References
- A.Y. Kader, F.M. Abdoon, A.M.K. Ahmed, Demonstration
of crude oil metals by technology atomic absorption
spectrophotometry in oil fields of Kirkuk Iraq, HIV Nurs.,
22 (2022) 3211–3216.
- H. Qi, H Jiang, Y. You, J. Hu, Y. Wang, Z. Wu, H. Qi, Mechanism
of magnetic nanoparticle enhanced microwave pyrolysis for
oily sludge, Energies, 15 (2022) 1–22.
- Z.Z. Wang, Z. Gong, Z.Z. Wang, X. Li, Z. Chu, Application and
development of pyrolysis technology in petroleum oily sludge
treatment, Environ. Eng. Res., 26 (2020) 1–15.
- Y. Liu, H. Yu, Z. Jiang, Y. Song, T. Zhang, A.A. Siyal, J. Dai,
X. Bi, J. Fu, W. Ao, C. Zhou, L. Wang, X. Li, X. Jin, D. Teng,
J. Fang, Microwave pyrolysis of oily sludge under different
control modes, J. Hazard. Mater., 416 (2021) 125887,
doi: 10.1016/j.jhazmat.2021.125887.
- N. Gao, X. Jia, G. Gao, Z. Ma, C. Quan, S.R. Naqvi, Modeling
and simulation of coupled pyrolysis and gasification of oily
sludge in a rotary kiln, Fuel, 279 (2020) 118152, doi: 10.1016/j.fuel.2020.118152.
- J. Li, F. Lin, L. Xiang, F. Zheng, L. Che, W. Tian, X. Guo, B. Yan,
Y. Song, G. Chen, Hazardous elements flow during pyrolysis of
oily sludge, J. Hazard. Mater., 409 (2021) 124986, doi: 10.1016/j.jhazmat.2020.124986.
- M. Duan, X. Wang, S. Fang, B. Zhao, C. Li, Y. Xiong, Treatment
of Daqing oily sludge by thermochemical cleaning method,
Colloids Surf., A, 554 (2018) 272–278.
- S.T. Taleghani, A.F. Jahromi, M. Elektorowicz, Electrodemulsification
of water-in-oil suspensions enhanced with
implementing various additives, Chemosphere, 233 (2019)
157–163.
- J. Liu, X. Jiang, X. Han, Devolatilization of oil sludge in a labscale
bubbling fluidized bed, J. Hazard. Mater., 185 (2011)
1205–1213.
- A. Wang, K. Sun, L. Wu, P. Wu, W. Zeng, Z. Tian, Q. Huang,
Co-carbonization of biomass and oily sludge to prepare sulfamethoxazole
super-adsorbent materials, Sci. Total Environ.,
698 (2020) 134238, doi: 10.1016/j.scitotenv.2019.134238.
- X. Li, K. Liu, Z. Liu, Z. Wang, B. Li, D. Zhang, Hierarchical
porous carbon from hazardous waste oily sludge for all-solidstate
flexible supercapacitor, Electrochim. Acta, 240 (2017)
43–52.
- M.M.I. AL-Doury, Treatment of oily sludge produced from
Baiji oil refineries using surfactants, Pet. Sci. Technol., 37 (2019)
718–726.
- M.M.I. Al-Doury, Treatment of oily sludge using solvent
extraction, Pet. Sci. Technol., 37 (2019) 190–196.
- M.A. Abdulqader, S.S. Hassan, A. Jawad, O. Habeeb,
Characterization study of petroleum oily sludge produced
from North Refineries Company Baiji to determine the
suitability for conversion into solid fuel, Egypt. J. Chem.,
64 (2021) 2775–2781.
- H. Hamed, A. Mohammed, R. Khalefa, O. Habeeb,
M.A. Abdulqader, The effect of using compound techniques
(passive and active) on the double pipe heat exchanger
performance, Egypt. J. Chem., 64 (2021) 2797–2802.
- H. Yang, K. Shen, P. Fu, G. Zhang, Preparation of a novel
carbonaceous material for Cr(VI) removal in aqueous solution
using oily sludge of tank bottom as a raw material, J. Environ.
Chem. Eng., 7 (2019) 102898, doi: 10.1016/j.jece.2019.102898.
- X. Lv, Z. Song, J. Yu, Y. Su, X. Zhao, J. Sun, Y. Mao, W. Wang,
Study on the demulsification of refinery oily sludge enhanced
by microwave irradiation, Fuel, 279 (2020) 118417,
doi: 10.1016/j.fuel.2020.118417.
- T.A.B.B. Cavalcante, E.S. Funcia, J.A.W. Gut, Inactivation of
polyphenol oxidase by microwave and conventional heating:
investigation of thermal and non-thermal effects of focused
microwaves, Food Chem., 340 (2021) 127911, doi: 10.1016/j.foodchem.2020.127911.
- Z. Huang, K. Wu, B. Hu, H. Peng, T. Jiang, Non-isothermal
kinetics of reduction reaction of oxidized pellet under
microwave irradiation, J. Iron Steel Res. Int., 19 (2012) 1–4.
- Y. Wen, W. Li, Y. Xie, Z. Qin, M. Guc, T. Wang, Y. Houa,
A study on the reaction mechanism of microwave pyrolysis of
oily sludge by products analysis and ReaxFF MD simulation,
Environ. Technol., 43 (2022) 2002–2016.
- Y. Yu, C. Yang, J. Li, Y. Zhu, Z. Yan, H. Zhang, Screening of
inexpensive and efficient catalyst for microwave-assisted
pyrolysis of ship oil sludge, J. Anal. Appl. Pyrolysis, 152 (2020)
104971, doi: 10.1016/j.jaap.2020.104971.
- H.B. Sharma, S. Panigrahi, B.K. Dubey, Hydrothermal carbonization
of yard waste for solid bio-fuel production: study
on combustion kinetic, energy properties, grindability and
flowability of hydrochar, Waste Manage., 91 (2019) 108–119.
- U. Uwem, D. Sunday, Chemical evaluation of petroleum
sludge impacted soils from Itsekiri communities around warri
refinery, Delta State, Nigeria, Chem. Sci. Int. J., 23 (2018) 1–15.
- S. Wang, H. Persson, W. Yang, P.G. Jönsson, Pyrolysis study of
hydrothermal carbonization-treated digested sewage sludge
using a Py-GC/MS and a bench-scale pyrolyzer, Fuel, 262 (2020)
116335, doi: 10.1016/j.fuel.2019.116335.
- S.S.A. Syed-Hassan, Y. Wang, S. Hu, S. Su, J. Xiang,
Thermochemical processing of sewage sludge to energy
and fuel: fundamentals, challenges and considerations,
Renewable Sustainable Energy Rev., 80 (2017) 888–913.
- British Standards Institution, Laboratory Measurement of
the Flanking Transmission of Airborne and Impact Sound
Between Adjoining Rooms, BS EN ISO 10848-4:2010 BSI
Acoustics, 3 (2010) 2013–2015.
- M.A. Abdulqader, O.A. Habeeb, M.S. Dheab, S.E.M. Saber,
A.O. Rabet, G.J. Mohammed, A.H. Saleh, Solid fuel char
production via pyrolysis process of oily sludge produced as
a resulted in storage tanks at North Refineries Company Baiji,
J. Pet. Res. Stud., 12 (2022) 199–210.
- D. Bao, Z. Li, X. Liu, C. Wan, R. Zhang, D.J.J. Lee, Biochar derived
from pyrolysis of oily sludge waste: structural characteristics
and electrochemical properties, J. Environ. Manage., 268 (2020)
110734, doi: 10.1016/j.jenvman.2020.110734.
- M.A. Khan, B.H. Hameed, M.R. Siddiqui, Z.A. Alothman,
I.H. Alsohaimi, Comparative investigation of the physicochemical
properties of chars produced by hydrothermal
carbonization, pyrolysis, and microwave-induced pyrolysis
of food waste, Polymers, 14 (2022) 821, doi: 10.3390/polym14040821.
- J. Liu, X. Jiang, L. Zhou, X. Han, Z. Cui, Pyrolysis treatment of
oil sludge and model-free kinetics analysis, J. Hazard. Mater.,
161, (2009) 1208–1215.
- M.P. Olszewski, S.A. Nicolae, P.J. Arauzo, M. Titirici, A. Kruse,
Wet and dry? Influence of hydrothermal carbonization on the
pyrolysis of spent grains, J. Cleaner Prod., 260 (2020) 121101,
doi: 10.1016/j.jclepro.2020.121101.
- H. Hamed, A. Mohammed, O. Habeeb, O. Ali, O. Aljaf,
M.A. Abdulqader, Biodiesel production from waste cooking
oil using homogeneous catalyst, Egypt. J. Chem., 64 (2021)
2827–2832.
- S.M. Heilmann, L.R. Jader, M.J. Sadowsky, F.J. Schendel,
M.G. von Keitz, K.J. Valentas, hydrothermal carbonization of
distiller’s grains, Biomass Bioenergy, 35 (2011) 2526–2533.
- X. Ning, H. Teng, G. Wang, J. Zhang, N. Zhang, C. Huang,
C. Wang, Physiochemical, structural and combustion properties
of hydrochar obtained by hydrothermal carbonization
of waste polyvinyl chloride, Fuel, 270 (2020) 117526,
doi: 10.1016/j.fuel.2020.117526.
- M.A. Abdulqader, A.S. Abdulhameed, A.H. Jawad, S. Shatir,
A.S. Hassan, Conversion of oily sludge into char via pyrolysis
and microwave processes: physicochemical property and
energy characteristic, Biomass Convers. Biorefin., (2022),
doi: 10.1007/s13399-022-03519-5
- S. Nizamuddin, H.A. Baloch, G.J. Griffin, N.M. Mubarak,
A.W. Bhutto, R. Abro, S.A. Mazari, B.S. Alie, An overview of
effect of process parameters on hydrothermal carbonization
of biomass, Renewable Sustainable Energy Rev., 73 (2017)
1289–1299.
- K.G. Burra, A.K. Gupta, Thermochemical Reforming of
Wastes to Renewable Fuels, A. Runchal, A. Gupta, A. Kushari,
A. De, S. Aggarwal, Eds., Energy for Propulsion. Green Energy
and Technology, Springer, Singapore, 2018. doi: 10.1007/978-981-10-7473-8_17