References

  1. S.C. Bhatia, Pollution Control in Textile Industry, Woodhead Publishing India Pvt. Ltd., India, 2017.
  2. K. Elass, A. Laachach, A. Alaoui, M. Azzi, Removal of methyl violet from aqueous solution using a stevensite-rich clay from Morocco, Appl. Clay Sci., 54 (2011) 90–96.
  3. W.C. Wanyonyi, J.M. Onyari, P.M. Shiundu, Adsorption of Congo red dye from aqueous solutions using roots of Eichhornia crassipes: kinetic and equilibrium studies, Energy Procedia, 50 (2014) 862–869.
  4. W.G. Levine, Metabolism of azo dyes: implication for detoxication and activation, Drug Metab. Rev., 23 (1991) 253–309.
  5. A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption, J. Colloid Sci., 340 (2009) 16–26.
  6. S.I. Siddiqui, E.S. Allehyani, S.A. Al-Harbi, Z. Hasan, M.A. Abomuti, H.K. Rajor, S. Oh, Investigation of Congo red toxicity towards different living organisms: a review, Processes, 11 (2023) 807, doi: 10.3390/pr11030807.
  7. A. Mittal, L. Kurup, Column operations for the removal and recovery of a hazardous dye ‘acid red - 27’ from aqueous solutions, using waste materials—bottom ash and de-oiled soya, Ecol. Environ. Conserv., 12 (2006) 181–186.
  8. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Colloid Interface Sci., 209 (2014) 172–184.
  9. L.R. Bonetto, F. Ferrarini, C. de Marco, J.S. Crespo, R. Guégan, M. Giovanela, Removal of methyl violet 2B dye from aqueous solution using a magnetic composite as an adsorbent, J. Water Process Eng., 6 (2015) 11–20.
  10. H. Uslu, M.E. Marti, Equilibrium data on the reactive extraction of picric acid from dilute aqueous solutions using amberlite LA-2 in ketones, J. Chem. Eng. Data, 62 (2017) 2132–2135.
  11. S. Chatterjee, M.W. Lee, S.H. Woo, Adsorption of Congo red by chitosan hydrogel beads impregnated with carbon nanotubes, Bioresour. Technol., 101 (2010) 1800–1806.
  12. K. Ali, H. Zeidan, M.E. Martı, Evaluation of olive pomace for the separation of anionic dyes from aqueous solutions: kinetic, thermodynamic, and isotherm studies, Desal. Water Treat., 227 (2021) 412–424.
  13. P. Saharan, V. Kumar, J. Mittal, V. Sharma, A.K. Sharma, Efficient ultrasonic assisted adsorption of organic pollutants employing bimetallic-carbon nanocomposites, Sep. Sci. Technol., 56 (2021) 2895–2908.
  14. J. Mittal, A. Mariyam, F. Sakina, R.T. Baker, A.K. Sharma, A. Mittal, Batch and bulk adsorptive removal of anionic dye using metal/halide-free ordered mesoporous carbon as adsorbent, J. Cleaner Prod., 321 (2021) 129060, doi: 10.1016/j. jclepro.2021.129060.
  15. A. Mittal, J. Mittal, A. Malviya, D. Kaur, V.K. Gupta, Adsorption of hazardous dye crystal violet from wastewater by waste materials, J. Colloid Sci., 343 (2010) 463–473.
  16. A. Mariyam, J. Mittal, F. Sakina, R.T. Baker, A.K. Sharma, A. Mittal, Efficient batch and fixed-bed sequestration of a basic dye using a novel variant of ordered mesoporous carbon as adsorbent, Arabian J. Chem., 14 (2021) 103186, doi: 10.1016/j.arabjc.2021.103186.
  17. P.K. Malik, Dye removal from wastewater using activated carbon developed from sawdust adsorption equilibrium and kinetics, J. Hazard. Mater., 113 (2004) 81–88.
  18. A.A. Peláez-Cid, A.M. Herrera-González, M. Salazar-Villanueva, A. Bautista-Hernández, Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization, J. Environ. Manage., 181 (2016) 269–278.
  19. N. Boudechiche, M. Fares, S. Ouyahia, H. Yazid, M. Trari, Z. Sadaoui, Comparative study on removal of two basic dyes in aqueous medium by adsorption using activated carbon from Ziziphus lotus stones, Microchem. J., 146 (2019) 1010–1018.
  20. P.M. Thabede, N.D. Shooto, E.B. Naidoo, Removal of methylene blue dye and lead ions from aqueous solution using activated carbon from black cumin seeds, J. Chem. Eng., 33 (2020) 39–50.
  21. S. Husien, R.M. El-taweel, A.I. Salim, I.S. Fahim, L.A. Said, A.G. Radwan, Review of activated carbon adsorbent material for textile dyes removal: preparation, and modelling, Curr. Green Chem., 5 (2022) 100325, doi: 10.1016/j.crgsc.2022.100325.
  22. A.A. Jalil, S. Triwahyono, M.R. Yaakob, Z.Z.A. Azmi, N. Sapawe, N.H.N. Kamarudin, H.D. Setiabudi, N.F. Jaafar, S.M. Sidik, S.H. Adam, B.H. Hameed, Utilization of bivalve shell-treated Zea mays L. (maize) husk leaf as
    a low-cost biosorbent for enhanced adsorption of malachite green, Bioresour. Technol., 120 (2012) 218–224.
  23. M.E. Marti, H. Zeidan, Evaluation of beet sugar processing carbonation sludge for the remediation of synthetic dyes from aqueous media, Int. J. Environ. Sci. Technol., 20 (2023) 3875–3890.
  24. G. Sheng, H. Dong, Y. Li, Characterization of diatomite and its application for the retention of radiocobalt: role of environmental parameters, J. Environ. Radioact., 113 (2012) 108–115.
  25. H. Tao, X. Qian, Y. Zhou, H. Cheng, Research progress of clay minerals in carbon dioxide capture, Renewable Sustainable Energy Rev., 164 (2022) 112536, doi: 10.1016/j.rser.2022.112536.
  26. S. De Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review, Sustainable Mater. Technol., 9 (2016) 10–40.
  27. A.A. Adeyemo, I.O. Adeoye, O.S. Bello, Adsorption of dyes using different types of clay: a review, Appl. Water Sci., 7 (2017) 543–568.
  28. A.M. Awad, S.M. Shaikh, R. Jalab, M.H. Gulied, M.S. Nasser, A. Benamor, S. Adham, Adsorption of organic pollutants by natural and modified clays: a comprehensive review, Sep. Purif. Technol., 228 (2019) 115719, doi: 10.1016/j.seppur.2019.115719.
  29. J.L. Miao, J.Q. Ren, H.J. Li, D.G. Wu, Y.C. Wu, Mesoporous crosslinked chitosan-activated clinoptilolite biocomposite for the removal of anionic and cationic dyes, Colloids Surf., B, 216 (2022) 112579, doi: 10.1016/j.colsurfb.2022.112579.
  30. N. Karakaya, M.Ç. Karakaya, A. Temel, Mineralogical and chemical properties and the origin of two types of analcime in SW Ankara, Turkey, Clays Clay Miner., 61 (2013) 231–257.
  31. X. Wang, A. Fan, A.T. (Tom) van Loon, R. Yang, Z. Han, J. Li, Chapter 11 – The Influence of Diagenesis on
    Low-Porosity, Low-Permeability Gas Reservoirs in the Sulige Gas Field (Ordos Basin, China), R. Yang, A.J. (Tom) Van Loon, Eds., The Ordos Basin: Sedimentological Research for Hydrocarbons Exploration, Elsevier, Amsterdam, 2022, pp. 191–215.
  32. A. Meunier, B. Velde, The Geology of Illite, In: Illite, Origins, Evolution and Metamorphism, Springer, Berlin, Heidelberg, 2004.
  33. M. Celik Karakaya, Kil Minerallerinin Özellikleri ve Tanıtma Yöntemleri, Selçuk University, Konya, Turkey, 2006.
  34. M. Celik Karakaya, N. Karakaya, Sistemik Mineraloji, Selçuk University, Konya, Turkey, 2011.
  35. H.H. Murray, Applied Clay Mineralogy: Occurrences, Processing and Applications of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays, H.H. Murray, Ed., Developments in Clay Science, Vol. 2, Elsevier, Amsterdam, 2007, 180 p.
  36. S. Mukherjee, Chemical Properties of Clay and Thermodynamic Aspects, In: The Science of Clays: Applications in Industry, Engineering and Environment, Springer Netherlands, Dordrecht, Netherlands, 2013, pp. 46–53.
  37. M. Celik, N. Karakaya, A. Temel, Clay minerals in hydrothermally altered volcanic rocks, Eastern Pontides, Turkey, Clays Clay Miner., 47 (1999) 708–717.
  38. L.S. Balistrieri, J.W. Murray, The surface chemistry of goethite (–FeOOH) in major ion seawater, Am. J. Sci., 281 (1981) 788–806.
  39. M.A.M. Khraisheh, M.A. Al-Ghouti, S.J. Allen, M.N. Ahmad, Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite, Water Res., 39 (2005) 922–932.
  40. H. Zeidan, M. Can, M.E. Marti, Synthesis, characterization, and use of an amine-functionalized mesoporous silica SBA-15 for the removal of Congo red from aqueous media, Res. Chem. Intermed., 49 (2023) 221–240.
  41. G. Sedmale, M. Randers, M. Rundans, V. Seglins, Application of differently treated illite and illite clay samples for the development of ceramics, Appl. Clay Sci., 146 (2017) 397–403.
  42. J.W. Madejová, G.S. Petit, IR Spectra of Clay Minerals, Developments in Clay Science, Infrared and Raman Spectroscopies of Clay Minerals, Elsevier, Amsterdam, 2017, pp. 107–149.
  43. F.M. Machado, C.P. Bergmann, T.H.M. Fernandes, E.C. Lima, B. Royer, T. Calvete, S.B. Fagan, Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon, J. Hazard. Mater., 192 (2011) 1122–1131.
  44. N. Karakaya, M.Ç. Karakaya, K. Faure, Doğu Karadeniz Bölgesi kil mineralleşmelerinin oluşumu ve kökeni, Selçuk Univ. Müh. Bilim Teknol. Derg., 22 (2007) 1–12.
  45. V. Ponnusami, S. Vikram, S.N. Srivastava, Guava (Psidium guajava) leaf powder: novel adsorbent for removal of methylene blue from aqueous solutions, J. Hazard. Mater., 152 (2008) 276–286.
  46. S. Dadou, T. Berrama, N. Doufene, C. Zekkaoui, A. Beriber, Evaluating untreated clay’s adsorptive capacity to remove an anionic dye from aqueous solution, Arabian J. Sci. Eng., 44 (2019) 9889–9903.
  47. C.H. Weng, Y.F. Pan, Adsorption of a cationic dye (methylene blue) onto spent activated clay, J. Hazard. Mater., 144 (2007) 355–362.
  48. Y. Omidi Khaniabadi, H. Basiri, H. Nourmoradi, M.J. Mohammadi, A.R. Yari, S. Sadeghi, A. Amrane, Adsorption of Congo red dye from aqueous solutions by montmorillonite as a low-cost adsorbent, Int. J. Chem. React. Eng., 16 (2017) 20160203, doi: 10.1515/ijcre-2016-0203.
  49. K.L. Tan, B.H. Hameed, Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions, J. Taiwan Inst. Chem. Eng., 74 (2017) 25–48.
  50. H. Zeidan, M.E. Marti, Separation of formic acid from aqueous solutions onto anion exchange resins: equilibrium, kinetic, and thermodynamic data, J. Chem. Eng. Data, 64 (2019) 2718–2727.
  51. S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe, Kungliga svenska vetenskapsakademiens, Handlingar, 24 (1898) 1–39.
  52. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  53. S.Y. Elovich, O. Larinov, Theory of adsorption from solutions of non-electrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form, (II) verification of the equation of adsorption isotherm from solutions, Izv. Akad. Nauk. SSSR, Otd. Khim. Nauk., 2 (1962) 209–216.
  54. W.J. Weber, J.C. Morris, Water Pollution Symposium, Proceedings of 1st International Conference on Water Pollution Research, Pergamon Press, Oxford, 1962, pp. 231–266.
  55. G.M. Walker, L. Hansen, J.A. Hanna, S.J. Allen, Kinetics of a reactive dye adsorption onto dolomitic sorbents, Water Res., 37 (2003) 2081–2089.
  56. V. Vimonses, S. Lei, B. Jin, C.W.K. Chow, C. Saint, Kinetic study and equilibrium isotherm analysis of Congo red adsorption by clay materials, J. Chem. Eng., 148 (2009) 354–364.
  57. O.S. Omer, M.A. Hussein, B.H.M. Hussein, A. Mgaidi, Adsorption thermodynamics of cationic dyes (methylene blue and crystal violet) to a natural clay mineral from aqueous solution between 293.15 and 323.15 K, Arabian J. Chem., 11 (2018) 615–623.
  58. H. Zeidan, D. Ozdemir, N. Kose, E. Pehlivan, G. Ahmetli, M.E. Marti, Separation of formic acid and acetic acid from aqueous solutions using sugar beet processing fly ash: characterization, kinetics, isotherms, and thermodynamics, Desal. Water Treat., 202 (2020) 283–294.
  59. D.M. Ruthven, Principles of Adsorption and Adsorption Processes, John Wiley & Sons, New York (USA), 1984.
  60. L. Cottet, C.A.P. Almeida, N. Naidek, M.F. Viante, M. Lopes, N. Debacher, Adsorption characteristics of montmorillonite clay modified with iron oxide with respect to methylene blue in aqueous media, Appl. Clay Sci., 95 (2014) 25–31.
  61. K. Chinoune, K. Bentaleb, Z. Bouberka, A. Nadim, U. Maschke, Adsorption of reactive dyes from aqueous solution by dirty bentonite, Appl. Clay Sci., 123 (2016) 64–75.
  62. L. Wang, A. Wang, Adsorption characteristics of Congo red onto the chitosan/montmorillonite nanocomposite, J. Hazard. Mater., 147 (2007) 979–985.
  63. V. Vimonses, S. Lei, B. Jin, C.W.K. Chow, C. Saint, Kinetic study and equilibrium ısotherm analysis of Congo red adsorption by clay materials, Chem. Eng. J., 148 (2009) 354–364.
  64. F. Ding, M. Gao, T. Shen, H. Zeng, Y. Xiang, Comparative study of organo-vermiculite, organo-montmorillonite and organosilica nanosheets functionalized by an ether-spacer-containing Gemini surfactant: Congo red adsorption and wettability, Chem. Eng. J., 349 (2019) 388–396.
  65. J. Zhang, Z. Yan, J. Ouyang, H. Yang, D. Chen, Highly dispersed sepiolite-based organic modified nanofibers for enhanced adsorption of Congo red, Appl. Clay Sci., 157 (2018) 76–85.
  66. L. Zhang, L. Moghaddam, I.M. O’Hara, W.O.S. Doherty, Congo red adsorption by ball-milled sugarcane bagasse, Chem. Eng. J., 178 (2011) 122–128.
  67. V.K. Gupta, S. Agarwal, R. Ahmad, A. Mirza, J. Mittal, Sequestration of toxic Congo red dye from aqueous solution using ecofriendly guar gum/activated carbon nanocomposite, Int. J. Biol. Macromol., 158 (2020) 1310–1318.
  68. G. Annadurai, R.L. Juang, D.J. Lee, Use of cellulose-based wastes for adsorption of dyes from aqueous solutions, J. Hazard. Mater., 92 (2002) 263–274.
  69. M.C.S. Reddy, V. Nirmala, C. Ashwini, Bengal gram seed husk as an adsorbent for the removal 524 of dye from aqueous solutions–batch studies, Arabian J. Chem., 10 (2017) 2554–2566.
  70. P.S. Kumar, S. Ramalingam, C. Senthamarai, M. Niranjanna, P. Vijayalakshmi, S. Sivanesan, Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions, Desalination, 261 (2010) 52–60.
  71. S. Dawood, T.K. Sen, Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design, Water Res., 46 (2012) 1933–1946.
  72. K.G. Bhattacharyya, A. Sharma, Azadirachta indica leaf powder as an effective biosorbent for dyes: a case study with aqueous Congo red solutions, J. Environ. Manage., 71 (2004) 217–229.
  73. I.D. Mall, V.C. Srivastava, N.K. Agarwal, I.M. Mishra, Removal of Congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses, Chemosphere, 61 (2005) 492–501.
  74. N. Kumari, C. Mohan, Basics of Clay Minerals and Their Characteristic Properties, G.M.D. Nascimento, Ed., Clay and Clay Minerals, InTechOpen, 2021, pp. 1–29.
  75. C.A.P. Almeida, N.A. Debacher, A.J. Downs, L. Cottet, C.A.D. Mello, Removal of methylene blue from colored effluents by adsorption on montmorillonite clay, J. Colloid Interface Sci., 332 (2009) 46–53.
  76. I. Langmuir, The constitution and fundamental properties of solids and liquids, Part I. Solids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  77. H. Freundlich, Über die adsorption in lösungen, Zeitschrift für physikalische Chemie., 57 (1907) 385–470.
  78. M. Temkin, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physiochim., URSS, 12 (1940) 327–356.
  79. M.M. Dubinin, L.V. Radushkevich, Evaluation of microporous materials with a new isotherm, In Dokl. Akad. Nauk. SSSR, 55 (1947) 331–334.
  80. M. Momina, M. Shahadat, S. Ismail, Regeneration potential of bentonite-based Paintosorp™ for removal of industrial dye, Arabian J. Sci. Eng., 45 (2020) 551–561.
  81. A.M. Ashrul, M.S.M. Sahid, K.M. Padmosoedarso, A.H. Mahadi, E. Kusrini, J. Hobley, A. Usman, Individual and competitive adsorption of negatively charged Acid Blue 25 and Acid Red 1 onto raw Indonesian kaolin clay, Arabian J. Sci. Eng., 47 (2022) 6617–6630.
  82. P.H. Chang, J. Guo, J. Li, Z. Li, X. Li, Seizing forbidden drug ranitidine by illite and the adsorption mechanism study, Colloids Surf., A, 639 (2022) 128395, doi: 10.1016/j.colsurfa.2022.128395.
  83. B.A.M. Fil, M. Korkmaz, C. Özmetin, Application of nonlinear regression analysis for methyl violet (MV) dye adsorption from solutions onto illite clay, J. Dispersion Sci. Technol., 37 (2016) 991–1001.
  84. C. Saka, Ö. Sahin, Removal of methylene blue from aqueous solutions by using cold plasma- and formaldehyde-treated onion skins, Color. Technol., 127 (2011) 246–255.