References
- C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni,
A.B. Pandit, A critical review on textile wastewater treatments:
possible approaches, J. Environ. Manage., 182 (2016) 351–366.
- F.V. da F. Araujo, L. Yokoyama, L.A.C. Teixeira, Remoção de cor
em soluções de corantes reativos por oxidação com H2O2/UV,
Quim. Nova, 29 (2006) 11–14.
- L. Bilińska, K. Blus, M. Gmurek, S. Ledakowicz, Coupling of
electrocoagulation and ozone treatment for textile wastewater
reuse, Chem. Eng. J., 358 (2019) 992–1001.
- S.B. Jadhav, A.S. Chougule, D.P. Shah, C.S. Pereira,
J.P. Jadhav, Application of response surface methodology for
the optimization of textile effluent biodecolorization and its
toxicity perspectives using plant toxicity, plasmid nicking
assays, Clean Technol. Environ. Policy, 17 (2015) 709–720.
- M.R. Al-Mamun, S. Kader, M.S. Islam, M.Z.H. Khan,
Photocatalytic activity improvement and application
of
UV-TiO2 photocatalysis in textile wastewater treatment: a
review, J. Environ. Chem. Eng., 7 (2019) 103248, doi: 10.1016/j.jece.2019.103248.
- S. Dey, A. Islam, A review on textile wastewater characterization
in Bangladesh, Resour. Environ., 5 (2015) 15–44.
- M. Paredes-Laverde, M. Salamanca, J.D. Diaz-Corrales,
E. Flórez, J. Silva-Agredo, R.A. Torres-Palma, Understanding the
removal of an anionic dye in textile wastewaters by adsorption
on ZnCl2 activated carbons from rice and coffee husk wastes:
a combined experimental and theoretical study, J. Environ.
Chem. Eng., 9 (2021) 105685, doi: 10.1016/j.jece.2021.105685.
- S.M. Turp, G.A. Turp, N. Ekinci, S. Özdemir, Enhanced
adsorption of methylene blue from textile wastewater by
using natural and artificial zeolite, Water Sci. Technol.,
82 (2020) 513–523.
- A. Yurtsever, E. Basaran, D. Ucar, Process optimization and
filtration performance of an anaerobic dynamic membrane
bioreactor treating textile wastewaters, J. Environ. Manage.,
273 (2020) 111114, doi: 10.1016/j.jenvman.2020.111114.
- R. Shoukat, S.J. Khan, Y. Jamal, Hybrid anaerobic-aerobic
biological treatment for real textile wastewater, J. Water Process
Eng., 29 (2019) 100804, doi: 10.1016/j.jwpe.2019.100804.
- S. Araújo, M. Damianovic, E. Foresti, L. Florencio, M.T. Kato,
S. Gavazza, Biological treatment of real textile wastewater
containing sulphate, salinity, and surfactant through an
anaerobic–aerobic system, Water Sci. Technol., 85 (2022)
2882–2898.
- A.K. Verma, Treatment of textile wastewaters by
electrocoagulation employing Fe-Al composite electrode,
J. Water Process Eng., 20 (2017) 168–172.
- J. Esther Baby, I. Jaambavi, G. Rajeswari, T. Akshaya,
Optimization removal of colour and organic solid pollutants
from textile industry wastewater by electrocoagulation,
Mater. Today Proc., (2021) 3–6, doi: 10.1016/j.matpr.2021.03.339.
- J. Núñez, M. Yeber, N. Cisternas, R. Thibaut, P. Medina,
C. Carrasco, Application of electrocoagulation for the
efficient pollutants removal to reuse the treated wastewater
in the dyeing process of the textile industry, J. Hazard. Mater.,
371 (2019) 705–711.
- M. Saleh, R. Yildirim, Z. Isik, A. Karagunduz, B. Keskinler,
N. Dizge, Optimization of the electrochemical oxidation
of textile wastewater by graphite electrodes by response
surface methodology and artificial neural network, Water Sci.
Technol., 84 (2021) 1245–1256.
- J. Zou, X. Peng, M. Li, Y. Xiong, B. Wang, F. Dong, B. Wang,
Electrochemical oxidation of COD from real textile wastewaters:
kinetic study and energy consumption, Chemosphere,
171 (2017) 332–338.
- C. Pinto, A. Fernandes, A. Lopes, M.J. Nunes, A. Baía,
L. Ciríaco, M.J. Pacheco, Reuse of textile dyeing wastewater
treated by electrooxidation, Water (Switzerland), 14 (2022) 1084,
doi: 10.3390/w14071084.
- K. Nadeem, G.T. Guyer, N. Dizge, Polishing of biologically
treated textile wastewater through AOPs and recycling for
wet processing, J. Water Process Eng., 20 (2017) 29–39.
- J.P. Ribeiro, J.T. Oliveira, A.G. Oliveira, F.W. Sousa,
E.F. Abdala Neto, C.B. Vidal, D. de Keukeleire, A.B. dos
Santos, R.F. Nascimento, Treatment of sulfonated azo dye
Reactive Red 198 by UV/H2O2, J. Chem., 2014 (2014) 619815,
doi: 10.1155/2014/619815.
- A. Kuleyin, A. Gök, F. Akbal, Treatment of textile industry
wastewater by electro-Fenton process using graphite electrodes
in batch and continuous mode, J. Environ. Chem. Eng.,
9 (2021) 104782, doi: 10.1016/j.jece.2020.104782.
- P. Colindres, H. Yee-Madeira, E. Reguera, Removal of Reactive
Black 5 from aqueous solution by ozone for water reuse in
textile dyeing processes, Desalination, 258 (2010) 154–158.
- L. Bilińska, K. Blus, M. Foszpańczyk, M. Gmurek, S. Ledakowicz,
Catalytic ozonation of textile wastewater as a polishing step
after industrial scale electrocoagulation, J. Environ. Manage.,
265 (2020) 110502, doi: 10.1016/j.jenvman.2020.110502.
- E. GilPavas, I. Dobrosz-Gómez, M.-Á. Gómez-García,
Optimization and toxicity assessment of a combined electrocoagulation,
H2O2/Fe2+/UV and activated carbon adsorption
for textile wastewater treatment, Sci. Total Environ., 651 (2019)
551–560.
- K. Ramesh, B.M. Gnanamangai, R. Mohanraj, Investigating
techno-economic feasibility of biologically pretreated textile
wastewater treatment by electrochemical oxidation process
towards zero sludge concept, J. Environ. Chem. Eng., 9 (2021)
106289, doi: 10.1016/j.jece.2021.106289.
- Ö. Bulca, B. Palas, S. Atalay, G. Ersöz, Performance investigation
of the hybrid methods of adsorption or catalytic wet air
oxidation subsequent to electrocoagulation in treatment of
real textile wastewater and kinetic modelling, J. Water Process
Eng., 40 (2021) 101821, doi: 10.1016/j.jwpe.2020.101821.
- H. Zazou, H. Afanga, S. Akhouairi, H. Ouchtak, A.A. Addi,
R.A. Akbour, A. Assabbane, J. Douch, A. Elmchaouri, J. Duplay,
A. Jada, M. Hamdani, Treatment of textile industry wastewater
by electrocoagulation coupled with electrochemical
advanced oxidation process, J. Water Process Eng., 28 (2019)
214–221.
- E. GilPavas, I. Dobrosz-Gómez, M.-Á. Gómez-García,
Efficient treatment for textile wastewater through sequential
electrocoagulation, electrochemical oxidation and adsorption
processes: optimization and toxicity assessment, J. Electroanal.
Chem., 878 (2020) 114578, doi: 10.1016/j.jelechem.2020.114578.
- S. Garcia-Segura, M.M.S.G. Eiband, J.V. de Melo, C.A. Martínez-Huitle, Electrocoagulation and advanced electrocoagulation
processes: a general review about the fundamentals, emerging
applications and its association with other technologies,
J. Electroanal. Chem., 801 (2017) 267–299.
- J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial,
P. Drogui, J. Naja, Electrocoagulation process in water treatment:
a review of electrocoagulation modeling approaches,
Desalination, 404 (2017) 1–21.
- M.Y.A. Mollah, P. Morkovsky, J.A.G. Gomes, M. Kesmez,
J. Parga, D.L. Cocke, Fundamentals, present and future perspectives
of electrocoagulation, J. Hazard. Mater., 114 (2004)
199–210.
- M.Y.A. Mollah, R. Schennach, J.R. Parga, D.L. Cocke,
Electrocoagulation (EC) — science and applications, J. Hazard.
Mater., 84 (2001) 29–41.
- E. GilPavas, I. Dobrosz-Gómez, M.Á. Gómez-García,
Coagulation-flocculation sequential with Fenton or photo-
Fenton processes as an alternative for the industrial textile
wastewater treatment, J. Environ. Manage., 191 (2017) 189–197.
- C.A. Martínez-Huitle, E. Brillas, Decontamination of wastewaters
containing synthetic organic dyes by electrochemical
methods: a general review, Appl. Catal., B, 87 (2009) 105–145.
- F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar,
Electrochemical advanced oxidation processes: a review on
their application to synthetic and real wastewaters, Appl.
Catal., B, 202 (2017) 217–261.
- J.B. Parsa, M. Rezaei, A.R. Soleymani, Electrochemical oxidation
of an azo dye in aqueous media investigation of operational
parameters and kinetics, J. Hazard. Mater., 168 (2009)
997–1003.
- B.P. Chaplin, Critical review of electrochemical advanced
oxidation processes for water treatment applications,
Environ. Sci. Processes Impacts, 16 (2014) 1182–1203.
- I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza,
Electrochemical advanced oxidation processes: today and
tomorrow. A review, Environ. Sci. Pollut. Res., 21 (2014)
8336–8367.
- C. Comninellis, Electrocatalysis in the electrochemical
conversion/combustion of organic pollutants for waste water
treatment, Electrochim. Acta, 39 (1994) 1857–1862.
- B.P. Chaplin, Chapter 17 – Advantages, Disadvantages, and
Future Challenges of the Use of Electrochemical Technologies
for Water and Wastewater Treatment, C.A. Martínez-Huitle,
M.A. Rodrigo, O. Scialdone, Eds., Electrochemical Water
and Wastewater Treatment, Butterworth-Heinemann, 2018,
pp. 451–494.
- Y. Jiang, H. Zhao, J. Liang, L. Yue, T. Li, Y. Luo, Q. Liu,
S. Lu, A.M. Asiri, Z. Gong, X. Sun, Anodic oxidation for the
degradation of organic pollutants: anode materials, operating
conditions and mechanisms. A mini review, Electrochem.
Commun., 123 (2021) 106912, doi: 10.1016/j.elecom.2020.106912.
- S.M. de A.G.U. de Souza, K.A.S. Bonilla, A.A.U. de Souza,
Removal of COD and color from hydrolyzed textile azo dye
by combined ozonation and biological treatment, J. Hazard.
Mater., 179 (2010) 35–42.
- K. Paździor, J. Wrębiak, A. Klepacz-Smółka, M. Gmurek,
L. Bilińska, L. Kos, J. Sójka-Ledakowicz, S. Ledakowicz,
Influence of ozonation and biodegradation on toxicity of
industrial textile wastewater, J. Environ. Manage., 195 (2017)
166–173.
- E.M. Cuerda-Correa, M.F. Alexandre-Franco, C. Fern,
Antibiotics from water. An overview, Water, 12 (2020) 102.
- J. Wang, Z. Bai, Fe-based catalysts for heterogeneous catalytic
ozonation of emerging contaminants in water and wastewater,
Chem. Eng. J., 312 (2017) 79–98.
- D. Amado-Piña, G. Roa-Morales, C. Barrera-Díaz, P. Balderas-Hernandez, R. Romero, E.M. del Campo, R. Natividad, Synergic
effect of ozonation and electrochemical methods on oxidation
and toxicity reduction: phenol degradation, Fuel, 198 (2017)
82–90.
- P. Cañizares, M. Hernández-Ortega, M.A. Rodrigo, C.E. Barrera-Díaz, G. Roa-Morales, C. Sáez, A comparison between
conductive-diamond electrochemical oxidation and other
advanced oxidation processes for the treatment of synthetic
melanoidins, J. Hazard. Mater., 164 (2009) 120–125.
- M.A. García-Morales, G. Roa-Morales, C. Barrera-Díaz,
B. Bilyeu, M.A. Rodrigo, Synergy of electrochemical oxidation
using boron-doped diamond (BDD) electrodes and ozone (O3)
in industrial wastewater treatment, Electrochem. Commun.,
27 (2013) 34–37.
- I. Montero-Guadarrama, P. Balderas-Hernández, C.E. Barrera-Díaz, G. Roa-Morales, Phenol red degradation using a
synergetic method (electrochemical oxidation with ozone) in
batch and continuous system, Int. J. Electrochem. Sci., 15 (2020)
7883–7895.
- R. Tanveer, A. Yasar, Amt-ul-Bari Tabinda, A. Ikhlaq, H. Nissar,
A.-S. Nizami, Comparison of ozonation, Fenton, and photo-
Fenton processes for the treatment of textile dye-bath effluents
integrated with electrocoagulation, J. Water Process Eng.,
46 (2022) 102547, doi: 10.1016/j.jwpe.2021.102547.
- M.A. Ahangarnokolaei, B. Ayati, H. Ganjidoust, Simultaneous
and sequential combination of electrocoagulation and
ozonation by Al and Fe electrodes for DirectBlue71
treatment in a new reactor: Synergistic effect and kinetics
study, Chemosphere, 285 (2021) 131424, doi: 10.1016/j.chemosphere.2021.131424.
- M.A. Ahangarnokolaei, P. Attarian, B. Ayati, H. Ganjidoust,
L. Rizzo, Life cycle assessment of sequential and simultaneous
combination of electrocoagulation and ozonation for textile
wastewater treatment, J. Environ. Chem. Eng., 9 (2021) 106251,
doi: 10.1016/j.jece.2021.106251.
- G. Barzegar, J. Wu, F. Ghanbari, Enhanced treatment of
greywater using electrocoagulation/ozonation: investigation
of process parameters, Process Saf. Environ. Prot., 121 (2019)
125–132.
- Z. Chen, Y. Du, G. Yang, J. Wang, Y. Ma, Y. Sun, Y. Ren, X. Duan,
Electrochemical degradation of the antibiotic ceftazidime by
La-doped modified PbO2 electrode: catalytic conditions and
degradation pathway, J. Electroanal. Chem., 943 (2023) 117620,
doi: 10.1016/j.jelechem.2023.117620.
- J. Meng, C. Geng, Y. Wu, Y. Guan, W. Gao, W. Jiang, J. Liang,
S. Liu, X. Wang, Comparing the electrochemical degradation
of levofloxacin using the modified Ti/SnO2 electrode in
different electrolytes, J. Electroanal. Chem., 944 (2023) 117633,
doi: 10.1016/j.jelechem.2023.117633.
- K. Turhan, I. Durukan, S.A. Ozturkcan, Z. Turgut, Decolorization
of textile basic dye in aqueous solution by ozone, Dyes Pigm.,
92 (2012) 897–901.
- C.A. Somensi, E.L. Simionatto, S.L. Bertoli, A. Wisniewski,
C.M. Radetski, Use of ozone in a pilot-scale plant for textile
wastewater pre-treatment: physico-chemical efficiency,
degradation by-products identification and environmental
toxicity of treated wastewater, J. Hazard. Mater., 175 (2010)
235–240.
- J.C. Cardoso, G.G. Bessegato, M.V. Boldrin Zanoni, Efficiency
comparison of ozonation, photolysis, photocatalysis and
photoelectrocatalysis methods in real textile wastewater
decolorization, Water Res., 98 (2016) 39–46.
- D. Ghernaout, M.W. Naceur, A. Aouabed, On the dependence
of chlorine by-products generated species formation of the
electrode material and applied charge during electrochemical
water treatment, Desalination, 270 (2011) 9–22.
- O. Scialdone, S. Randazzo, A. Galia, G. Silvestri, Electrochemical
oxidation of organics in water: role of operative parameters in
the absence and in the presence of NaCl, Water Res., 43 (2009)
2260–2272.
- F.F. Al-Qaim, Z.H. Mussa, M.R. Othman, M.P. Abdullah,
Removal of caffeine from aqueous solution by indirect
electrochemical oxidation using a graphite-PVC composite
electrode: a role of hypochlorite ion as an oxidising agent,
J. Hazard. Mater., 300 (2015) 387–397.
- E.A. Ticianelli, E.R. Gonzalez, Eletroquímica - Princípios e
Aplicações, 2a edition, São Paulo: Editora da Universidade de
São Paulo, 2013.
- L. Labiadh, A. Barbucci, M.P. Carpanese, A. Gadri, S. Ammar,
M. Panizza, Comparative depollution of Methyl Orange
aqueous solutions by electrochemical incineration using
TiRuSnO2, BDD and PbO2 as high oxidation power anodes,
J. Electroanal. Chem., 766 (2016) 94–99.
- M. Panizza, P.A. Michaud, G. Cerisola, C. Comninellis, Anodic
oxidation of 2-naphthol at boron-doped diamond electrodes,
J. Electroanal. Chem., 507 (2001) 206–214.