References

  1. H.E. Emam, F.H.H. Abdellatif, R.M. Abdelhameed, Cationization of celluloisc fibers in respect of liquid fuel purification, J. Cleaner Prod., 178 (2018) 457–467.
  2. M. Ahmadi, B. Anvaripour, M.R. Khosravi-nikou, M. Mohammadian, Selective denitrogenation of model fuel through iron and chromium modified microporous materials (MSU-S), J. Environ. Chem. Eng., 5 (2017) 849–860.
  3. A. Kumar, P. Muthukumar, P. Sharma, E.A. Kumar, Absorption based solid state hydrogen storage system: a review, Sustainable Energy Technol. Assess., 52 (2022) 102204, doi: 10.1016/j.seta.2022.102204.
  4. I. Ahmed, N.A. Khan, S.H. Jhung, Adsorptive denitrogenation of model fuel by functionalized UiO-66 with acidic and basic moieties, Chem. Eng. J., 321 (2017) 40–47.
  5. K. Tang, X. Hong, preparation and characterization of Co-MCM-41 and its adsorption removing basic nitrogen compounds from fluidized catalytic cracking diesel oil, Energy Fuels, 30 (2016) 4619–4624.
  6. E.B. Strel’mikova, I.V. Goncharov, O.V. Serebrennikova, Concentration and distribution of oxygen-containing compounds in crude oils from the southeastern part of Western Siberia, Pet. Chem., 52 (2012) 278–283.
  7. R.M. Abdelhameed, H.E. Emam, J. Rocha, A.M.S. Silva, Cu-BTC metal-organic framework natural fabric composites for fuel purification, Fuel Process. Technol., 159 (2017) 306–312.
  8. J. Speight, Eds., Shale Oil and Gas Production Processes, Gulf Professional Publishing, United States, 2020, pp. 873–912.
  9. M. Zhao, P. Xue, J. Liu, J. Liao, J. Guo, A review of removing SO2 and NOX by wet scrubbing, Sustainable Energy Technol. Assess., 47 (2021) 101451, doi: 10.1016/j.seta.2021.101451.
  10. S.D. Sumbogo Murti, K.H. Choi, K. Sakanishi, O. Okuma, Y. Korai, I. Mochida, Analysis and removal of heteroatom containing species in coal liquid distillate over NiMo catalysts, Fuel, 84 (2005) 135–142.
  11. M. Wang, H. Shi, D.M. Camaioni, J.A. Lercher, Palladiumcatalyzed hydrolytic cleavage of aromatic C−O bonds, Angew. Chem., 129 (2017) 2142–2146.
  12. R. Prins, Catalytic hydrodenitrogenation, Adv. Catal., 46 (2001) 399–464.
  13. J. You, H. Song, J. Zhang, C. Chen, F. Han, Adsorptive removal of nitrogen-containing compounds from fuel over hierarchical porous aluminosilicates synthesized by kinetic regulation method, Fuel, 241 (2019) 997–1007.
  14. M. Almarri, X. Ma, C. Song, Selective adsorption for removal of nitrogen compounds from liquid hydrocarbon streams over carbon- and alumina-based adsorbents, Ind. Eng. Chem. Res., 48 (2009) 951–960.
  15. M.S. Rana, R. Brouresli, N. Mustafa, Effect of organic nitrogen compounds on deep hydrodesulfurization of middle distillate, Fuel Process. Technol., 177 (2018) 170–178.
  16. F. López-Linares, L. Carbognani, C. Sosa Stull, P. Pereira-almao, Adsorption kinetics of anilines on macroporous kaolin, Energy Fuels, 22 (2008) 2188–2194.
  17. S. Rashidi, M. Reza, K. Nikou, B. Anvaripour, Adsorptive desulfurization and denitrogenation of model fuel using HPW and NiO-HPW modified aluminosilicate mesostructures, Microporous Mesoporous Mater., 211 (2015) 134–141.
  18. L. Wang, Y. Ma, D. Xie, M. Zhang, N. Zuo, N. Mominou, C. Jing, Ultra-deep desulfurization of model diesel fuel over Pr/Ce–N–TiO2 assisted by visible light, Microporous Mesoporous Mater., 323 (2021) 111258, doi: 10.1016/j.micromeso.2021.111258.
  19. S. Ardizzone, H. Høiland, C. Lagioni, E. Sivieri, Pyridine and aniline adsorption from an apolar solvent: the role of the solid adsorbent, J. Electroanal. Chem., 447 (1998) 17–23.
  20. B.N. Bhadra, I. Ahmed, S.H. Jhung, Remarkable adsorbent for phenol removal from fuel: functionalized metal-organic framework, Fuel, 174 (2016) 43–48.
  21. J. Gao, Y. Dai, W. Ma, H. Xu, C. Li, Efficient separation of phenol from oil by acid-base complexing adsorption, Chem. Eng. J., 281 (2015) 749–758.
  22. S. Rahimi, M. Soleimani, A.R. Azadmehr, Performance evaluation of synthetic goethite and lepidocrocite nanoadsorbents for the removal of aniline from a model liquid fuel through kinetic and equilibrium studies, Energy Fuels, 35 (2021) 10659–10668.
  23. F. Granados-Correa, N.G. Corral-Capulin, M.T. Olguín, C.E. Acosta-León, Comparison of the Cd(II) adsorption processes between boehmite (γ-AlOOH) and goethite (α-FeOOH), Chem. Eng. J., 171 (2011) 1027–1034.
  24. S.K. Sahoo, M. Tripathy, G. Hota, In-situ functionalization of GO sheets with AlOOH-FeOOH composite nanorods: an ecofriendly nanoadsorbent for removal of toxic arsenate ions from water, J. Environ. Chem. Eng., 7 (2019) 103357, doi: 10.1016/j.jece.2019.103357.
  25. G. Moradi, F. Dabirian, P. Mohammadi, L. Rajabi, M. Babaei, N. Shiri, Electrospun fumarate ferroxane/polyacrylonitrile nanocomposite nanofibers adsorbent for lead removal from aqueous solution: characterization and process optimization by response surface methodology, Chem. Eng. Res. Des., 129 (2017) 182–196.
  26. T. Yamamoto, M. Tayakout-Fayolle, C. Geantet, Gas-phase removal of hydrogen sulfide using iron oxyhydroxide at low temperature: measurement of breakthrough curve and modeling of sulfidation mechanism, Chem. Eng. J., 262 (2015) 702–709.
  27. M. Songolzadeh, M. Soleimani, M. Takht Ravanchi, Evaluation of metal type in MIL-100 structure to synthesize a selective adsorbent for the basic N-compounds removal from liquid fuels, Microporous Mesoporous Mater., 274 (2019) 54–60.
  28. H. Kargar, M. Ghahramaninezhad, M.N. Shahrak, S.S. Balula, An effective magnetic catalyst for oxidative desulfurization of model and real fuels: Fe3O4/ZIF-8/TiO₂, Microporous Mesoporous Mater., 317 (2021) 110992, doi: 10.1016/j. micromeso.2021.110992.
  29. F. Chen, Q. Zhu, S. Li, Z. Xu, X. Sun, S. Zhao, The function of poly aromatic nuclei structure for adsorption of vanadyl/nickel etioporphyrin on asphaltene/graphene, Fuel Process. Technol., 174 (2018) 132–141.
  30. M. Ahmadi, M. Mohammadian, M.R. Khosravi-Nikou, Experimental, kinetic, and thermodynamic studies of adsorptive desulfurization and denitrogenation of model fuels using novel mesoporous materials, J. Hazard. Mater., 374 (2019) 129–139.
  31. D. Ursueguía, E. Díaz, S. Ordóñez, Adsorption of methane and nitrogen on basolite MOFs: equilibrium and kinetic studies, Microporous Mesoporous Mater., 298 (2020) 110048, doi: 10.1016/j.micromeso.2020.110048.
  32. S.M. Amininasab, P. Holakooei, Z. Shami, M. Hassanzadeh, Preparation and evaluation of functionalized goethite nanorods coated by molecularly imprinted polymer for selective extraction of bisphenol A in aqueous medium, J. Polym. Res., 25 (2018) 1–10.
  33. S. Rahimi, R.M. Moattari, L. Rajabi, A.A. Derakhshan, M. Keyhani, Iron oxide/hydroxide (α,γ-FeOOH) nanoparticles as high potential adsorbents for lead removal from polluted aquatic media, J. Ind. Eng. Chem., 23 (2015) 33–43.
  34. A. Günay, E. Arslankaya, I. Tosun, Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics, J. Hazard. Mater., 146 (2007) 362–71.
  35. K. State, E. State, Langmuir, Freundlich, Temkin and Dubinin– Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR J. Appl. Chem., 3 (2012) 38–45.
  36. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  37. S. Liao, J. Wang, D. Zhu, L. Ren, J. Lu, M. Geng, A. Langdon, Structure and Mn2+ adsorption properties of boron-doped goethite, Appl. Clay Sci., 38 (2007) 43–50.
  38. R.K. Harrison, N. Aitkenhead, B.R. Young, P.F. Dagger, Goethite from Hindlow, Derbyshire, Bull. Geol. Surv., 52 (1975) 51–54.
  39. S. Fu, W. Han, Accurate characterization of full pore size distribution of tight sandstones by low-temperature nitrogen gas adsorption and high-pressure mercury intrusion combination method, Energy Sci. Eng., 9 (2021) 80–100.
  40. M. Songolzadeh, M. Soleimani, M.T. Ravanchi, Synthesis and optimization of a new MIL-100 adsorbent for removing basic N-compounds from liquid fuels, Pet. Sci. Technol., 37 (2019) 2383–2390.
  41. Y. Hexiong, L. Ren, R.T. Downs, G. Costin, Goethite, α-FeO(OH), from single-crystal data, Acta Crystallogr., Sect. E: Struct. Rep. Online, 62 (2006) 250–252.
  42. J.-P. Jolivet, C. Chanéac, E. Tronc, Iron oxide chemistry. From molecular clusters to extended solid networks, Chem. Commun., 5 (2004) 481–483.
  43. E. Lorenc-Grabowska, Effect of micropore size distribution on phenol adsorption on steam activated carbons, Adsorption, 22 (2016) 599–607.
  44. J.H. Kim, T. Kim, Y.C. Jeong, K. Lee, K.T. Park, S.J. Yang, C.R. Park, Stabilization of insoluble discharge products by facile aniline modification for high performance Li-S batteries, Adv. Energy Mater., 5 (2015) 1–10.
  45. S. Yu, X. Wang, Y. Ai, X. Tan, T. Hayat, W. Hu, X. Wang, Experimental and theoretical studies on competitive adsorption of aromatic compounds on reduced graphene oxides, J. Mater. Chem. A, 4 (2016) 5654–5662.
  46. D.M. Nevskaia, E. Castillejos-Lopez, A. Guerrero-Ruiz, V. Muñoz, Effects of the surface chemistry of carbon materials on the adsorption of phenol-aniline mixtures from water, Carbon N. Y., 42 (2004) 653–665.
  47. L. Jiang, L. Liu, S. Xiao, J. Chen, Preparation of a novel manganese oxide-modified diatomite and its aniline removal mechanism from solution, Chem. Eng. J., 284 (2016) 609–619.