References

  1. A. Ahmadi, R. Foroutan, H. Esmaeili, S.J. Peighambardoust, S. Hemmati, B. Ramavandi, Montmorillonite clay/starch/CoFe2O4 nanocomposite as a superior functional material for uptake of cationic dye molecules from water and wastewater, Mater. Chem. Phys., 284 (2022) 126088, doi: 10.1016/j.matchemphys.2022.126088.
  2. W.W. Anku, M.A. Mamo, P.P. Govender, Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods, M. Soto-Hernandez, M. Palma-Tenango, M. del Rosario Garcia-Mateos, Eds., Phenolic Compounds—Natural Sources, Importance and Applications, InTechOpen, 2017, pp. 420–443.
  3. W. Raza, J. Lee, N. Raza, Y. Luo, K.H. Kim, J. Yang, Removal of phenolic compounds from industrial wastewater based on membrane-based technologies, J. Ind. Eng. Chem., 71 (2019) 1–18.
  4. Z. Asadgol, H. Forootanfar, S. Rezaei, A.H. Mahvi, M.A. Faramarzi, Removal of phenol and bisphenol — a catalyzed by laccase in aqueous solution, J. Environ. Health Sci. Eng., 12 (2014) 1–5.
  5. J. Michałowicz, W. Duda, Phenols – sources and toxicity, Pol. J. Environ. Stud., 16 (2007) 347–362.
  6. A.Q. Jaradat, A.R. Shtayat, S. Odat, A coagulation–flocculation process combined with continuous adsorption using eggshell waste materials for phenols and PAHs removal from landfill leachate, Environ. Eng. Res., 27 (2022) 210133, doi: 10.4491/eer.2021.133.
  7. M. Schwarze, S. Borchardt, M.L. Frisch, J. Collis, C. Walter, P.W. Menezes, P. Strasser, M. Driess, M. Tasbihi, Degradation of phenol via an advanced oxidation process (AOP) with immobilized commercial titanium dioxide (TiO2) photocatalysts, Nanomater, 13 (2023) 1249, doi: 10.3390/nano13071249.
  8. A. Almasi, M. Mahmoudi, M. Mohammadi, A. Dargahi, H. Biglari, Optimizing biological treatment of petroleum industry wastewater in a facultative stabilization pond for simultaneous removal of carbon and phenol, Toxin Rev., 40 (2019) 189–197.
  9. M. Wawrzkiewicz, A. Wołowicz, Z. Hubicki, Strongly basic anion exchange resin based on a cross-linked polyacrylate for simultaneous C.I. Acid Green 16, Zn(II), Cu(II), Ni(II) and phenol removal, Molecules, 27 (2022) 2096, doi: 10.3390/molecules27072096.
  10. M. Zamouche, M. Chermat, Z. Kermiche, H. Tahraoui, M. Kebir, J.C. Bollinger, A. Amrane, L. Mouni, Predictive model based on k-nearest neighbour coupled with the gray wolf optimizer algorithm (KNN_GWO) for estimating the amount of phenol adsorption on powdered activated carbon, Water, 15 (2023) 493, doi: 10.3390/w15030493.
  11. G. Issabayeva, S.Y. Hang, M.C. Wong, M.K. Aroua, A review on the adsorption of phenols from wastewater onto diverse groups of adsorbents, Rev. Chem. Eng., 34 (2017) 855–873.
  12. R. Foroutan, S.J. Peighambardoust, R. Mohammadi, S.H. Peighambardoust, B. Ramavandi, Development of new magnetic adsorbent of walnut shell ash/starch/Fe3O4 for effective copper ions removal: treatment of groundwater samples, Chemosphere, 296 (2022) 133978, doi: 10.1016/j.chemosphere.2022.133978.
  13. S. Ho, Low-cost adsorbents for the removal of phenol/phenolics, pesticides, and dyes from wastewater systems: a review, Water, 14 (2022) 3203.
  14. Md. Ahmaruzzaman, Adsorption of phenolic compounds on low-cost adsorbents: a review, Adv. Colloid Interface Sci., 143 (2008) 48–67.
  15. B.H. Hameed, A.A. Rahman, Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material, J. Hazard. Mater., 160 (2008) 576–581.
  16. A. Ahmad, S.A. Naqvi, M.J. Jaskani, M. Waseem, E. Ali, I.A. Khan, M. Faisal Manzoor, A. Siddeeg, R.M. Aadil, Efficient utilization of date palm waste for the bioethanol production through Saccharomyces cerevisiae strain, Food Sci. Nutr., 9 (2021) 2066–2074.
  17. A. Faiad, M. Alsmari, M.M.Z. Ahmed, M.L. Bouazizi, B. Alzahrani, H. Alrobei, Date palm tree waste recycling: treatment and processing for potential engineering applications, Sustainability, 14 (2022) 1134, doi: 10.3390/su14031134.
  18. S.E. Agarry, O.A. Aworanti, Kinetics, isothermal and thermodynamic modelling studies of hexavalent chromium ions adsorption from simulated wastewater onto parkia biglobosa-sawdust derived acid-steam activated carbon, Appl. J. Environ. Eng., 3 (2017) 58–76.
  19. P. Maziarka, P. Sommersacher, X. Wang, N. Kienzl, S. Retschitzegger, W. Prins, N. Hedin, F. Ronsse, Tailoring of the pore structures of wood pyrolysis chars for potential use in energy storage applications, Appl. Energy, 286 (2021) 116431, doi: 10.1016/j.apenergy.2020.116431.
  20. M.M. Nabeel Aljumaili, Y.I. Abdul-Aziz, High surface area peat moss biochar and its potential for chromium metal adsorption from aqueous solutions, S. Afr. J. Chem. Eng., 46 (2023) 22–34.
  21. Y. Önal, C. Akmil-Başar, Ç. Sarıcı-Özdemir, S. Erdoğan, Textural development of sugar beet bagasse activated with ZnCl2, J. Hazard. Mater., 142 (2007) 138–143.
  22. A. Machrouhi, H. Alilou, M. Farnane, S. El Hamidi, M. Sadiq, M. Abdennouri, H. Tounsadi, N. Barka, Statistical optimization of activated carbon from Thapsia transtagana stems and dyes removal efficiency using central composite design, J. Sci. Adv. Mater. Dev., 4 (2019) 544–553.
  23. M. Ding, C. Li, F. Chen, Isolation and characterization of cellulose nanocrystals from cloth hairs and evaluation of their compatibility with PLLA, Cellulose, 24 (2017) 4785–4792.
  24. G. Rajeshkumar, V. Hariharan, G.L. Devnani, J. Prakash Maran, M.R. Sanjay, S. Siengchin, N.A. Al-Dhabi, K. Ponmurugan, Cellulose fiber from date palm petioles as potential reinforcement for polymer composites: physicochemical and structural properties, Polym. Compos., 42 (2021) 3943–3953.
  25. Z. Ma, Y. Yang, Y. Wu, J. Xu, H. Peng, X. Liu, W. Zhang, S. Wang, In-depth comparison of the physicochemical characteristics of bio-char derived from biomass pseudo components: hemicellulose, cellulose, and lignin, J. Anal. Appl. Pyrolysis, 140 (2019) 195–204.
  26. S. Darmawan, N.J. Wistara, G. Pari, A. Maddu, W. Syafii, Characterization of lignocellulosic biomass as raw material for the production of porous carbon-based materials, BioRes, 11 (2016) 3561–3574.
  27. I. Ben Salem, M. El Gamal, M. Sharma, S. Hameedi, F.M. Howari, Utilization of the UAE date palm leaf biochar in carbon dioxide capture and sequestration processes, J. Environ. Manage., 299 (2021) 113644, doi: 10.1016/j.jenvman.2021.113644.
  28. M.S. Shamsuddin, N.R.N. Yusoff, M.A. Sulaiman, Synthesis and characterization of activated carbon produced from kenaf core fiber using H3PO4 activation, Procedia Chem., 19 (2016) 558–565.
  29. A. Sukoyo, G. Djoyowasito, Y. Wibisono, Unravelling the potency of activated carbon powder derived from cultivated marine microalgae as a promising filler in mixed matrix membranes, AgriEngineering, 1 (2019) 188–204.
  30. S. You, Y.S. Ok, S.S. Chen, D.C.W. Tsang, E.E. Kwon, J. Lee, C.-H. Wang, A critical review on sustainable biochar system through gasification: energy and environmental applications, Bioresour. Technol., 246 (2017) 242–253.
  31. S. Bousba, A.H. Meniai, Removal of phenol from water by adsorption onto sewage sludge-based adsorbent, Chem. Eng. Trans., 40 (2014) 235–240.
  32. M. Jain, S.A. Khan, A. Sahoo, P. Dubey, K.K. Pant, Z.M. Ziora, M.A.T. Blaskovich, Statistical evaluation of cow-dung derived activated biochar for phenol adsorption: adsorption isotherms, kinetics, and thermodynamic studies, Bioresour. Technol., 352 (2022) 127030, doi: 10.1016/j.biortech.2022.127030.
  33. S. Mishra, S.S. Yadav, S. Rawat, J. Singh, J.R. Koduru, Corn husk derived magnetized activated carbon for the removal of phenol and para-nitrophenol from aqueous solution: interaction mechanism, insights on adsorbent characteristics, and isothermal, kinetic and thermodynamic properties, J. Environ. Manage., 246 (2019) 362–373.
  34. M. Mushtaq, H.N. Bhatti, M. Iqbal, S. Noreen, Eriobotrya japonica seed biocomposite efficiency for copper adsorption: isotherms, kinetics, thermodynamic and desorption studies, J. Environ. Manage., 176 (2016) 21–33.
  35. G. Nirmala, T. Murugesan, K. Rambabu, K. Sathiyanarayanan, P.L. Show, Adsorptive removal of phenol using banyan root activated carbon, Chem. Eng. Commun., 208 (2019) 831–842.
  36. A. Mandal, P. Mukhopadhyay, S.K. Das, Adsorptive removal of phenol from wastewater using guava tree bark, Environ. Sci. Pollut. Res., 27 (2020) 23937–23949.
  37. A.A.A. Darwish, M. Rashad, H.A. AL-Aoh, Methyl orange adsorption comparison on nanoparticles: isotherm, kinetics, and thermodynamic studies, Dyes Pigm., 160 (2019) 563–571.
  38. S. Alafnan, A. Awotunde, G. Glatz, S. Adjei, I. Alrumaih, A. Gowida, Langmuir adsorption isotherm in unconventional resources: applicability and limitations, J. Pet. Sci. Eng., 207 (2021) 109172, doi: 10.1016/j.petrol.2021.109172.
  39. J. Wang, X. Guo, Adsorption isotherm models: classification, physical meaning, application and solving method, Chemosphere, 258 (2020) 127279, doi: 10.1016/j.chemosphere.2020.127279.
  40. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms, J. Chem., 2017 (2017) 1–11.
  41. L. Liu, X.B. Luo, L. Ding, S.L. Luo, Chapter 4 - Application of Nanotechnology in the Removal of Heavy Metal From Water, X. Luo, F. Deng, Eds., Nanomaterials for the Removal of Pollutants and Resource Reutilization: Micro and Nano Technologies, Elsevier, Amsterdam, 2019, pp. 83–147.
  42. Q. Hu, Z. Zhang, Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: a theoretical analysis, J. Mol. Liq., 277 (2019) 646–648.
  43. O. Laçin, F. Demir, B. Bastaban, Determined of equilibrium adsorption isotherm model pertechnetate oxoanion onto activated carbon, Sinop. Uni. J. Nat. Sci., 4 (2019) 37–46.
  44. A.D. Zand, M.R. Abyaneh, Adsorption of lead, manganese, and copper onto biochar in landfill leachate: implication of nonlinear regression analysis, Sustain. Environ. Res., 30 (2020) 1–16.
  45. K. Noufel, N. Djebri, N. Boukhalfa, M. Boutahala, A. Dakhouche, Removal of bisphenol A and trichlorophenol from aqueous solutions by adsorption with organically modified bentonite, activated carbon composites: a comparative study in single and binary systems, Groundwater Sustainable Dev., 11 (2020) 100477, doi: 10.1016/j.gsd.2020.100477.
  46. Z.H. Ho, L.A. Adnan, Phenol removal from aqueous solution by adsorption technique using coconut shell activated carbon, Trop. Aqua. Soil Pollut., 1 (2021) 98–107.
  47. H. Cherifi, S. Hanini, F. Bentahar, Adsorption of phenol from wastewater using vegetal cords as a new adsorbent, Desalination, 244 (2009) 177–187.
  48. Z. Gong, S. Li, W. Han, J. Wang, J. Ma, X. Zhang, Recyclable graphene oxide grafted with
    poly(N-isopropylacrylamide) and its enhanced selective adsorption for phenols, Appl. Surf. Sci., 362 (2016) 459–468.
  49. A. Gupta, C. Balomajumder, Simultaneous adsorption of Cr(VI) and phenol onto tea waste biomass from binary mixture: multicomponent adsorption, thermodynamic and kinetic study, J. Environ. Chem. Eng., 3 (2015) 785–796.
  50. M.A. Khan, A. Ahmad, Kinetics and thermodynamic studies of phenol adsorption on nanocomposite, Desal. Water Treat., 57 (2015) 11255–11265.
  51. O. Abdelwahab, N.K. Amin, Adsorption of phenol from aqueous solutions by Luffa cylindrica fibers: kinetics, isotherm, and thermodynamic studies, Egypt. J. Aquat. Res., 39 (2013) 215–223.
  52. J. Numbonui Ghogomu, D. Tsemo Noufame, E. Buleng Njoyim Tamungang, D. Ajifack, J. Nsami Ndi,
    J. Mbadcam Ketcha, Adsorption of phenol from aqueous solutions onto natural and thermally modified kaolinitic materials, Int. J. Biol. Chem. Sci., 8 (2015) 2325–2338.
  53. A. Mandal, S.K. Das, Phenol adsorption from wastewater using clarified sludge from basic oxygen furnace, J. Environ. Chem. Eng., 7 (2019) 103259, doi: 10.1016/j.jece.2019.103259.
  54. Y. Dehmani, T. Lamhasni, A. Mohsine, Y. Tahri, H.S. Lee, H. Lgaz, A.A. Alrashdi, S. Abouarnadasse, Adsorption removal of phenol by oak wood charcoal activated carbon, Biomass Convers. Biorefin., (2022), doi: 10.1007/s13399-022-03036-5.
  55. H.M. El-Bery, M. Saleh, R.A. El-Gendy, M.R. Saleh, S.M. Thabet, High adsorption capacity of phenol and methylene blue using activated carbon derived from lignocellulosic agriculture wastes, Sci. Rep., 12 (2022) 5499, doi: 10.1038/s41598-022-09475-4.
  56. E.H. Gürkan, R.B. Akyol, S. Çoruh, Kinetic, isotherm modelling analyses of the adsorption of phenol on activated carbon/alginate composites, Int. J. Phytorem., 25 (2023) 832–839.
  57. T.R. Sahoo, B. Prélot, Adsorption Processes for the Removal of Contaminants from Wastewater: The Perspective Role of Nanomaterials and Nanotechnology, B. Bonelli, F. Freyria, I. Rossetti, R. Sethi, Eds., Nanomaterials for the Detection and Removal of Wastewater Pollutants: Micro and Nano Technologies, Elsevier, Amsterdam, 2020, pp. 161–222.
  58. R.M.C. Viegas, M. Campinas, H. Costa, M. João Rosa, How do the HSDM and Boyd’s model compare for estimating intraparticle diffusion coefficients in adsorption processes, Adsorption, 20 (2014) 737–746.
  59. M. Wakkel, B. Khiari, F. Zagrouba, Textile wastewater treatment by agro-industrial waste: equilibrium modelling, thermodynamics and mass transfer mechanisms of cationic dyes adsorption onto low-cost lignocellulosic adsorbent, J. Taiwan Inst. Chem. Eng., 96 (2019) 439–452.
  60. L. Fu, J. Li, G. Wang, Y. Luan, W. Dai, Adsorption behavior of organic pollutants on microplastics, Ecotoxicol. Environ. Saf., 217 (2021) 112207, doi: 10.1016/j.ecoenv.2021.112207.
  61. R. Foroutan, S.J. Peighambardoust, S. Ghojavand, S. Farjadfard, B. Ramavandi, Cadmium elimination from wastewater using potato peel biochar modified by ZIF-8 and magnetic nanoparticle, Colloid Interface Sci. Commun., 55 (2023) 100723, doi: 10.1016/j.colcom.2023.100723.
  62. D. Naidu, P. Pattanaik, A.A. Das, N.K Sahoo, Kinetic of phenol adsorption by mesoporous MCM-41 nanoparticles, Int. J. Innovative Technol. Exploring Eng. (IJITEE), 8 (2019) 316–323.
  63. X. Sun, L. Ma, G. Ye, L. Wu, J. Li, H. Xu, G. Huang, Phenol adsorption kinetics and isotherms on coal: effect of particle size, Energy Sources Part A, 43 (2019) 461–474.
  64. N.G. Rincón-Silva, J.C. Moreno-Piraján, L. Giraldo, Equilibrium, kinetics and thermodynamics study of phenols adsorption onto activated carbon obtained from lignocellulosic material (Eucalyptus Globulus labill seed), Adsorption, 22 (2015) 33–48.
  65. D.C.S. Alves, J.O. Gonçalves, B.B. Coseglio, T.A.L. Burgo, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval, Adsorption of phenol onto chitosan hydrogel scaffold modified with carbon nanotubes, J. Environ. Chem. Eng., 7 (2019) 103460, doi: 10.1016/j.jece.2019.103460.
  66. W.P. Cheng, W. Gao, X. Cui, J.H. Ma, R.F. Li, Phenol adsorption equilibrium and kinetics on zeolite X/activated carbon composite, J. Taiwan Inst. Chem. Eng., 62 (2016) 192–198.
  67. M. Horsfall Jnr, A.I. Spiff, Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (wild Cocoyam) biomass, Electron. J. Biotechnol., 8 (2005) 162–169.
  68. M. Salari, M.H. Dehghani, A. Azari, M.D. Motevalli, A. Shabanloo, I. Ali, High performance removal of phenol from aqueous solution by magnetic chitosan based on response surface methodology and genetic algorithm, J. Mol. Liq., 285 (2019) 146–157.
  69. N. Yadav, D. Narayan Maddheshiaya, S. Rawat, J. Singh, Adsorption and equilibrium studies of phenol and paranitrophenol by magnetic activated carbon synthesised from cauliflower waste, Environ. Eng. Res., 25 (2020) 742–752.
  70. A. Khelfaoui, N. Chaouch, Comparative adsorption study of phenol removal using Phoenix dactylifera fiber and its chemically activated carbon, Desal. Water Treat., 278 (2022) 182–194.
  71. X. Kong, H. Gao, X. Song, Y. Deng, Y. Zhang, Adsorption of phenol on porous carbon from Toona sinensis leaves and its mechanism, Chem. Phys. Lett., 739 (2020) 137046, doi: 10.1016/j.cplett.2019.137046.
  72. N. Mojoudi, N. Mirghaffari, M. Soleimani, H. Shariatmadari, C. Belver, J. Bedia, Phenol adsorption on high microporous activated carbons prepared from oily sludge: equilibrium, kinetic and thermodynamic studies, Sci. Rep., 9 (2019) 19352, doi: 10.1038/s41598-019-55794-4.
  73. D. Zhang, P. Huo, W. Liu, Behavior of phenol adsorption on thermal modified activated carbon, Chin. J. Chem. Eng., 24 (2016) 446–452.
  74. B. Xie, J. Qin, S. Wang, X. Li, H. Sun, W. Chen, Adsorption of phenol on commercial activated carbons: modelling and interpretation, Int. J. Environ. Res. Public Health, 17 (2020) 789, doi: 10.3390/ijerph17030789.