References
- A. Ahmadi, R. Foroutan, H. Esmaeili, S.J. Peighambardoust,
S. Hemmati, B. Ramavandi, Montmorillonite clay/starch/CoFe2O4 nanocomposite as a superior functional material for
uptake of cationic dye molecules from water and wastewater,
Mater. Chem. Phys., 284 (2022) 126088, doi: 10.1016/j.matchemphys.2022.126088.
- W.W. Anku, M.A. Mamo, P.P. Govender, Phenolic Compounds
in Water: Sources, Reactivity, Toxicity and Treatment Methods,
M. Soto-Hernandez, M. Palma-Tenango, M. del Rosario
Garcia-Mateos, Eds., Phenolic Compounds—Natural Sources,
Importance and Applications, InTechOpen, 2017, pp. 420–443.
- W. Raza, J. Lee, N. Raza, Y. Luo, K.H. Kim, J. Yang, Removal
of phenolic compounds from industrial wastewater based
on membrane-based technologies, J. Ind. Eng. Chem.,
71 (2019) 1–18.
- Z. Asadgol, H. Forootanfar, S. Rezaei, A.H. Mahvi,
M.A. Faramarzi, Removal of phenol and bisphenol — a catalyzed
by laccase in aqueous solution, J. Environ. Health Sci. Eng.,
12 (2014) 1–5.
- J. Michałowicz, W. Duda, Phenols – sources and toxicity,
Pol. J. Environ. Stud., 16 (2007) 347–362.
- A.Q. Jaradat, A.R. Shtayat, S. Odat, A coagulation–flocculation
process combined with continuous adsorption using eggshell
waste materials for phenols and PAHs removal from landfill
leachate, Environ. Eng. Res., 27 (2022) 210133, doi: 10.4491/eer.2021.133.
- M. Schwarze, S. Borchardt, M.L. Frisch, J. Collis, C. Walter,
P.W. Menezes, P. Strasser, M. Driess, M. Tasbihi, Degradation of
phenol via an advanced oxidation process (AOP) with immobilized
commercial titanium dioxide (TiO2) photocatalysts,
Nanomater, 13 (2023) 1249, doi: 10.3390/nano13071249.
- A. Almasi, M. Mahmoudi, M. Mohammadi, A. Dargahi,
H. Biglari, Optimizing biological treatment of petroleum
industry wastewater in a facultative stabilization pond for
simultaneous removal of carbon and phenol, Toxin Rev.,
40 (2019) 189–197.
- M. Wawrzkiewicz, A. Wołowicz, Z. Hubicki, Strongly basic
anion exchange resin based on a cross-linked polyacrylate
for simultaneous C.I. Acid Green 16, Zn(II), Cu(II), Ni(II)
and phenol removal, Molecules, 27 (2022) 2096, doi: 10.3390/molecules27072096.
- M. Zamouche, M. Chermat, Z. Kermiche, H. Tahraoui, M. Kebir,
J.C. Bollinger, A. Amrane, L. Mouni, Predictive model based
on k-nearest neighbour coupled with the gray wolf optimizer
algorithm (KNN_GWO) for estimating the amount of phenol
adsorption on powdered activated carbon, Water, 15 (2023) 493,
doi: 10.3390/w15030493.
- G. Issabayeva, S.Y. Hang, M.C. Wong, M.K. Aroua, A review
on the adsorption of phenols from wastewater onto diverse
groups of adsorbents, Rev. Chem. Eng., 34 (2017) 855–873.
- R. Foroutan, S.J. Peighambardoust, R. Mohammadi,
S.H. Peighambardoust, B. Ramavandi, Development of new
magnetic adsorbent of walnut shell ash/starch/Fe3O4 for
effective copper ions removal: treatment of groundwater
samples, Chemosphere, 296 (2022) 133978, doi: 10.1016/j.chemosphere.2022.133978.
- S. Ho, Low-cost adsorbents for the removal of phenol/phenolics,
pesticides, and dyes from wastewater systems: a review,
Water, 14 (2022) 3203.
- Md. Ahmaruzzaman, Adsorption of phenolic compounds
on low-cost adsorbents: a review, Adv. Colloid Interface Sci.,
143 (2008) 48–67.
- B.H. Hameed, A.A. Rahman, Removal of phenol from aqueous
solutions by adsorption onto activated carbon prepared from
biomass material, J. Hazard. Mater., 160 (2008) 576–581.
- A. Ahmad, S.A. Naqvi, M.J. Jaskani, M. Waseem, E. Ali,
I.A. Khan, M. Faisal Manzoor, A. Siddeeg, R.M. Aadil, Efficient
utilization of date palm waste for the bioethanol production
through Saccharomyces cerevisiae strain, Food Sci. Nutr.,
9 (2021) 2066–2074.
- A. Faiad, M. Alsmari, M.M.Z. Ahmed, M.L. Bouazizi,
B. Alzahrani, H. Alrobei, Date palm tree waste recycling: treatment
and processing for potential engineering applications,
Sustainability, 14 (2022) 1134, doi: 10.3390/su14031134.
- S.E. Agarry, O.A. Aworanti, Kinetics, isothermal and
thermodynamic modelling studies of hexavalent chromium
ions adsorption from simulated wastewater onto parkia
biglobosa-sawdust derived acid-steam activated carbon,
Appl. J. Environ. Eng., 3 (2017) 58–76.
- P. Maziarka, P. Sommersacher, X. Wang, N. Kienzl,
S. Retschitzegger, W. Prins, N. Hedin, F. Ronsse, Tailoring of
the pore structures of wood pyrolysis chars for potential use in
energy storage applications, Appl. Energy, 286 (2021) 116431,
doi: 10.1016/j.apenergy.2020.116431.
- M.M. Nabeel Aljumaili, Y.I. Abdul-Aziz, High surface area peat
moss biochar and its potential for chromium metal adsorption
from aqueous solutions, S. Afr. J. Chem. Eng., 46 (2023) 22–34.
- Y. Önal, C. Akmil-Başar, Ç. Sarıcı-Özdemir, S. Erdoğan, Textural
development of sugar beet bagasse activated with ZnCl2,
J. Hazard. Mater., 142 (2007) 138–143.
- A. Machrouhi, H. Alilou, M. Farnane, S. El Hamidi, M. Sadiq,
M. Abdennouri, H. Tounsadi, N. Barka, Statistical optimization
of activated carbon from Thapsia transtagana stems and dyes
removal efficiency using central composite design, J. Sci. Adv.
Mater. Dev., 4 (2019) 544–553.
- M. Ding, C. Li, F. Chen, Isolation and characterization of
cellulose nanocrystals from cloth hairs and evaluation of
their compatibility with PLLA, Cellulose, 24 (2017) 4785–4792.
- G. Rajeshkumar, V. Hariharan, G.L. Devnani, J. Prakash Maran,
M.R. Sanjay, S. Siengchin, N.A. Al-Dhabi, K. Ponmurugan,
Cellulose fiber from date palm petioles as potential
reinforcement for polymer composites: physicochemical and
structural properties, Polym. Compos., 42 (2021) 3943–3953.
- Z. Ma, Y. Yang, Y. Wu, J. Xu, H. Peng, X. Liu, W. Zhang, S. Wang,
In-depth comparison of the physicochemical characteristics
of bio-char derived from biomass pseudo components:
hemicellulose, cellulose, and lignin, J. Anal. Appl. Pyrolysis,
140 (2019) 195–204.
- S. Darmawan, N.J. Wistara, G. Pari, A. Maddu, W. Syafii,
Characterization of lignocellulosic biomass as raw material
for the production of porous carbon-based materials, BioRes,
11 (2016) 3561–3574.
- I. Ben Salem, M. El Gamal, M. Sharma, S. Hameedi, F.M. Howari,
Utilization of the UAE date palm leaf biochar in carbon dioxide
capture and sequestration processes, J. Environ. Manage.,
299 (2021) 113644, doi: 10.1016/j.jenvman.2021.113644.
- M.S. Shamsuddin, N.R.N. Yusoff, M.A. Sulaiman, Synthesis
and characterization of activated carbon produced from kenaf
core fiber using H3PO4 activation, Procedia Chem., 19 (2016)
558–565.
- A. Sukoyo, G. Djoyowasito, Y. Wibisono, Unravelling the
potency of activated carbon powder derived from cultivated
marine microalgae as a promising filler in mixed matrix
membranes, AgriEngineering, 1 (2019) 188–204.
- S. You, Y.S. Ok, S.S. Chen, D.C.W. Tsang, E.E. Kwon, J. Lee,
C.-H. Wang, A critical review on sustainable biochar system
through gasification: energy and environmental applications,
Bioresour. Technol., 246 (2017) 242–253.
- S. Bousba, A.H. Meniai, Removal of phenol from water by
adsorption onto sewage sludge-based adsorbent, Chem. Eng.
Trans., 40 (2014) 235–240.
- M. Jain, S.A. Khan, A. Sahoo, P. Dubey, K.K. Pant, Z.M. Ziora,
M.A.T. Blaskovich, Statistical evaluation of cow-dung derived
activated biochar for phenol adsorption: adsorption isotherms,
kinetics, and thermodynamic studies, Bioresour. Technol.,
352 (2022) 127030, doi: 10.1016/j.biortech.2022.127030.
- S. Mishra, S.S. Yadav, S. Rawat, J. Singh, J.R. Koduru, Corn husk
derived magnetized activated carbon for the removal of phenol
and para-nitrophenol from aqueous solution: interaction
mechanism, insights on adsorbent characteristics, and
isothermal, kinetic and thermodynamic properties, J. Environ.
Manage., 246 (2019) 362–373.
- M. Mushtaq, H.N. Bhatti, M. Iqbal, S. Noreen, Eriobotrya
japonica seed biocomposite efficiency for copper adsorption:
isotherms, kinetics, thermodynamic and desorption studies,
J. Environ. Manage., 176 (2016) 21–33.
- G. Nirmala, T. Murugesan, K. Rambabu, K. Sathiyanarayanan,
P.L. Show, Adsorptive removal of phenol using banyan root
activated carbon, Chem. Eng. Commun., 208 (2019) 831–842.
- A. Mandal, P. Mukhopadhyay, S.K. Das, Adsorptive removal of
phenol from wastewater using guava tree bark, Environ. Sci.
Pollut. Res., 27 (2020) 23937–23949.
- A.A.A. Darwish, M. Rashad, H.A. AL-Aoh, Methyl orange
adsorption comparison on nanoparticles: isotherm, kinetics,
and thermodynamic studies, Dyes Pigm., 160 (2019) 563–571.
- S. Alafnan, A. Awotunde, G. Glatz, S. Adjei, I. Alrumaih,
A. Gowida, Langmuir adsorption isotherm in unconventional
resources: applicability and limitations, J. Pet. Sci. Eng.,
207 (2021) 109172, doi: 10.1016/j.petrol.2021.109172.
- J. Wang, X. Guo, Adsorption isotherm models:
classification, physical meaning, application and solving
method, Chemosphere, 258 (2020) 127279, doi: 10.1016/j.chemosphere.2020.127279.
- N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and
interpretation of adsorption isotherms, J. Chem., 2017 (2017)
1–11.
- L. Liu, X.B. Luo, L. Ding, S.L. Luo, Chapter 4 - Application
of Nanotechnology in the Removal of Heavy Metal From
Water, X. Luo, F. Deng, Eds., Nanomaterials for the Removal
of Pollutants and Resource Reutilization: Micro and Nano
Technologies, Elsevier, Amsterdam, 2019, pp. 83–147.
- Q. Hu, Z. Zhang, Application of Dubinin–Radushkevich
isotherm model at the solid/solution interface: a theoretical
analysis, J. Mol. Liq., 277 (2019) 646–648.
- O. Laçin, F. Demir, B. Bastaban, Determined of equilibrium
adsorption isotherm model pertechnetate oxoanion onto
activated carbon, Sinop. Uni. J. Nat. Sci., 4 (2019) 37–46.
- A.D. Zand, M.R. Abyaneh, Adsorption of lead, manganese, and
copper onto biochar in landfill leachate: implication of nonlinear
regression analysis, Sustain. Environ. Res., 30 (2020) 1–16.
- K. Noufel, N. Djebri, N. Boukhalfa, M. Boutahala, A. Dakhouche,
Removal of bisphenol A and trichlorophenol from aqueous
solutions by adsorption with organically modified bentonite,
activated carbon composites: a comparative study in single
and binary systems, Groundwater Sustainable Dev., 11 (2020)
100477, doi: 10.1016/j.gsd.2020.100477.
- Z.H. Ho, L.A. Adnan, Phenol removal from aqueous solution
by adsorption technique using coconut shell activated carbon,
Trop. Aqua. Soil Pollut., 1 (2021) 98–107.
- H. Cherifi, S. Hanini, F. Bentahar, Adsorption of phenol
from wastewater using vegetal cords as a new adsorbent,
Desalination, 244 (2009) 177–187.
- Z. Gong, S. Li, W. Han, J. Wang, J. Ma, X. Zhang, Recyclable
graphene oxide grafted with
poly(N-isopropylacrylamide) and
its enhanced selective adsorption for phenols, Appl. Surf. Sci.,
362 (2016) 459–468.
- A. Gupta, C. Balomajumder, Simultaneous adsorption of
Cr(VI) and phenol onto tea waste biomass from binary mixture:
multicomponent adsorption, thermodynamic and kinetic
study, J. Environ. Chem. Eng., 3 (2015) 785–796.
- M.A. Khan, A. Ahmad, Kinetics and thermodynamic studies
of phenol adsorption on nanocomposite, Desal. Water Treat.,
57 (2015) 11255–11265.
- O. Abdelwahab, N.K. Amin, Adsorption of phenol from
aqueous solutions by Luffa cylindrica fibers: kinetics, isotherm,
and thermodynamic studies, Egypt. J. Aquat. Res., 39 (2013)
215–223.
- J. Numbonui Ghogomu, D. Tsemo Noufame, E. Buleng Njoyim
Tamungang, D. Ajifack, J. Nsami Ndi,
J. Mbadcam Ketcha,
Adsorption of phenol from aqueous solutions onto natural and
thermally modified kaolinitic materials, Int. J. Biol. Chem. Sci.,
8 (2015) 2325–2338.
- A. Mandal, S.K. Das, Phenol adsorption from wastewater
using clarified sludge from basic oxygen furnace, J. Environ.
Chem. Eng., 7 (2019) 103259, doi: 10.1016/j.jece.2019.103259.
- Y. Dehmani, T. Lamhasni, A. Mohsine, Y. Tahri, H.S. Lee,
H. Lgaz, A.A. Alrashdi, S. Abouarnadasse, Adsorption removal
of phenol by oak wood charcoal activated carbon, Biomass
Convers. Biorefin., (2022), doi: 10.1007/s13399-022-03036-5.
- H.M. El-Bery, M. Saleh, R.A. El-Gendy, M.R. Saleh, S.M. Thabet,
High adsorption capacity of phenol and methylene blue using
activated carbon derived from lignocellulosic agriculture wastes,
Sci. Rep., 12 (2022) 5499, doi: 10.1038/s41598-022-09475-4.
- E.H. Gürkan, R.B. Akyol, S. Çoruh, Kinetic, isotherm modelling
analyses of the adsorption of phenol on activated carbon/alginate composites, Int. J. Phytorem., 25 (2023) 832–839.
- T.R. Sahoo, B. Prélot, Adsorption Processes for the Removal
of Contaminants from Wastewater: The Perspective Role of
Nanomaterials and Nanotechnology, B. Bonelli, F. Freyria,
I. Rossetti, R. Sethi, Eds., Nanomaterials for the Detection
and Removal of Wastewater Pollutants: Micro and Nano
Technologies, Elsevier, Amsterdam, 2020, pp. 161–222.
- R.M.C. Viegas, M. Campinas, H. Costa, M. João Rosa, How
do the HSDM and Boyd’s model compare for estimating
intraparticle diffusion coefficients in adsorption processes,
Adsorption, 20 (2014) 737–746.
- M. Wakkel, B. Khiari, F. Zagrouba, Textile wastewater
treatment by agro-industrial waste: equilibrium modelling,
thermodynamics and mass transfer mechanisms of cationic
dyes adsorption onto low-cost lignocellulosic adsorbent,
J. Taiwan Inst. Chem. Eng., 96 (2019) 439–452.
- L. Fu, J. Li, G. Wang, Y. Luan, W. Dai, Adsorption behavior of
organic pollutants on microplastics, Ecotoxicol. Environ. Saf.,
217 (2021) 112207, doi: 10.1016/j.ecoenv.2021.112207.
- R. Foroutan, S.J. Peighambardoust, S. Ghojavand, S. Farjadfard,
B. Ramavandi, Cadmium elimination from wastewater
using potato peel biochar modified by ZIF-8 and magnetic
nanoparticle, Colloid Interface Sci. Commun., 55 (2023) 100723,
doi: 10.1016/j.colcom.2023.100723.
- D. Naidu, P. Pattanaik, A.A. Das, N.K Sahoo, Kinetic of phenol
adsorption by mesoporous MCM-41 nanoparticles, Int. J.
Innovative Technol. Exploring Eng. (IJITEE), 8 (2019) 316–323.
- X. Sun, L. Ma, G. Ye, L. Wu, J. Li, H. Xu, G. Huang, Phenol
adsorption kinetics and isotherms on coal: effect of particle size,
Energy Sources Part A, 43 (2019) 461–474.
- N.G. Rincón-Silva, J.C. Moreno-Piraján, L. Giraldo, Equilibrium,
kinetics and thermodynamics study of phenols adsorption
onto activated carbon obtained from lignocellulosic material
(Eucalyptus Globulus labill seed), Adsorption, 22 (2015) 33–48.
- D.C.S. Alves, J.O. Gonçalves, B.B. Coseglio, T.A.L. Burgo,
G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval, Adsorption of
phenol onto chitosan hydrogel scaffold modified with
carbon nanotubes, J. Environ. Chem. Eng., 7 (2019) 103460,
doi: 10.1016/j.jece.2019.103460.
- W.P. Cheng, W. Gao, X. Cui, J.H. Ma, R.F. Li, Phenol adsorption
equilibrium and kinetics on zeolite X/activated carbon
composite, J. Taiwan Inst. Chem. Eng., 62 (2016) 192–198.
- M. Horsfall Jnr, A.I. Spiff, Effects of temperature on the sorption
of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor
(wild Cocoyam) biomass, Electron. J. Biotechnol., 8 (2005)
162–169.
- M. Salari, M.H. Dehghani, A. Azari, M.D. Motevalli,
A. Shabanloo, I. Ali, High performance removal of phenol
from aqueous solution by magnetic chitosan based on response
surface methodology and genetic algorithm, J. Mol. Liq.,
285 (2019) 146–157.
- N. Yadav, D. Narayan Maddheshiaya, S. Rawat, J. Singh,
Adsorption and equilibrium studies of phenol and paranitrophenol
by magnetic activated carbon synthesised from
cauliflower waste, Environ. Eng. Res., 25 (2020) 742–752.
- A. Khelfaoui, N. Chaouch, Comparative adsorption study of
phenol removal using Phoenix dactylifera fiber and its chemically
activated carbon, Desal. Water Treat., 278 (2022) 182–194.
- X. Kong, H. Gao, X. Song, Y. Deng, Y. Zhang, Adsorption of
phenol on porous carbon from Toona sinensis leaves and its
mechanism, Chem. Phys. Lett., 739 (2020) 137046, doi: 10.1016/j.cplett.2019.137046.
- N. Mojoudi, N. Mirghaffari, M. Soleimani, H. Shariatmadari,
C. Belver, J. Bedia, Phenol adsorption on high microporous
activated carbons prepared from oily sludge: equilibrium,
kinetic and thermodynamic studies, Sci. Rep., 9 (2019) 19352,
doi: 10.1038/s41598-019-55794-4.
- D. Zhang, P. Huo, W. Liu, Behavior of phenol adsorption on
thermal modified activated carbon, Chin. J. Chem. Eng.,
24 (2016) 446–452.
- B. Xie, J. Qin, S. Wang, X. Li, H. Sun, W. Chen, Adsorption
of phenol on commercial activated carbons: modelling and
interpretation, Int. J. Environ. Res. Public Health, 17 (2020) 789,
doi: 10.3390/ijerph17030789.