Li, K. Aranishi, Q. Xu, ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane, Chem. Commun., 48 (2012) 3173–3175.
  87. W. Wang, M. Liang, Y. Jiang, C. Liao, Q. Long, X. Lai, L. Liao, Nano-Co embedded in porous ZIF-67 polyhedron to catalyze hydrolysis of ammonia borane, Mater. Lett., 293 (2021) 129702, doi: 10.1016/j.matlet.2021.129702.
  88. Y.-H. Zhou, S. Wang, Z. Zhang, N. Williams, Y. Cheng, J. Gu, Hollow nickel-cobalt layered double hydroxide supported palladium catalysts with superior hydrogen evolution activity for hydrolysis of ammonia borane, ChemCatChem, 10 (2018) 3206–3213.
  89. W. Zhao, R. Wang, Y. Wang, J. Feng, C. Li, G. Chen, Effect of LDH composition on the catalytic activity of Ru/LDH for the hydrolytic dehydrogenation of ammonia borane, Int. J. Hydrogen Energy, 44 (2019) 14820–14830.
  90. M. Paladini, G.M. Arzac, V. Godinho, M.C.J.D. Haro, A. Fernández, Supported Co catalysts prepared as thin films by magnetron sputtering for sodium borohydride and ammonia borane hydrolysis, Appl. Catal., B, 158–159 (2014) 400–409.
  91. Y. Wang, W. Meng, D. Wang, Z.R. Wang, K.L. Zou, Z.Q. Cao, K. Zhang, S.W. Wu, G.D. Li, Ultrafine cobalt-molybdenum-boron nanocatalyst for enhanced hydrogen generation property from the hydrolysis of ammonia borane, Int. J. Hydrogen Energy, 44 (2019) 23267–23276.