References
- R. Shen, Y. Liu, H. Wen, T. Liu, Z. Peng, X. Wu, X. Ge, S. Mehdi,
H. Cao, E. Liang, J. Jiang, B. Li, Engineering VO-Ti ensemble to
boost the activity of Ru towards water dissociation for catalytic
hydrogen generation, Appl. Catal., B, 306 (2022) 121100,
doi: 10.1016/j.apcatb.2022.121100.
- K. Qi, C. Zhuang, M. Zhang, P. Gholami, A. Khataee,
Sonochemical synthesis of photocatalysts and their applications,
J. Mater. Sci. Technol., 123 (2022) 243–256.
- X.-J. Fang, L.-P. Ren, F. Li, Z.-X. Jiang, Z.-G. Wang, Modulating
electronic structure of CoSe2 by Ni doping for efficient
electrocatalyst for hydrogen evolution reaction, Rare Met.,
41 (2022) 901–910.
- C. Li, J. Zhou, W. Gao, J. Zhao, J. Liu, Y. Zhao, M. Wei, D.G. Evans,
X. Duan, Binary Cu–Co catalysts derived from hydrotalcites
with excellent activity and recyclability towards NH3BH3
dehydrogenation, J. Mater. Chem. A, 1 (2013) 5370–5376.
- A. Kantürk Figen, M.B. Pişkin, B. Coşkuner, V. İmamoğlu,
Synthesis, structural characterization, and hydrolysis of
ammonia borane (NH3BH3) as a hydrogen storage carrier,
Int. J. Hydrogen Energy, 38 (2013) 16215–16228.
- W. Cheng, S. Lee, How green are the national hydrogen
strategies?, Sustainability, 14 (2022) 1930, doi: 10.3390/su14031930.
- A.B. Burg, H.I. Schlesinger, Hydrides of boron. VII. Evidence
of the transitory existence of borine (BH3): borine carbonyl and
borine trimethylammine, J. Am. Chem. Soc., 59 (1937) 780–787.
- F. Li, J. Li, L. Chen, Y. Dong, P. Xie, Q. Li, Preparation of CoB
nanoparticles decorated PANI nanotubes as catalysts for
hydrogen generation from NaBH4 hydrolysis, J. Taiwan Inst.
Chem. Eng., 122 (2021) 148–156.
- C. Wang, Q. Wang, F. Fu, D. Astruc, Hydrogen generation
upon nanocatalyzed hydrolysis of hydrogen-rich boron
derivatives: recent developments, Acc. Chem. Res., 53 (2020)
2483–2493.
- M.L. Meena, K. Kumar, P. Saini, M. Sethi, S. Saini, A. Mohapatra,
S. Som, R.-Y. Lin, C.-W. Chu, C.-H. Lu, S.D. Lin, V. Parewa,
Competent production of hydrogen and hydrogenation of
carboxylic acids using urea-rich waste water over visible-lightresponsive
rare earth doped photocatalyst, J. Taiwan Inst.
Chem. Eng., 144 (2023) 104734, doi: 10.1016/j.jtice.2023.104734.
- Z. Li, W. Wang, Q. Qian, Y. Zhu, Y. Feng, Y. Zhang, H. Zhang,
M. Cheng, G. Zhang, Magic hybrid structure as multifunctional
electrocatalyst surpassing benchmark Pt/C enables practical
hydrazine fuel cell integrated with energy-saving H2
production, eScience, 2 (2022) 416–427.
- Y.M. Shi, B. Zhang, Recent advances in transition metal
phosphide nanomaterials: synthesis and applications in
hydrogen evolution reaction, Chem. Soc. Rev., 45 (2016)
1529–1541.
- C. Wang, X. Yu, X. Zhang, Z. Lu, X. Wang, X. Han, J. Zhao,
L. Li, X. Yang, Enhanced hydrogen production from ammonia
borane over CuNi alloy nanoparticles supported on TiO2(B)/anatase mixed-phase nanofibers with high specific surface
area, J. Alloys Compd., 815 (2020) 152431, doi: 10.1016/j.jallcom.2019.152431.
- S.G. Shore, R.W. Parry, The crystalline compound ammoniaborane,
NH3BH3, J. Am. Chem. Soc., 77 (1955) 6084–6085.
- Y. Yuan, L. Sun, G. Wu, Y. Yuan, W. Zhan, X. Wang,
X. Han, Engineering nickel/palladium heterojunctions for
dehydrogenation of ammonia borane: improving the catalytic
performance with 3D mesoporous structures and external
nitrogen-doped carbon layers, Inorg. Chem., 59 (2020)
2104–2110.
- L. Cui, Y.H. Xu, L. Niu, W.R. Yang, J.Q. Liu, Monolithically
integrated CoP nanowire array: an on/off switch for effective
on-demand hydrogen generation via hydrolysis of NaBH4
and NH3BH3, Nano Res., 10 (2017) 595–604.
- T. Umegaki, J.M. Yan, X.B. Zhang, H. Shioyama,
N. Kuriyama, Q.A. Xu, Co-SiO2 nanosphere-catalyzed
hydrolytic dehydrogenation of ammonia borane for chemical
hydrogen storage, J. Power Sources, 195 (2010) 8209–8214.
- D. Lim, G. Özkan, G. Özkan, Ni-B and Zr–Ni–B in-situ
catalytic performance for hydrogen generation from sodium
borohydride, ammonia borane and their mixtures, Int. J.
Hydrogen Energy, 47 (2022) 3396–3408.
- Q. Xu, M. Chandra, Catalytic activities of non-noble metals
for hydrogen generation from aqueous ammonia–borane at
room temperature, J. Power Sources, 163 (2006) 364–370.
- J.-M. Yan, X.-B. Zhang, H. Shioyama, Q. Xu, Room temperature
hydrolytic dehydrogenation of ammonia borane catalyzed by
Co nanoparticles, J. Power Sources, 195 (2010) 1091–1094.
- F.Y. Qiu, Y.J. Wang, Y.P. Wang, L. Li, G. Liu, C. Yan, L.F. Jiao,
H.T. Yuan, Dehydrogenation of ammonia borane catalyzed
by in-situ synthesized Fe–Co nano-alloy in aqueous solution,
Catal. Today, 170 (2011) 64–68.
- O. Ozay, E. Inger, N. Aktas, N. Sahiner, Hydrogen production
from ammonia borane via hydrogel template synthesized
Cu, Ni, Co composites, Int. J. Hydrogen Energy, 36 (2011)
8209–8216.
- W. Wei, Z. Wang, J. Xu, L. Zong, K. Zhao, H. Wang, H. Li, R. Yu,
Cobalt hollow nanospheres: controlled synthesis, modification
and highly catalytic performance for hydrolysis of ammonia
borane, Sci. Bull., 62 (2017) 326–331.
- Q. Yao, Z.-H. Lu, Z. Zhang, X. Chen, Y. Lan, One-pot synthesis
of core-shell Cu@SiO2 nanospheres and their catalysis for
hydrolytic dehydrogenation of ammonia borane and hydrazine
borane, Sci. Rep., 4 (2014) 7597, doi: 10.1038/srep07597.
- N. Sahiner, D. Alpaslan, Metal-ion-containing ionic liquid
hydrogels and their application to hydrogen production,
J. Appl. Polym. Sci., 131 (2014) 40183, doi: 10.1002/app.40183.
- S.B. Kalidindi, M. Indirani, B.R. Jagirdar, First row transition
metal ion-assisted ammonia-borane hydrolysis for hydrogen
generation, Inorg. Chem., 47 (2008) 7424–7429.
- H. Wang, L. Zhou, M. Han, Z. Tao, F. Cheng, J. Chen, CuCo
nanoparticles supported on hierarchically porous carbon as
catalysts for hydrolysis of ammonia borane, J. Alloys Compd.,
651 (2015) 382–388.
- A. Kantürk Figen, Dehydrogenation characteristics of ammonia
borane via boron-based catalysts (Co-B, Ni-B, Cu-B) under
different hydrolysis conditions, Int. J. Hydrogen Energy,
38 (2013) 9186–9197.
- R. Fernandes, N. Patel, A. Miotello, L. Calliari, Co–Mo–B–P
alloy with enhanced catalytic properties for H2 production by
hydrolysis of ammonia borane, Top. Catal., 55 (2012) 1032–1039.
- N. Patel, R. Fernandes, G. Guella, A. Miotello, Nanoparticleassembled
Co-B thin film for the hydrolysis of ammonia
borane: a highly active catalyst for hydrogen production,
Appl. Catal., B, 95 (2010) 137–143.
- Z.-H. Lu, J. Li, A. Zhu, Q. Yao, W. Huang, R. Zhou, R. Zhou,
X. Chen, Catalytic hydrolysis of ammonia borane via magnetically
recyclable copper iron nanoparticles for chemical
hydrogen storage, Int. J. Hydrogen Energy, 38 (2013) 5330–5337.
- F. Qiu, Y. Dai, L. Li, C. Xu, Y. Huang, C. Chen, Y. Wang, L. Jiao,
H. Yuan, Synthesis of Cu@FeCo core–shell nanoparticles for
the catalytic hydrolysis of ammonia borane, Int. J. Hydrogen
Energy, 39 (2014) 436–441.
- C. Wang, H. Wang, Z. Wang, X. Li, Y. Chi, M. Wang, D. Gao,
Z. Zhao, Mo remarkably enhances catalytic activity of Cu@
MoCo core-shell nanoparticles for hydrolytic dehydrogenation
of ammonia borane, Int. J. Hydrogen Energy, 43 (2018)
7347–7355.
- J.-M. Yan, X.-B. Zhang, S. Han, H. Shioyama, Q. Xu, Magnetically
recyclable Fe–Ni alloy catalyzed dehydrogenation of ammonia
borane in aqueous solution under ambient atmosphere,
J. Power Sources, 194 (2009) 478–481.
- J. Du, F. Cheng, M. Si, J. Liang, Z. Tao, J. Chen, Nanoporous
Ni-based catalysts for hydrogen generation from hydrolysis
of ammonia borane, Int. J. Hydrogen Energy, 38 (2013)
5768–5774.
- X. Feng, Y. Zhao, D. Liu, Y. Mo, Y. Liu, X. Chen, W. Yan, X. Jin,
B. Chen, X. Duan, D. Chen, C. Yang, Towards high activity of
hydrogen production from ammonia borane over efficient
non-noble Ni5P4 catalyst, Int. J. Hydrogen Energy, 43 (2018)
17112–17120.
- C. Wan, Y. Liang, L. Zhou, J. Huang, J. Wang, F. Chen,
X. Zhan, D.-g. Cheng, Integration of morphology and electronic
structure modulation on cobalt phosphide nanosheets to boost
photocatalytic hydrogen evolution from ammonia borane
hydrolysis, Green Energy Environ., (2022), doi: 10.1016/j.gee.2022.06.007 (in press).
- C.Y. Peng, L. Kang, S. Cao, Y. Chen, Z.S. Lin, W.F. Fu,
Nanostructured Ni2P as a robust catalyst for the hydrolytic
dehydrogenation of ammonia–borane, Angew. Chem. Int. Ed.,
54 (2015) 15725–15729.
- D. Sun, Y. Hao, C. Wang, X. Zhang, X. Yu, X. Yang, L. Li, Z. Lu,
W. Shang, TiO2–CdS supported CuNi nanoparticles as a highly
efficient catalyst for hydrolysis of ammonia borane under
visible-light irradiation, Int. J. Hydrogen Energy, 45 (2020)
4390–4402.
- H. Cao, W. Wang, T. Cui, H. Wang, G. Zhu, X. Ren, Enhancing
CO2 hydrogenation to methane by Ni-based catalyst with
V species using 3D-mesoporous KIT-6 as support, Energies,
13 (2020) 2235, doi: 10.3390/en13092235.
- W. Li, X. Nie, X. Jiang, A. Zhang, F. Ding, M. Liu, Z. Liu, X. Guo,
C. Song, ZrO2 support imparts superior activity and stability
of Co catalysts for CO2 methanation, Appl. Catal., B, 220 (2018)
397–408.
- Y. Lv, C. Han, Y. Zhu, T. Zhang, S. Yao, Z. He, L. Dai, L. Wang,
Recent advances in metals and metal oxides as catalysts for
vanadium redox flow battery: properties, structures, and
perspectives, J. Mater. Sci. Technol., 75 (2021) 96–109.
- H. Wu, M. Wu, B. Wang, X. Yong, Y. Liu, B. Li, B. Liu, S. Lu,
Interface electron collaborative migration
of Co–Co3O4/carbon
dots: boosting the hydrolytic dehydrogenation of ammonia
borane, J. Energy Chem., 48 (2020) 43–53.
- J. Zhu, L. Ma, J. Feng, T. Geng, W. Wei, J. Xie, Facile synthesis
of Cu nanoparticles on different morphology ZrO2 supports
for catalytic hydrogen generation from ammonia borane,
J. Mater. Sci.: Mater. Electron., 29 (2018) 14971–14980.
- D.R. Abd El-Hafiz, G. Eshaq, A.E. ElMetwally, Recent
enhancement of ammonia borane hydrolysis using spinel-type
metal ferrites nano-catalysts, Mater. Chem. Phys., 217 (2018)
562–569.
- Q. Zhou, C. Xu, Nanoporous PtCo/Co3O4 composites with
high catalytic activities toward hydrolytic dehydrogenation of
ammonia borane, J. Colloid Interface Sci., 508 (2017) 542–550.
- S. Akbayrak, Y. Tonbul, S. Özkar, Ceria supported rhodium
nanoparticles: superb catalytic activity in hydrogen generation
from the hydrolysis of ammonia borane, Appl. Catal., B,
198 (2016) 162–170.
- A. Yousef, N.A.M. Barakat, M.H. El-Newehy, M.M. Ahmed,
H.Y. Kim, Catalytic hydrolysis of ammonia borane for
hydrogen generation using Cu(0) nanoparticles supported on
TiO2 nanofibers, Colloids Surf., A, 470 (2015) 194–201.
- S. Akbayrak, O. Taneroğlu, S. Özkar, Nanoceria supported
cobalt(0) nanoparticles: a magnetically separable and reusable
catalyst in hydrogen generation from the hydrolysis of
ammonia borane, New J. Chem., 41 (2017) 6546–6552.
- Y. Guo, J. Qian, A. Iqbal, L. Zhang, W. Liu, W. Qin, Pd
nanoparticles immobilized on magnetic carbon
dots@Fe3O4
nanocubes as a synergistic catalyst for hydrogen generation,
Int. J. Hydrogen Energy, 42 (2017) 15167–15177.
- Y. Tonbul, S. Akbayrak, S. Özkar, Magnetically separable
rhodium nanoparticles as catalysts for releasing hydrogen
from the hydrolysis of ammonia borane, J. Colloid Interface Sci.,
553 (2019) 581–587.
- A. Yousef, N.A.M. Barakat, K.A. Khalil, A.R. Unnithan,
G. Panthi, B. Pant, H.Y. Kim, Photocatalytic release of hydrogen
from ammonia borane-complex using Ni(0)-doped TiO2/C
electrospun nanofibers, Colloids Surf., A, 410 (2012) 59–65.
- Y. Feng, H. Wang, X. Chen, F. Lv, Y. Li, Y. Zhu, C. Xu, X. Zhang,
H.-R. Liu, H. Li, Simple synthesis of Cu2O–CoO nanoplates
with enhanced catalytic activity for hydrogen production
from ammonia borane hydrolysis, Int. J. Hydrogen Energy,
45 (2020) 17164–17173.
- B. Zhao, J. Liu, L. Zhou, D. Long, K. Feng, X. Sun, J. Zhong,
Probing the electronic structure of M-graphene oxide (M = Ni,
Co, NiCo) catalysts for hydrolytic dehydrogenation of
ammonia borane, Appl. Surf. Sci., 362 (2016) 79–85.
- J. Wang, D. Ke, Y. Li, H. Zhang, C. Wang, X. Zhao, Y. Yuan, S. Han,
Efficient hydrolysis of alkaline sodium borohydride catalyzed
by cobalt nanoparticles supported on three–dimensional
graphene oxide, Mater. Res. Bull., 95 (2017) 204–210.
- D. Ke, Y. Tao, Y. Li, X. Zhao, L. Zhang, J. Wang, S. Han, Kinetics
study on hydrolytic dehydrogenation of alkaline sodium
borohydride catalyzed by Mo-modified Co-B nanoparticles,
Int. J. Hydrogen Energy, 40 (2015) 7308–7317.
- A. Zou, X. Xu, L. Zhou, L. Lin, Z. Kang, Preparation of
graphene-supported Co-CeOx nanocomposites as a catalyst
for the hydrolytic dehydrogenation of ammonia borane, J. Fuel
Chem. Technol., 49 (2021) 1371–1378.
- C. Cui, Y. Liu, S. Mehdi, H. Wen, B. Zhou, J. Li, B. Li, Enhancing
effect of Fe-doping on the activity of nano Ni catalyst towards
hydrogen evolution from NH3BH3, Appl. Catal., B, 265 (2020)
118612, doi: 10.1016/j.apcatb.2020.118612.
- X. Zhao, D. Ke, S. Han, Y. Li, H. Zhang, Y. Cai, Reduced
graphene oxide sheets supported waxberry-like Co catalysts
for improved hydrolytic dehydrogenation of ammonia borane,
ChemistrySelect, 4 (2019) 2513–2518.
- L. Yang, N. Cao, C. Du, H. Dai, K. Hu, W. Luo, G. Cheng,
Graphene supported cobalt(0) nanoparticles for hydrolysis of
ammonia borane, Mater. Lett., 115 (2014) 113–116.
- Y.-H. Zhou, Z. Zhang, S. Wang, N. Williams, Y. Cheng,
S. Luo, J. Gu, rGO supported PdNi-CeO2 nanocomposite
as an efficient catalyst for hydrogen evolution from the
hydrolysis of NH3BH3, Int. J. Hydrogen Energy, 43 (2018)
18745–18753.
- R. Zhang, J. Zheng, T. Chen, G. Ma, W. Zhou, RGO-wrapped
Ni-P hollow octahedrons as noble-metal-free catalysts to
boost the hydrolysis of ammonia borane toward hydrogen
generation, J. Alloys Compd., 763 (2018) 538–545.
- W. Feng, L. Yang, N. Cao, C. Du, H. Dai, W. Luo, G. Cheng,
In-situ facile synthesis of bimetallic CoNi catalyst supported
on graphene for hydrolytic dehydrogenation of amine borane,
Int. J. Hydrogen Energy, 39 (2014) 3371–3380.
- N.S. Çiftci, Ö. Metin, Monodisperse nickel–palladium alloy
nanoparticles supported on reduced graphene oxide as
highly efficient catalysts for the hydrolytic dehydrogenation
of ammonia borane, Int. J. Hydrogen Energy, 39 (2014)
18863–18870.
- X. Qu, R. Jiang, Q. Li, F. Zeng, X. Zheng, Z. Xu, C. Chen, J. Peng,
The hydrolysis of ammonia borane catalyzed by NiCoP/OPC-300 nanocatalysts: high selectivity and efficiency, and
mechanism, Green Chem., 21 (2019) 850–860.
- Y. Zou, Y. Gao, C. Xiang, H. Chu, S. Qiu, E. Yan, F. Xu, C. Tang,
L. Sun, Cobalt-nickel-boron supported over polypyrrolederived
activated carbon for hydrolysis of ammonia borane,
Metals, 6 (2016) 154, doi: 10.3390/met6070154.
- L. Xu, L. Yang, L. Shang, J. Chen, Novel Ni-based catalysts
for hydrogen generation from hydrolysis of ammonia
borane, IOP Conf. Ser.: Mater. Sci. Eng., 382 (2018) 022097,
doi: 10.1088/1757-899X/382/2/022097.
- Y.-T. Li, X.-L. Zhang, Z.-K. Peng, P. Liu, X.-C. Zheng, Highly
efficient hydrolysis of ammonia borane using ultrafine
bimetallic RuPd nanoalloys encapsulated in porous g-C3N4,
Fuel, 277 (2020) 118243, doi: 10.1016/j.fuel.2020.118243.
- R. Lu, M. Hu, C. Xu, Y. Wang, Y. Zhang, B. Xu, D. Gao, J. Bi,
G. Fan, Hydrogen evolution from hydrolysis of ammonia
borane catalyzed by Rh/g-C3N4 under mild conditions, Int. J.
Hydrogen Energy, 43 (2018) 7038–7045.
- Y. Fan, X. Li, X. He, C. Zeng, G. Fan, Q. Liu, D. Tang, Effective
hydrolysis of ammonia borane catalyzed by ruthenium
nanoparticles immobilized on graphic carbon nitride, Int. J.
Hydrogen Energy, 39 (2014) 19982–19989.
- M. Navlani-García, P. Verma, Y. Kuwahara, T. Kamegawa,
K. Mori, H. Yamashita, Visible-light-enhanced catalytic
activity of Ru nanoparticles over carbon modified g-C3N4, J.
Photochem. Photobiol., A, 358 (2018) 327–333.
- H. Kahri, M. Sevim, Ö. Metin, Enhanced catalytic activity
of monodispersed AgPd alloy nanoparticles assembled
on mesoporous graphitic carbon nitride for the hydrolytic
dehydrogenation of ammonia borane under sunlight, Nano
Res., 10 (2016) 1627–1640.
- Y.-T. Li, S.-H. Zhang, G.-P. Zheng, P. Liu, Z.-K. Peng, X.-C. Zheng,
Ultrafine Ru nanoparticles anchored to porous g-C3N4 as
efficient catalysts for ammonia borane hydrolysis, Appl. Catal.,
A, 595 (2020) 117511, doi: 10.1016/j.apcata.2020.117511.
- M. Gao, Y. Yu, W. Yang, J. Li, S. Xu, M. Feng, H. Li, Ni
nanoparticles supported on graphitic carbon nitride as visible
light catalysts for hydrolytic dehydrogenation of ammonia
borane, Nanoscale, 11 (2019) 3506–3513.
- J. Li, F. Li, J. Liao, Q. Liu, H. Li, Cu0.4Co0.6MoO4 nanorods
supported on graphitic carbon nitride as a highly active catalyst
for the hydrolytic dehydrogenation of ammonia borane,
Catalysts, 9 (2019) 714, doi: 10.3390/catal9090714.
- D. Li, H.-Q. Xu, L. Jiao, H.-L. Jiang, Metal-organic
frameworks for catalysis: state of the art, challenges, and
opportunities, EnergyChem, 1 (2019) 100005, doi: 10.1016/j.enchem.2019.100005.
- Y.-H. Zhou, X. Cao, J. Ning, C. Ji, Y. Cheng, J. Gu, Pd-doped
Cu nanoparticles confined by ZIF-67@ZIF-8 for efficient
dehydrogenation of ammonia borane, Int. J. Hydrogen Energy,
45 (2020) 31440–31451.
- H. Wang, F. Zheng, G. Xue, Y. Wang, G. Li, Z. Tang, Recent
advances in hollow metal-organic frameworks and their
composites for heterogeneous thermal catalysis, Sci. China
Chem., 64 (2021) 1854–1874.
- D. Gao, Y. Zhang, L. Zhou, K. Yang, CuNi NPs supported
on MIL-101 as highly active catalysts for the hydrolysis of
ammonia borane, Appl. Surf. Sci., 427 (2018) 114–122.
- Y. Li, S. Li, Low-cost CuFeCo@MIL-101 as an efficient catalyst
for catalytic hydrolysis of ammonia borane, Int. J. Hydrogen
Energy, 45 (2020) 10433–10441.
- Z. Liang, X. Xiao, X. Yu, X. Huang, Y. Jiang, X. Fan, L. Chen,
Non-noble trimetallic Cu-Ni-Co nanoparticles supported on
metal-organic frameworks as highly efficient catalysts for
hydrolysis of ammonia borane, J. Alloys Compd., 741 (2018)
501–508.
- K. Yang, L. Zhou, X. Xiong, M. Ye, L. Li, Q. Xia, RuCuCo
nanoparticles supported on MIL-101 as a novel highly
efficient catalysts for the hydrolysis of ammonia borane,
Microporous Mesoporous Mater., 225 (2016) 1–8.
- D. Lu, G. Yu, Y. Li, M. Chen, Y. Pan, L. Zhou, K. Yang, X. Xiong,
P. Wu, Q. Xia, RuCo NPs supported on MIL-96(Al) as highly
active catalysts for the hydrolysis of ammonia borane, J. Alloys
Compd., 694 (2017) 662–671.
- L. Wen, J. Su, X. Wu, P. Cai, W. Luo, G. Cheng, Ruthenium
supported on MIL-96: an efficient catalyst for hydrolytic
dehydrogenation of ammonia borane for chemical hydrogen
storage, Int. J. Hydrogen Energy, 39 (2014) 17129–17135.
- M. Chen, L. Zhou, D. Lu, L. Yue, H. Ning, Y. Pan, H. Xu, W. Peng,
S. Zhang, RuCo bimetallic alloy nanoparticles immobilized
on multi-porous MIL-53(Al) as a highly efficient catalyst for
the hydrolytic reaction of ammonia borane, Int. J. Hydrogen
Energy, 43 (2018) 1439–1450.
- P.-Z. Li, K. Aranishi, Q. Xu, ZIF-8 immobilized nickel
nanoparticles: highly effective catalysts for hydrogen generation
from hydrolysis of ammonia borane, Chem. Commun.,
48 (2012) 3173–3175.
- W. Wang, M. Liang, Y. Jiang, C. Liao, Q. Long, X. Lai, L. Liao,
Nano-Co embedded in porous ZIF-67 polyhedron to catalyze
hydrolysis of ammonia borane, Mater. Lett., 293 (2021) 129702,
doi: 10.1016/j.matlet.2021.129702.
- Y.-H. Zhou, S. Wang, Z. Zhang, N. Williams, Y. Cheng, J. Gu,
Hollow nickel-cobalt layered double hydroxide supported
palladium catalysts with superior hydrogen evolution activity
for hydrolysis of ammonia borane, ChemCatChem, 10 (2018)
3206–3213.
- W. Zhao, R. Wang, Y. Wang, J. Feng, C. Li, G. Chen, Effect of
LDH composition on the catalytic activity of Ru/LDH for
the hydrolytic dehydrogenation of ammonia borane, Int. J.
Hydrogen Energy, 44 (2019) 14820–14830.
- M. Paladini, G.M. Arzac, V. Godinho, M.C.J.D. Haro,
A. Fernández, Supported Co catalysts prepared as thin films by
magnetron sputtering for sodium borohydride and ammonia
borane hydrolysis, Appl. Catal., B, 158–159 (2014) 400–409.
- Y. Wang, W. Meng, D. Wang, Z.R. Wang, K.L. Zou, Z.Q. Cao,
K. Zhang, S.W. Wu, G.D. Li, Ultrafine cobalt-molybdenum-boron
nanocatalyst for enhanced hydrogen generation
property from the hydrolysis of ammonia borane, Int. J.
Hydrogen Energy, 44 (2019) 23267–23276.