References

  1. C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B. Pandit, A critical review on textile wastewater treatments: possible approaches, J. Environ. Manage., 182 (2016) 351–366.
  2. F.V. da F. Araujo, L. Yokoyama, L.A.C. Teixeira, Remoção de cor em soluções de corantes reativos por oxidação com H2O2/UV, Quim. Nova, 29 (2006) 11–14.
  3. L. Bilińska, K. Blus, M. Gmurek, S. Ledakowicz, Coupling of electrocoagulation and ozone treatment for textile wastewater reuse, Chem. Eng. J., 358 (2019) 992–1001.
  4. S.B. Jadhav, A.S. Chougule, D.P. Shah, C.S. Pereira, J.P. Jadhav, Application of response surface methodology for the optimization of textile effluent biodecolorization and its toxicity perspectives using plant toxicity, plasmid nicking assays, Clean Technol. Environ. Policy, 17 (2015) 709–720.
  5. M.R. Al-Mamun, S. Kader, M.S. Islam, M.Z.H. Khan, Photocatalytic activity improvement and application
    of UV-TiO2 photocatalysis in textile wastewater treatment: a review, J. Environ. Chem. Eng., 7 (2019) 103248, doi: 10.1016/j.jece.2019.103248.
  6. S. Dey, A. Islam, A review on textile wastewater characterization in Bangladesh, Resour. Environ., 5 (2015) 15–44.
  7. M. Paredes-Laverde, M. Salamanca, J.D. Diaz-Corrales, E. Flórez, J. Silva-Agredo, R.A. Torres-Palma, Understanding the removal of an anionic dye in textile wastewaters by adsorption on ZnCl2 activated carbons from rice and coffee husk wastes: a combined experimental and theoretical study, J. Environ. Chem. Eng., 9 (2021) 105685, doi: 10.1016/j.jece.2021.105685.
  8. S.M. Turp, G.A. Turp, N. Ekinci, S. Özdemir, Enhanced adsorption of methylene blue from textile wastewater by using natural and artificial zeolite, Water Sci. Technol., 82 (2020) 513–523.
  9. A. Yurtsever, E. Basaran, D. Ucar, Process optimization and filtration performance of an anaerobic dynamic membrane bioreactor treating textile wastewaters, J. Environ. Manage., 273 (2020) 111114, doi: 10.1016/j.jenvman.2020.111114.
  10. R. Shoukat, S.J. Khan, Y. Jamal, Hybrid anaerobic-aerobic biological treatment for real textile wastewater, J. Water Process Eng., 29 (2019) 100804, doi: 10.1016/j.jwpe.2019.100804.
  11. S. Araújo, M. Damianovic, E. Foresti, L. Florencio, M.T. Kato, S. Gavazza, Biological treatment of real textile wastewater containing sulphate, salinity, and surfactant through an anaerobic–aerobic system, Water Sci. Technol., 85 (2022) 2882–2898.
  12. A.K. Verma, Treatment of textile wastewaters by electrocoagulation employing Fe-Al composite electrode, J. Water Process Eng., 20 (2017) 168–172.
  13. J. Esther Baby, I. Jaambavi, G. Rajeswari, T. Akshaya, Optimization removal of colour and organic solid pollutants from textile industry wastewater by electrocoagulation, Mater. Today Proc., (2021) 3–6, doi: 10.1016/j.matpr.2021.03.339.
  14. J. Núñez, M. Yeber, N. Cisternas, R. Thibaut, P. Medina, C. Carrasco, Application of electrocoagulation for the efficient pollutants removal to reuse the treated wastewater in the dyeing process of the textile industry, J. Hazard. Mater., 371 (2019) 705–711.
  15. M. Saleh, R. Yildirim, Z. Isik, A. Karagunduz, B. Keskinler, N. Dizge, Optimization of the electrochemical oxidation of textile wastewater by graphite electrodes by response surface methodology and artificial neural network, Water Sci. Technol., 84 (2021) 1245–1256.
  16. J. Zou, X. Peng, M. Li, Y. Xiong, B. Wang, F. Dong, B. Wang, Electrochemical oxidation of COD from real textile wastewaters: kinetic study and energy consumption, Chemosphere, 171 (2017) 332–338.
  17. C. Pinto, A. Fernandes, A. Lopes, M.J. Nunes, A. Baía, L. Ciríaco, M.J. Pacheco, Reuse of textile dyeing wastewater treated by electrooxidation, Water (Switzerland), 14 (2022) 1084, doi: 10.3390/w14071084.
  18. K. Nadeem, G.T. Guyer, N. Dizge, Polishing of biologically treated textile wastewater through AOPs and recycling for wet processing, J. Water Process Eng., 20 (2017) 29–39.
  19. J.P. Ribeiro, J.T. Oliveira, A.G. Oliveira, F.W. Sousa, E.F. Abdala Neto, C.B. Vidal, D. de Keukeleire, A.B. dos Santos, R.F. Nascimento, Treatment of sulfonated azo dye Reactive Red 198 by UV/H2O2, J. Chem., 2014 (2014) 619815, doi: 10.1155/2014/619815.
  20. A. Kuleyin, A. Gök, F. Akbal, Treatment of textile industry wastewater by electro-Fenton process using graphite electrodes in batch and continuous mode, J. Environ. Chem. Eng., 9 (2021) 104782, doi: 10.1016/j.jece.2020.104782.
  21. P. Colindres, H. Yee-Madeira, E. Reguera, Removal of Reactive Black 5 from aqueous solution by ozone for water reuse in textile dyeing processes, Desalination, 258 (2010) 154–158.
  22. L. Bilińska, K. Blus, M. Foszpańczyk, M. Gmurek, S. Ledakowicz, Catalytic ozonation of textile wastewater as a polishing step after industrial scale electrocoagulation, J. Environ. Manage., 265 (2020) 110502, doi: 10.1016/j.jenvman.2020.110502.
  23. E. GilPavas, I. Dobrosz-Gómez, M.-Á. Gómez-García, Optimization and toxicity assessment of a combined electrocoagulation, H2O2/Fe2+/UV and activated carbon adsorption for textile wastewater treatment, Sci. Total Environ., 651 (2019) 551–560.
  24. K. Ramesh, B.M. Gnanamangai, R. Mohanraj, Investigating techno-economic feasibility of biologically pretreated textile wastewater treatment by electrochemical oxidation process towards zero sludge concept, J. Environ. Chem. Eng., 9 (2021) 106289, doi: 10.1016/j.jece.2021.106289.
  25. Ö. Bulca, B. Palas, S. Atalay, G. Ersöz, Performance investigation of the hybrid methods of adsorption or catalytic wet air oxidation subsequent to electrocoagulation in treatment of real textile wastewater and kinetic modelling, J. Water Process Eng., 40 (2021) 101821, doi: 10.1016/j.jwpe.2020.101821.
  26. H. Zazou, H. Afanga, S. Akhouairi, H. Ouchtak, A.A. Addi, R.A. Akbour, A. Assabbane, J. Douch, A. Elmchaouri, J. Duplay, A. Jada, M. Hamdani, Treatment of textile industry wastewater by electrocoagulation coupled with electrochemical advanced oxidation process, J. Water Process Eng., 28 (2019) 214–221.
  27. E. GilPavas, I. Dobrosz-Gómez, M.-Á. Gómez-García, Efficient treatment for textile wastewater through sequential electrocoagulation, electrochemical oxidation and adsorption processes: optimization and toxicity assessment, J. Electroanal. Chem., 878 (2020) 114578, doi: 10.1016/j.jelechem.2020.114578.
  28. S. Garcia-Segura, M.M.S.G. Eiband, J.V. de Melo, C.A. Martínez-Huitle, Electrocoagulation and advanced electrocoagulation processes: a general review about the fundamentals, emerging applications and its association with other technologies, J. Electroanal. Chem., 801 (2017) 267–299.
  29. J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, J. Naja, Electrocoagulation process in water treatment: a review of electrocoagulation modeling approaches, Desalination, 404 (2017) 1–21.
  30. M.Y.A. Mollah, P. Morkovsky, J.A.G. Gomes, M. Kesmez, J. Parga, D.L. Cocke, Fundamentals, present and future perspectives of electrocoagulation, J. Hazard. Mater., 114 (2004) 199–210.
  31. M.Y.A. Mollah, R. Schennach, J.R. Parga, D.L. Cocke, Electrocoagulation (EC) — science and applications, J. Hazard. Mater., 84 (2001) 29–41.
  32. E. GilPavas, I. Dobrosz-Gómez, M.Á. Gómez-García, Coagulation-flocculation sequential with Fenton or photo- Fenton processes as an alternative for the industrial textile wastewater treatment, J. Environ. Manage., 191 (2017) 189–197.
  33. C.A. Martínez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review, Appl. Catal., B, 87 (2009) 105–145.
  34. F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters, Appl. Catal., B, 202 (2017) 217–261.
  35. J.B. Parsa, M. Rezaei, A.R. Soleymani, Electrochemical oxidation of an azo dye in aqueous media investigation of operational parameters and kinetics, J. Hazard. Mater., 168 (2009) 997–1003.
  36. B.P. Chaplin, Critical review of electrochemical advanced oxidation processes for water treatment applications, Environ. Sci. Processes Impacts, 16 (2014) 1182–1203.
  37. I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: today and tomorrow. A review, Environ. Sci. Pollut. Res., 21 (2014) 8336–8367.
  38. C. Comninellis, Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment, Electrochim. Acta, 39 (1994) 1857–1862.
  39. B.P. Chaplin, Chapter 17 – Advantages, Disadvantages, and Future Challenges of the Use of Electrochemical Technologies for Water and Wastewater Treatment, C.A. Martínez-Huitle, M.A. Rodrigo, O. Scialdone, Eds., Electrochemical Water and Wastewater Treatment, Butterworth-Heinemann, 2018, pp. 451–494.
  40. Y. Jiang, H. Zhao, J. Liang, L. Yue, T. Li, Y. Luo, Q. Liu, S. Lu, A.M. Asiri, Z. Gong, X. Sun, Anodic oxidation for the degradation of organic pollutants: anode materials, operating conditions and mechanisms. A mini review, Electrochem. Commun., 123 (2021) 106912, doi: 10.1016/j.elecom.2020.106912.
  41. S.M. de A.G.U. de Souza, K.A.S. Bonilla, A.A.U. de Souza, Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment, J. Hazard. Mater., 179 (2010) 35–42.
  42. K. Paździor, J. Wrębiak, A. Klepacz-Smółka, M. Gmurek, L. Bilińska, L. Kos, J. Sójka-Ledakowicz, S. Ledakowicz, Influence of ozonation and biodegradation on toxicity of industrial textile wastewater, J. Environ. Manage., 195 (2017) 166–173.
  43. E.M. Cuerda-Correa, M.F. Alexandre-Franco, C. Fern, Antibiotics from water. An overview, Water, 12 (2020) 102.
  44. J. Wang, Z. Bai, Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater, Chem. Eng. J., 312 (2017) 79–98.
  45. D. Amado-Piña, G. Roa-Morales, C. Barrera-Díaz, P. Balderas-Hernandez, R. Romero, E.M. del Campo, R. Natividad, Synergic effect of ozonation and electrochemical methods on oxidation and toxicity reduction: phenol degradation, Fuel, 198 (2017) 82–90.
  46. P. Cañizares, M. Hernández-Ortega, M.A. Rodrigo, C.E. Barrera-Díaz, G. Roa-Morales, C. Sáez, A comparison between conductive-diamond electrochemical oxidation and other advanced oxidation processes for the treatment of synthetic melanoidins, J. Hazard. Mater., 164 (2009) 120–125.
  47. M.A. García-Morales, G. Roa-Morales, C. Barrera-Díaz, B. Bilyeu, M.A. Rodrigo, Synergy of electrochemical oxidation using boron-doped diamond (BDD) electrodes and ozone (O3) in industrial wastewater treatment, Electrochem. Commun., 27 (2013) 34–37.
  48. I. Montero-Guadarrama, P. Balderas-Hernández, C.E. Barrera-Díaz, G. Roa-Morales, Phenol red degradation using a synergetic method (electrochemical oxidation with ozone) in batch and continuous system, Int. J. Electrochem. Sci., 15 (2020) 7883–7895.
  49. R. Tanveer, A. Yasar, Amt-ul-Bari Tabinda, A. Ikhlaq, H. Nissar, A.-S. Nizami, Comparison of ozonation, Fenton, and photo- Fenton processes for the treatment of textile dye-bath effluents integrated with electrocoagulation, J. Water Process Eng., 46 (2022) 102547, doi: 10.1016/j.jwpe.2021.102547.
  50. M.A. Ahangarnokolaei, B. Ayati, H. Ganjidoust, Simultaneous and sequential combination of electrocoagulation and ozonation by Al and Fe electrodes for DirectBlue71 treatment in a new reactor: Synergistic effect and kinetics study, Chemosphere, 285 (2021) 131424, doi: 10.1016/j.chemosphere.2021.131424.
  51. M.A. Ahangarnokolaei, P. Attarian, B. Ayati, H. Ganjidoust, L. Rizzo, Life cycle assessment of sequential and simultaneous combination of electrocoagulation and ozonation for textile wastewater treatment, J. Environ. Chem. Eng., 9 (2021) 106251, doi: 10.1016/j.jece.2021.106251.
  52. G. Barzegar, J. Wu, F. Ghanbari, Enhanced treatment of greywater using electrocoagulation/ozonation: investigation of process parameters, Process Saf. Environ. Prot., 121 (2019) 125–132.
  53. Z. Chen, Y. Du, G. Yang, J. Wang, Y. Ma, Y. Sun, Y. Ren, X. Duan, Electrochemical degradation of the antibiotic ceftazidime by La-doped modified PbO2 electrode: catalytic conditions and degradation pathway, J. Electroanal. Chem., 943 (2023) 117620, doi: 10.1016/j.jelechem.2023.117620.
  54. J. Meng, C. Geng, Y. Wu, Y. Guan, W. Gao, W. Jiang, J. Liang, S. Liu, X. Wang, Comparing the electrochemical degradation of levofloxacin using the modified Ti/SnO2 electrode in different electrolytes, J. Electroanal. Chem., 944 (2023) 117633, doi: 10.1016/j.jelechem.2023.117633.
  55. K. Turhan, I. Durukan, S.A. Ozturkcan, Z. Turgut, Decolorization of textile basic dye in aqueous solution by ozone, Dyes Pigm., 92 (2012) 897–901.
  56. C.A. Somensi, E.L. Simionatto, S.L. Bertoli, A. Wisniewski, C.M. Radetski, Use of ozone in a pilot-scale plant for textile wastewater pre-treatment: physico-chemical efficiency, degradation by-products identification and environmental toxicity of treated wastewater, J. Hazard. Mater., 175 (2010) 235–240.
  57. J.C. Cardoso, G.G. Bessegato, M.V. Boldrin Zanoni, Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization, Water Res., 98 (2016) 39–46.
  58. D. Ghernaout, M.W. Naceur, A. Aouabed, On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment, Desalination, 270 (2011) 9–22.
  59. O. Scialdone, S. Randazzo, A. Galia, G. Silvestri, Electrochemical oxidation of organics in water: role of operative parameters in the absence and in the presence of NaCl, Water Res., 43 (2009) 2260–2272.
  60. F.F. Al-Qaim, Z.H. Mussa, M.R. Othman, M.P. Abdullah, Removal of caffeine from aqueous solution by indirect electrochemical oxidation using a graphite-PVC composite electrode: a role of hypochlorite ion as an oxidising agent, J. Hazard. Mater., 300 (2015) 387–397.
  61. E.A. Ticianelli, E.R. Gonzalez, Eletroquímica - Princípios e Aplicações, 2a edition, São Paulo: Editora da Universidade de São Paulo, 2013.
  62. L. Labiadh, A. Barbucci, M.P. Carpanese, A. Gadri, S. Ammar, M. Panizza, Comparative depollution of Methyl Orange aqueous solutions by electrochemical incineration using TiRuSnO2, BDD and PbO2 as high oxidation power anodes, J. Electroanal. Chem., 766 (2016) 94–99.
  63. M. Panizza, P.A. Michaud, G. Cerisola, C. Comninellis, Anodic oxidation of 2-naphthol at boron-doped diamond electrodes, J. Electroanal. Chem., 507 (2001) 206–214.