References
- S.C. Bhatia, Pollution Control in Textile Industry, Woodhead
Publishing India Pvt. Ltd., India, 2017.
- K. Elass, A. Laachach, A. Alaoui, M. Azzi, Removal of methyl
violet from aqueous solution using a stevensite-rich clay
from Morocco, Appl. Clay Sci., 54 (2011) 90–96.
- W.C. Wanyonyi, J.M. Onyari, P.M. Shiundu, Adsorption
of Congo red dye from aqueous solutions using roots
of Eichhornia crassipes: kinetic and equilibrium studies,
Energy Procedia, 50 (2014) 862–869.
- W.G. Levine, Metabolism of azo dyes: implication for
detoxication and activation, Drug Metab. Rev., 23 (1991)
253–309.
- A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, Adsorptive removal
of hazardous anionic dye “Congo red” from wastewater using
waste materials and recovery by desorption, J. Colloid Sci.,
340 (2009) 16–26.
- S.I. Siddiqui, E.S. Allehyani, S.A. Al-Harbi, Z. Hasan,
M.A. Abomuti, H.K. Rajor, S. Oh, Investigation of Congo
red toxicity towards different living organisms: a review,
Processes, 11 (2023) 807, doi: 10.3390/pr11030807.
- A. Mittal, L. Kurup, Column operations for the removal and
recovery of a hazardous dye ‘acid red - 27’ from aqueous
solutions, using waste materials—bottom ash and de-oiled
soya, Ecol. Environ. Conserv., 12 (2006) 181–186.
- M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal
from aqueous solution by adsorption: a review, Adv. Colloid
Interface Sci., 209 (2014) 172–184.
- L.R. Bonetto, F. Ferrarini, C. de Marco, J.S. Crespo, R. Guégan,
M. Giovanela, Removal of methyl violet 2B dye from aqueous
solution using a magnetic composite as an adsorbent,
J. Water Process Eng., 6 (2015) 11–20.
- H. Uslu, M.E. Marti, Equilibrium data on the reactive
extraction of picric acid from dilute aqueous solutions using
amberlite LA-2 in ketones, J. Chem. Eng. Data, 62 (2017)
2132–2135.
- S. Chatterjee, M.W. Lee, S.H. Woo, Adsorption of Congo red by
chitosan hydrogel beads impregnated with carbon nanotubes,
Bioresour. Technol., 101 (2010) 1800–1806.
- K. Ali, H. Zeidan, M.E. Martı, Evaluation of olive pomace for
the separation of anionic dyes from aqueous solutions: kinetic,
thermodynamic, and isotherm studies, Desal. Water Treat.,
227 (2021) 412–424.
- P. Saharan, V. Kumar, J. Mittal, V. Sharma, A.K. Sharma,
Efficient ultrasonic assisted adsorption of organic pollutants
employing bimetallic-carbon nanocomposites, Sep. Sci.
Technol., 56 (2021) 2895–2908.
- J. Mittal, A. Mariyam, F. Sakina, R.T. Baker, A.K. Sharma,
A. Mittal, Batch and bulk adsorptive removal of anionic
dye using metal/halide-free ordered mesoporous carbon as
adsorbent, J. Cleaner Prod., 321 (2021) 129060, doi: 10.1016/j.
jclepro.2021.129060.
- A. Mittal, J. Mittal, A. Malviya, D. Kaur, V.K. Gupta, Adsorption
of hazardous dye crystal violet from wastewater by waste
materials, J. Colloid Sci., 343 (2010) 463–473.
- A. Mariyam, J. Mittal, F. Sakina, R.T. Baker, A.K. Sharma,
A. Mittal, Efficient batch and fixed-bed sequestration of a basic
dye using a novel variant of ordered mesoporous carbon as
adsorbent, Arabian J. Chem., 14 (2021) 103186, doi: 10.1016/j.arabjc.2021.103186.
- P.K. Malik, Dye removal from wastewater using activated
carbon developed from sawdust adsorption equilibrium and
kinetics, J. Hazard. Mater., 113 (2004) 81–88.
- A.A. Peláez-Cid, A.M. Herrera-González, M. Salazar-Villanueva, A. Bautista-Hernández, Elimination of textile dyes
using activated carbons prepared from vegetable residues and
their characterization, J. Environ. Manage., 181 (2016) 269–278.
- N. Boudechiche, M. Fares, S. Ouyahia, H. Yazid, M. Trari,
Z. Sadaoui, Comparative study on removal of two basic dyes
in aqueous medium by adsorption using activated carbon
from Ziziphus lotus stones, Microchem. J., 146 (2019) 1010–1018.
- P.M. Thabede, N.D. Shooto, E.B. Naidoo, Removal of
methylene blue dye and lead ions from aqueous solution
using activated carbon from black cumin seeds, J. Chem. Eng.,
33 (2020) 39–50.
- S. Husien, R.M. El-taweel, A.I. Salim, I.S. Fahim, L.A. Said,
A.G. Radwan, Review of activated carbon adsorbent material
for textile dyes removal: preparation, and modelling, Curr.
Green Chem., 5 (2022) 100325, doi: 10.1016/j.crgsc.2022.100325.
- A.A. Jalil, S. Triwahyono, M.R. Yaakob, Z.Z.A. Azmi, N. Sapawe,
N.H.N. Kamarudin, H.D. Setiabudi, N.F. Jaafar, S.M. Sidik,
S.H. Adam, B.H. Hameed, Utilization of bivalve shell-treated
Zea mays L. (maize) husk leaf as
a low-cost biosorbent for
enhanced adsorption of malachite green, Bioresour. Technol.,
120 (2012) 218–224.
- M.E. Marti, H. Zeidan, Evaluation of beet sugar processing
carbonation sludge for the remediation of synthetic dyes
from aqueous media, Int. J. Environ. Sci. Technol., 20 (2023)
3875–3890.
- G. Sheng, H. Dong, Y. Li, Characterization of diatomite
and its application for the retention of radiocobalt: role of
environmental parameters, J. Environ. Radioact., 113 (2012)
108–115.
- H. Tao, X. Qian, Y. Zhou, H. Cheng, Research progress of clay
minerals in carbon dioxide capture, Renewable Sustainable
Energy Rev., 164 (2022) 112536, doi: 10.1016/j.rser.2022.112536.
- S. De Gisi, G. Lofrano, M. Grassi, M. Notarnicola,
Characteristics and adsorption capacities of low-cost sorbents
for wastewater treatment: a review, Sustainable Mater.
Technol., 9 (2016) 10–40.
- A.A. Adeyemo, I.O. Adeoye, O.S. Bello, Adsorption of dyes
using different types of clay: a review, Appl. Water Sci.,
7 (2017) 543–568.
- A.M. Awad, S.M. Shaikh, R. Jalab, M.H. Gulied, M.S. Nasser,
A. Benamor, S. Adham, Adsorption of organic pollutants by
natural and modified clays: a comprehensive review, Sep. Purif.
Technol., 228 (2019) 115719, doi: 10.1016/j.seppur.2019.115719.
- J.L. Miao, J.Q. Ren, H.J. Li, D.G. Wu, Y.C. Wu, Mesoporous
crosslinked chitosan-activated clinoptilolite biocomposite for
the removal of anionic and cationic dyes, Colloids Surf., B,
216 (2022) 112579, doi: 10.1016/j.colsurfb.2022.112579.
- N. Karakaya, M.Ç. Karakaya, A. Temel, Mineralogical and
chemical properties and the origin of two types of analcime in
SW Ankara, Turkey, Clays Clay Miner., 61 (2013) 231–257.
- X. Wang, A. Fan, A.T. (Tom) van Loon, R. Yang, Z. Han, J. Li,
Chapter 11 – The Influence of Diagenesis on
Low-Porosity,
Low-Permeability Gas Reservoirs in the Sulige Gas Field
(Ordos Basin, China), R. Yang, A.J. (Tom) Van Loon, Eds.,
The Ordos Basin: Sedimentological Research for Hydrocarbons
Exploration, Elsevier, Amsterdam, 2022, pp. 191–215.
- A. Meunier, B. Velde, The Geology of Illite, In: Illite, Origins,
Evolution and Metamorphism, Springer, Berlin, Heidelberg,
2004.
- M. Celik Karakaya, Kil Minerallerinin Özellikleri ve Tanıtma
Yöntemleri, Selçuk University, Konya, Turkey, 2006.
- M. Celik Karakaya, N. Karakaya, Sistemik Mineraloji, Selçuk
University, Konya, Turkey, 2011.
- H.H. Murray, Applied Clay Mineralogy: Occurrences, Processing
and Applications of Kaolins, Bentonites, Palygorskite-Sepiolite,
and Common Clays, H.H. Murray, Ed., Developments in Clay
Science, Vol. 2, Elsevier, Amsterdam, 2007, 180 p.
- S. Mukherjee, Chemical Properties of Clay and Thermodynamic
Aspects, In: The Science of Clays: Applications in
Industry, Engineering and Environment, Springer Netherlands,
Dordrecht, Netherlands, 2013, pp. 46–53.
- M. Celik, N. Karakaya, A. Temel, Clay minerals in
hydrothermally altered volcanic rocks, Eastern Pontides,
Turkey, Clays Clay Miner., 47 (1999) 708–717.
- L.S. Balistrieri, J.W. Murray, The surface chemistry of goethite
(–FeOOH) in major ion seawater, Am. J. Sci., 281 (1981) 788–806.
- M.A.M. Khraisheh, M.A. Al-Ghouti, S.J. Allen, M.N. Ahmad,
Effect of OH and silanol groups in the removal of dyes from
aqueous solution using diatomite, Water Res., 39 (2005) 922–932.
- H. Zeidan, M. Can, M.E. Marti, Synthesis, characterization, and
use of an amine-functionalized mesoporous silica SBA-15 for
the removal of Congo red from aqueous media, Res. Chem.
Intermed., 49 (2023) 221–240.
- G. Sedmale, M. Randers, M. Rundans, V. Seglins, Application
of differently treated illite and illite clay samples for the
development of ceramics, Appl. Clay Sci., 146 (2017) 397–403.
- J.W. Madejová, G.S. Petit, IR Spectra of Clay Minerals,
Developments in Clay Science, Infrared and Raman Spectroscopies
of Clay Minerals, Elsevier, Amsterdam, 2017, pp. 107–149.
- F.M. Machado, C.P. Bergmann, T.H.M. Fernandes, E.C. Lima,
B. Royer, T. Calvete, S.B. Fagan, Adsorption of Reactive Red
M-2BE dye from water solutions by multi-walled carbon
nanotubes and activated carbon, J. Hazard. Mater., 192 (2011)
1122–1131.
- N. Karakaya, M.Ç. Karakaya, K. Faure, Doğu Karadeniz Bölgesi
kil mineralleşmelerinin oluşumu ve kökeni, Selçuk Univ.
Müh. Bilim Teknol. Derg., 22 (2007) 1–12.
- V. Ponnusami, S. Vikram, S.N. Srivastava, Guava (Psidium
guajava) leaf powder: novel adsorbent for removal of methylene
blue from aqueous solutions, J. Hazard. Mater., 152 (2008)
276–286.
- S. Dadou, T. Berrama, N. Doufene, C. Zekkaoui, A. Beriber,
Evaluating untreated clay’s adsorptive capacity to remove
an anionic dye from aqueous solution, Arabian J. Sci. Eng.,
44 (2019) 9889–9903.
- C.H. Weng, Y.F. Pan, Adsorption of a cationic dye (methylene
blue) onto spent activated clay, J. Hazard. Mater., 144 (2007)
355–362.
- Y. Omidi Khaniabadi, H. Basiri, H. Nourmoradi,
M.J. Mohammadi, A.R. Yari, S. Sadeghi, A. Amrane, Adsorption
of Congo red dye from aqueous solutions by montmorillonite
as a low-cost adsorbent, Int. J. Chem. React. Eng., 16 (2017)
20160203, doi: 10.1515/ijcre-2016-0203.
- K.L. Tan, B.H. Hameed, Insight into the adsorption kinetics
models for the removal of contaminants from aqueous
solutions, J. Taiwan Inst. Chem. Eng., 74 (2017) 25–48.
- H. Zeidan, M.E. Marti, Separation of formic acid from
aqueous solutions onto anion exchange resins: equilibrium,
kinetic, and thermodynamic data, J. Chem. Eng. Data,
64 (2019) 2718–2727.
- S. Lagergren, Zur theorie der sogenannten adsorption
geloster stoffe, Kungliga svenska vetenskapsakademiens,
Handlingar, 24 (1898) 1–39.
- Y.S. Ho, G. McKay, Pseudo-second-order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- S.Y. Elovich, O. Larinov, Theory of adsorption from solutions
of non-electrolytes on solid (I) equation adsorption from
solutions and the analysis of its simplest form, (II) verification
of the equation of adsorption isotherm from solutions,
Izv. Akad. Nauk. SSSR, Otd. Khim. Nauk., 2 (1962) 209–216.
- W.J. Weber, J.C. Morris, Water Pollution Symposium,
Proceedings of 1st International Conference on Water Pollution
Research, Pergamon Press, Oxford, 1962, pp. 231–266.
- G.M. Walker, L. Hansen, J.A. Hanna, S.J. Allen, Kinetics of a
reactive dye adsorption onto dolomitic sorbents, Water Res.,
37 (2003) 2081–2089.
- V. Vimonses, S. Lei, B. Jin, C.W.K. Chow, C. Saint, Kinetic study
and equilibrium isotherm analysis of Congo red adsorption
by clay materials, J. Chem. Eng., 148 (2009) 354–364.
- O.S. Omer, M.A. Hussein, B.H.M. Hussein, A. Mgaidi,
Adsorption thermodynamics of cationic dyes (methylene blue
and crystal violet) to a natural clay mineral from aqueous
solution between 293.15 and 323.15 K, Arabian J. Chem.,
11 (2018) 615–623.
- H. Zeidan, D. Ozdemir, N. Kose, E. Pehlivan, G. Ahmetli,
M.E. Marti, Separation of formic acid and acetic acid from
aqueous solutions using sugar beet processing fly ash:
characterization, kinetics, isotherms, and thermodynamics,
Desal. Water Treat., 202 (2020) 283–294.
- D.M. Ruthven, Principles of Adsorption and Adsorption
Processes, John Wiley & Sons, New York (USA), 1984.
- L. Cottet, C.A.P. Almeida, N. Naidek, M.F. Viante, M. Lopes,
N. Debacher, Adsorption characteristics of montmorillonite
clay modified with iron oxide with respect to methylene blue
in aqueous media, Appl. Clay Sci., 95 (2014) 25–31.
- K. Chinoune, K. Bentaleb, Z. Bouberka, A. Nadim, U. Maschke,
Adsorption of reactive dyes from aqueous solution by dirty
bentonite, Appl. Clay Sci., 123 (2016) 64–75.
- L. Wang, A. Wang, Adsorption characteristics of Congo red
onto the chitosan/montmorillonite nanocomposite, J. Hazard.
Mater., 147 (2007) 979–985.
- V. Vimonses, S. Lei, B. Jin, C.W.K. Chow, C. Saint, Kinetic study
and equilibrium ısotherm analysis of Congo red adsorption
by clay materials, Chem. Eng. J., 148 (2009) 354–364.
- F. Ding, M. Gao, T. Shen, H. Zeng, Y. Xiang, Comparative study
of organo-vermiculite, organo-montmorillonite and organosilica
nanosheets functionalized by an ether-spacer-containing
Gemini surfactant: Congo red adsorption and wettability,
Chem. Eng. J., 349 (2019) 388–396.
- J. Zhang, Z. Yan, J. Ouyang, H. Yang, D. Chen, Highly dispersed
sepiolite-based organic modified nanofibers for enhanced
adsorption of Congo red, Appl. Clay Sci., 157 (2018) 76–85.
- L. Zhang, L. Moghaddam, I.M. O’Hara, W.O.S. Doherty, Congo
red adsorption by ball-milled sugarcane bagasse, Chem. Eng. J.,
178 (2011) 122–128.
- V.K. Gupta, S. Agarwal, R. Ahmad, A. Mirza, J. Mittal,
Sequestration of toxic Congo red dye from aqueous solution
using ecofriendly guar gum/activated carbon nanocomposite,
Int. J. Biol. Macromol., 158 (2020) 1310–1318.
- G. Annadurai, R.L. Juang, D.J. Lee, Use of cellulose-based
wastes for adsorption of dyes from aqueous solutions,
J. Hazard. Mater., 92 (2002) 263–274.
- M.C.S. Reddy, V. Nirmala, C. Ashwini, Bengal gram seed husk
as an adsorbent for the removal 524 of dye from aqueous
solutions–batch studies, Arabian J. Chem., 10 (2017) 2554–2566.
- P.S. Kumar, S. Ramalingam, C. Senthamarai, M. Niranjanna,
P. Vijayalakshmi, S. Sivanesan, Adsorption of dye from aqueous
solution by cashew nut shell: studies on equilibrium isotherm,
kinetics and thermodynamics of interactions, Desalination,
261 (2010) 52–60.
- S. Dawood, T.K. Sen, Removal of anionic dye Congo red from
aqueous solution by raw pine and acid-treated pine cone
powder as adsorbent: equilibrium, thermodynamic, kinetics,
mechanism and process design, Water Res., 46 (2012) 1933–1946.
- K.G. Bhattacharyya, A. Sharma, Azadirachta indica leaf powder
as an effective biosorbent for dyes: a case study with aqueous
Congo red solutions, J. Environ. Manage., 71 (2004) 217–229.
- I.D. Mall, V.C. Srivastava, N.K. Agarwal, I.M. Mishra, Removal
of Congo red from aqueous solution by bagasse fly ash and
activated carbon: kinetic study and equilibrium isotherm
analyses, Chemosphere, 61 (2005) 492–501.
- N. Kumari, C. Mohan, Basics of Clay Minerals and Their
Characteristic Properties, G.M.D. Nascimento, Ed., Clay and
Clay Minerals, InTechOpen, 2021, pp. 1–29.
- C.A.P. Almeida, N.A. Debacher, A.J. Downs, L. Cottet,
C.A.D. Mello, Removal of methylene blue from colored
effluents by adsorption on montmorillonite clay, J. Colloid
Interface Sci., 332 (2009) 46–53.
- I. Langmuir, The constitution and fundamental properties of
solids and liquids, Part I. Solids, J. Am. Chem. Soc., 38 (1916)
2221–2295.
- H. Freundlich, Über die adsorption in lösungen, Zeitschrift für
physikalische Chemie., 57 (1907) 385–470.
- M. Temkin, Kinetics of ammonia synthesis on promoted iron
catalysts, Acta Physiochim., URSS, 12 (1940) 327–356.
- M.M. Dubinin, L.V. Radushkevich, Evaluation of microporous
materials with a new isotherm, In Dokl. Akad. Nauk. SSSR,
55 (1947) 331–334.
- M. Momina, M. Shahadat, S. Ismail, Regeneration potential of
bentonite-based Paintosorp™ for removal of industrial dye,
Arabian J. Sci. Eng., 45 (2020) 551–561.
- A.M. Ashrul, M.S.M. Sahid, K.M. Padmosoedarso, A.H. Mahadi,
E. Kusrini, J. Hobley, A. Usman, Individual and competitive
adsorption of negatively charged Acid Blue 25 and Acid
Red 1 onto raw Indonesian kaolin clay, Arabian J. Sci. Eng.,
47 (2022) 6617–6630.
- P.H. Chang, J. Guo, J. Li, Z. Li, X. Li, Seizing forbidden
drug ranitidine by illite and the adsorption mechanism
study, Colloids Surf., A, 639 (2022) 128395, doi: 10.1016/j.colsurfa.2022.128395.
- B.A.M. Fil, M. Korkmaz, C. Özmetin, Application of nonlinear
regression analysis for methyl violet (MV) dye adsorption
from solutions onto illite clay, J. Dispersion Sci. Technol.,
37 (2016) 991–1001.
- C. Saka, Ö. Sahin, Removal of methylene blue from aqueous
solutions by using cold plasma- and formaldehyde-treated
onion skins, Color. Technol., 127 (2011) 246–255.