References

  1. A.Y. Kader, F.M. Abdoon, A.M.K. Ahmed, Demonstration of crude oil metals by technology atomic absorption spectrophotometry in oil fields of Kirkuk Iraq, HIV Nurs., 22 (2022) 3211–3216.
  2. H. Qi, H Jiang, Y. You, J. Hu, Y. Wang, Z. Wu, H. Qi, Mechanism of magnetic nanoparticle enhanced microwave pyrolysis for oily sludge, Energies, 15 (2022) 1–22.
  3. Z.Z. Wang, Z. Gong, Z.Z. Wang, X. Li, Z. Chu, Application and development of pyrolysis technology in petroleum oily sludge treatment, Environ. Eng. Res., 26 (2020) 1–15.
  4. Y. Liu, H. Yu, Z. Jiang, Y. Song, T. Zhang, A.A. Siyal, J. Dai, X. Bi, J. Fu, W. Ao, C. Zhou, L. Wang, X. Li, X. Jin, D. Teng, J. Fang, Microwave pyrolysis of oily sludge under different control modes, J. Hazard. Mater., 416 (2021) 125887, doi: 10.1016/j.jhazmat.2021.125887.
  5. N. Gao, X. Jia, G. Gao, Z. Ma, C. Quan, S.R. Naqvi, Modeling and simulation of coupled pyrolysis and gasification of oily sludge in a rotary kiln, Fuel, 279 (2020) 118152, doi: 10.1016/j.fuel.2020.118152.
  6. J. Li, F. Lin, L. Xiang, F. Zheng, L. Che, W. Tian, X. Guo, B. Yan, Y. Song, G. Chen, Hazardous elements flow during pyrolysis of oily sludge, J. Hazard. Mater., 409 (2021) 124986, doi: 10.1016/j.jhazmat.2020.124986.
  7. M. Duan, X. Wang, S. Fang, B. Zhao, C. Li, Y. Xiong, Treatment of Daqing oily sludge by thermochemical cleaning method, Colloids Surf., A, 554 (2018) 272–278.
  8. S.T. Taleghani, A.F. Jahromi, M. Elektorowicz, Electrodemulsification of water-in-oil suspensions enhanced with implementing various additives, Chemosphere, 233 (2019) 157–163.
  9. J. Liu, X. Jiang, X. Han, Devolatilization of oil sludge in a labscale bubbling fluidized bed, J. Hazard. Mater., 185 (2011) 1205–1213.
  10. A. Wang, K. Sun, L. Wu, P. Wu, W. Zeng, Z. Tian, Q. Huang, Co-carbonization of biomass and oily sludge to prepare sulfamethoxazole super-adsorbent materials, Sci. Total Environ., 698 (2020) 134238, doi: 10.1016/j.scitotenv.2019.134238.
  11. X. Li, K. Liu, Z. Liu, Z. Wang, B. Li, D. Zhang, Hierarchical porous carbon from hazardous waste oily sludge for all-solidstate flexible supercapacitor, Electrochim. Acta, 240 (2017) 43–52.
  12. M.M.I. AL-Doury, Treatment of oily sludge produced from Baiji oil refineries using surfactants, Pet. Sci. Technol., 37 (2019) 718–726.
  13. M.M.I. Al-Doury, Treatment of oily sludge using solvent extraction, Pet. Sci. Technol., 37 (2019) 190–196.
  14. M.A. Abdulqader, S.S. Hassan, A. Jawad, O. Habeeb, Characterization study of petroleum oily sludge produced from North Refineries Company Baiji to determine the suitability for conversion into solid fuel, Egypt. J. Chem., 64 (2021) 2775–2781.
  15. H. Hamed, A. Mohammed, R. Khalefa, O. Habeeb, M.A. Abdulqader, The effect of using compound techniques (passive and active) on the double pipe heat exchanger performance, Egypt. J. Chem., 64 (2021) 2797–2802.
  16. H. Yang, K. Shen, P. Fu, G. Zhang, Preparation of a novel carbonaceous material for Cr(VI) removal in aqueous solution using oily sludge of tank bottom as a raw material, J. Environ. Chem. Eng., 7 (2019) 102898, doi: 10.1016/j.jece.2019.102898.
  17. X. Lv, Z. Song, J. Yu, Y. Su, X. Zhao, J. Sun, Y. Mao, W. Wang, Study on the demulsification of refinery oily sludge enhanced by microwave irradiation, Fuel, 279 (2020) 118417, doi: 10.1016/j.fuel.2020.118417.
  18. T.A.B.B. Cavalcante, E.S. Funcia, J.A.W. Gut, Inactivation of polyphenol oxidase by microwave and conventional heating: investigation of thermal and non-thermal effects of focused microwaves, Food Chem., 340 (2021) 127911, doi: 10.1016/j.foodchem.2020.127911.
  19. Z. Huang, K. Wu, B. Hu, H. Peng, T. Jiang, Non-isothermal kinetics of reduction reaction of oxidized pellet under microwave irradiation, J. Iron Steel Res. Int., 19 (2012) 1–4.
  20. Y. Wen, W. Li, Y. Xie, Z. Qin, M. Guc, T. Wang, Y. Houa, A study on the reaction mechanism of microwave pyrolysis of oily sludge by products analysis and ReaxFF MD simulation, Environ. Technol., 43 (2022) 2002–2016.
  21. Y. Yu, C. Yang, J. Li, Y. Zhu, Z. Yan, H. Zhang, Screening of inexpensive and efficient catalyst for microwave-assisted pyrolysis of ship oil sludge, J. Anal. Appl. Pyrolysis, 152 (2020) 104971, doi: 10.1016/j.jaap.2020.104971.
  22. H.B. Sharma, S. Panigrahi, B.K. Dubey, Hydrothermal carbonization of yard waste for solid bio-fuel production: study on combustion kinetic, energy properties, grindability and flowability of hydrochar, Waste Manage., 91 (2019) 108–119.
  23. U. Uwem, D. Sunday, Chemical evaluation of petroleum sludge impacted soils from Itsekiri communities around warri refinery, Delta State, Nigeria, Chem. Sci. Int. J., 23 (2018) 1–15.
  24. S. Wang, H. Persson, W. Yang, P.G. Jönsson, Pyrolysis study of hydrothermal carbonization-treated digested sewage sludge using a Py-GC/MS and a bench-scale pyrolyzer, Fuel, 262 (2020) 116335, doi: 10.1016/j.fuel.2019.116335.
  25. S.S.A. Syed-Hassan, Y. Wang, S. Hu, S. Su, J. Xiang, Thermochemical processing of sewage sludge to energy and fuel: fundamentals, challenges and considerations, Renewable Sustainable Energy Rev., 80 (2017) 888–913.
  26. British Standards Institution, Laboratory Measurement of the Flanking Transmission of Airborne and Impact Sound Between Adjoining Rooms, BS EN ISO 10848-4:2010 BSI Acoustics, 3 (2010) 2013–2015.
  27. M.A. Abdulqader, O.A. Habeeb, M.S. Dheab, S.E.M. Saber, A.O. Rabet, G.J. Mohammed, A.H. Saleh, Solid fuel char production via pyrolysis process of oily sludge produced as a resulted in storage tanks at North Refineries Company Baiji, J. Pet. Res. Stud., 12 (2022) 199–210.
  28. D. Bao, Z. Li, X. Liu, C. Wan, R. Zhang, D.J.J. Lee, Biochar derived from pyrolysis of oily sludge waste: structural characteristics and electrochemical properties, J. Environ. Manage., 268 (2020) 110734, doi: 10.1016/j.jenvman.2020.110734.
  29. M.A. Khan, B.H. Hameed, M.R. Siddiqui, Z.A. Alothman, I.H. Alsohaimi, Comparative investigation of the physicochemical properties of chars produced by hydrothermal carbonization, pyrolysis, and microwave-induced pyrolysis of food waste, Polymers, 14 (2022) 821, doi: 10.3390/polym14040821.
  30. J. Liu, X. Jiang, L. Zhou, X. Han, Z. Cui, Pyrolysis treatment of oil sludge and model-free kinetics analysis, J. Hazard. Mater., 161, (2009) 1208–1215.
  31. M.P. Olszewski, S.A. Nicolae, P.J. Arauzo, M. Titirici, A. Kruse, Wet and dry? Influence of hydrothermal carbonization on the pyrolysis of spent grains, J. Cleaner Prod., 260 (2020) 121101, doi: 10.1016/j.jclepro.2020.121101.
  32. H. Hamed, A. Mohammed, O. Habeeb, O. Ali, O. Aljaf, M.A. Abdulqader, Biodiesel production from waste cooking oil using homogeneous catalyst, Egypt. J. Chem., 64 (2021) 2827–2832.
  33. S.M. Heilmann, L.R. Jader, M.J. Sadowsky, F.J. Schendel, M.G. von Keitz, K.J. Valentas, hydrothermal carbonization of distiller’s grains, Biomass Bioenergy, 35 (2011) 2526–2533.
  34. X. Ning, H. Teng, G. Wang, J. Zhang, N. Zhang, C. Huang, C. Wang, Physiochemical, structural and combustion properties of hydrochar obtained by hydrothermal carbonization of waste polyvinyl chloride, Fuel, 270 (2020) 117526, doi: 10.1016/j.fuel.2020.117526.
  35. M.A. Abdulqader, A.S. Abdulhameed, A.H. Jawad, S. Shatir, A.S. Hassan, Conversion of oily sludge into char via pyrolysis and microwave processes: physicochemical property and energy characteristic, Biomass Convers. Biorefin., (2022), doi: 10.1007/s13399-022-03519-5
  36. S. Nizamuddin, H.A. Baloch, G.J. Griffin, N.M. Mubarak, A.W. Bhutto, R. Abro, S.A. Mazari, B.S. Alie, An overview of effect of process parameters on hydrothermal carbonization of biomass, Renewable Sustainable Energy Rev., 73 (2017) 1289–1299.
  37. K.G. Burra, A.K. Gupta, Thermochemical Reforming of Wastes to Renewable Fuels, A. Runchal, A. Gupta, A. Kushari, A. De, S. Aggarwal, Eds., Energy for Propulsion. Green Energy and Technology, Springer, Singapore, 2018. doi: 10.1007/978-981-10-7473-8_17