References

  1. S.C. Tan, B.C. Yiap, DNA, RNA, and protein extraction: the past and the present, J. Biomed. Biotechnol., 2009 (2009) 574398, doi: 10.1155/2009/574398.
  2. Z. Liu, S.R. Smith, Enzyme recovery from biological wastewater treatment, Waste Biomass Valorization, 12 (2021) 4185–4211.
  3. H.P. Erickson, Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy, Biol. Proced. Online, 11 (2009) 32–51.
  4. J.B. van Beilen, Z. Li, Enzyme technology: an overview, Curr. Opin. Biotechnol., 13 (2002) 338–344.
  5. D.J. Puri, S. Heaven, C.J. Banks, Improving the performance of enzymes in hydrolysis of high solids paper pulp derived from MSW, Biotechnol. Biofuels, 6 (2013) 1–10.
  6. C. Wenk, Recent advances in animal feed additives such as metabolic modifiers, antimicrobial agents, probiotics, enzymes and highly available minerals - review, Asian-Australas. J. Anim. Sci., 13 (1998) 86–95.
  7. R. Walker, R.J. Flanagan, M.S. Lennard, G.A. Mills, V. Walker, Solid-phase microextraction: investigation of the metabolism of substances that may be abused by inhalation, J. Chromatogr. Sci., 44 (2006) 387–393.
  8. F. Priego-Capote, L. de Castro, Ultrasound-assisted digestion: a useful alternative in sample preparation, J. Biochem. Biophys. Methods, 70 (2007) 299–310.
  9. M. Ruiz-Hernando, G. Martinez-Elorza, J. Labanda, J. Llorens, Dewaterability of sewage sludge by ultrasonic, thermal and chemical treatments, Chem. Eng. J., 230 (2013) 102–110.
  10. V. Sharma, P. Nargotra, B.K. Bajaj, Ultrasound and surfactant assisted ionic liquid pretreatment of sugarcane bagasse for enhancing saccharification using enzymes from an ionic liquid tolerant Aspergillus assiutensis VS34, Bioresour. Technol., 285 (2019) 121319, doi: 10.1016/j.biortech.2019.121319.
  11. I. Ntaikou, G. Antonopoulou, G. Lyberatos, Biohydrogen production from biomass and wastes via dark fermentation: a review, Waste Biomass Valorization, 1 (2010) 21–39.
  12. J.Y. Sharahi, T. Azimi, A. Shariati, H. Safari, M.K. Tehrani, A. Hashemi, Advanced strategies for combating bacterial biofilms, J. Cell. Physiol., 234 (2019) 14689–14708.
  13. K.A. Fletcher, S. Pandey, Surfactant aggregation within room-temperature ionic liquid
    1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, Langmuir, 20 (2004) 33–36.
  14. M.E. Bautista, L. Pérez, M.T. García, S. Cuadros, A. Marsal, Valorization of tannery wastes: lipoamino acid surfactant mixtures from the protein fraction of process wastewater, Chem. Eng. J., 262 (2015) 399–408.
  15. K. Shakir, A.F. Elkafrawy, H.F. Ghoneimy, S.G. Elrab Beheir, M. Refaat, Removal of Rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation, Water Res., 44 (2010) 1449–1461.
  16. V.V. Chandanshive, S.K. Kadam, R.V. Khandare, M.B. Kurade, B.H. Jeon, J.P. Jadhav, S.P. Govindwar, In-situ phytoremediation of dyes from textile wastewater using garden ornamental plants, effect on soil quality and plant growth, Chemosphere, 210 (2018) 968–976.
  17. S. Haydar, G. Hussain, O. Nadeem, H. Haider, A.J. Bari, A. Hayee, Performance evaluation of anaerobic-aerobic treatment for the wastewater of potato processing industry: a case study of a local chips factory treatment of stormwater for artificial groundwater recharge-application of a low-cost ceramic filter view project, J. Eng. Appl. Sci., 14 (2014) 27–37.
  18. H.J. Porwal, A.V. Mane, S.G. Velhal, Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge, Water Resour. Ind., 9 (2015) 1–15.
  19. K. Praneeth, S. Moulik, P. Vadthya, S.K. Bhargava, J. Tardio, S. Sridhar, Performance assessment and hydrodynamic analysis of a submerged membrane bioreactor for treating dairy industrial effluent, J. Hazard. Mater., 274 (2014) 300–313.
  20. E. Loupasaki, E. Diamadopoulos, Comparative evaluation of three attached growth systems and a constructed wetland for in situ treatment of raw municipal wastewater, Environ. Technol. (United Kingdom), 34 (2013) 1503–1512.
  21. A.I. Jamrah, Assessment of characteristics and biological treatment technologies of Jordanian wastewater, Biotechnol. Bioprocess Eng., 21 (1999) 331–340.
  22. A. Gallipoli, C.M. Braguglia, High-frequency ultrasound treatment of sludge: combined effect of surfactants removal and floc disintegration, Ultrason. Sonochem., 19 (2012) 864–871.
  23. U. Ushani, J. Rajesh Banu, K. Tamilarasan, S. Kavitha, I. Tae Yeom, Surfactant coupled sonic pretreatment of waste activated sludge for energetically positive biogas generation, Bioresour. Technol., 241 (2017) 710–719.
  24. M. Khayet, A.Y. Zahrim, N. Hilal, Modelling and optimization of coagulation of highly concentrated industrial grade leather dye by response surface methodology, Chem. Eng. J., 167 (2011) 77–83.
  25. C. Liyana-Pathirana, F. Shahidi, Optimization of extraction of phenolic compounds from wheat using response surface methodology, Food Chem., 93 (2005) 47–56.
  26. U.K. Garg, M.P. Kaur, D. Sud, V.K. Garg, Removal of hexavalent chromium from aqueous solution by adsorption on treated sugarcane bagasse using response surface methodological approach, Desalination, 249 (2009) 475–479.
  27. P. Dinesh Babu, G. Buvanashekaran, K.R. Balasubramanian, Experimental investigation of laser transformation hardening of low alloy steel using response surface methodology, Int. J. Adv. Manuf. Technol., 67 (2013) 1883–1897.
  28. J.M. Ochando-Pulido, A. Martinez-Ferez, Experimental design optimization of reverse osmosis purification of pretreatedolive mill wastewater, Sci. Total Environ., 587–588 (2017) 414–422.
  29. M.A. Tekindal, H. Bayrak, B. Ozkaya, Y. Genc, Box–Behnken experimental design in factorial experiments: the importance of bread for nutrition and health, Turk. J. Field Crops, 17 (2012) 115–123.
  30. A. Sarafraz-Yazdi, H. Vatani, A solid phase microextraction coating based on ionic liquid sol-gel technique for determination of benzene, toluene, ethylbenzene and o-xylene in water samples using gas chromatography flame ionization detector, J. Chromatogr. A, 1300 (2013) 104–111.
  31. K.A.S. Meraz, S.M.P. Vargas, J.T.L. Maldonado, J.M.C. Bravo, M.T.O. Guzman, E.A.L. Maldonado, Eco-friendly innovation for nejayote coagulation-flocculation process using chitosan: evaluation through zeta potential measurements, Chem. Eng. J., 284 (2016) 536–542.
  32. G. Crini, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment, Prog. Polym. Sci., 30(2005) 38–70.
  33. N. Rajesh Jesudoss Hynes, J. Senthil Kumar, H. Kamyab, J. Angela Jennifa Sujana, O.A. Al-Khashman, Y. Kuslu, A. Ene, B. Suresh Kumar, Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector - a comprehensive review, J. Cleaner Prod., 272 (2020) 122636, doi: 10.1016/j.jclepro.2020.122636.
  34. S. Anbazhagan, S. Palani, Extraction of consortium of hydrolytic enzymes from waste activated sludge using ultrasonication and stirring with surfactants, Ultrason. Sonochem., 40 (2018) 874–880.
  35. G.D. Thilini Madurangika Jayasinghe, R. Domínguez-González, P. Bermejo-Barrera, A. Moreda-Piñeiro, Ultrasound assisted combined molecularly imprinted polymer for the selective micro-solid phase extraction and determination of aflatoxins in fish feed using liquid chromatography-tandem mass spectrometry, J. Chromatogr. A, 1609 (2020) 460431, doi: 10.1016/j.chroma.2019.460431.
  36. R. Miller, V.B. Fainerman, A.V. Makievski, J. Krägel, D.O. Grigoriev, V.N. Kazakov, O.V. Sinyachenko, Dynamics of protein and mixed protein/surfactant adsorption layers at the water/fluid interface, Adv. Colloid Interface Sci., 86 (2000) 39–82.
  37. S.L. Percival, D. Mayer, R.S. Kirsner, G. Schultz, D. Weir, S. Roy, A. Alavi, M. Romanelli, Surfactants: role in biofilm management and cellular behaviour, Int. Wound J., 16 (2019) 753–760.
  38. U. Ushani, S. Kavitha, M. Johnson, I.T. Yeom, J.R. Banu, Upgrading the hydrolytic potential of immobilized bacterial pretreatment to boost biogas production, Environ. Sci. Pollut. Res., 24 (2017) 813–826.
  39. J. Merrylin, S. Kaliappan, S.A. Kumar, I.T. Yeom, J.R. Banu, Enhancing aerobic digestion potential of municipal wasteactivated sludge through removal of extracellular polymeric substance, Environ. Sci. Pollut. Res., 21 (2014) 1112–1123.
  40. N. Eslahi, F. Dadashian, N.H. Nejad, An investigation on keratin extraction from wool and feather waste by enzymatic hydrolysis, Prep. Biochem. Biotechnol., 43 (2013) 624–648.
  41. R.H. Myers, A. Khuri, W.H. Carter, Response surface methodology: 1966–l988, Technometrics, 31 (1989) 137–157.
  42. J.P.C. Kleijnen, Response surface methodology, Int. Ser. Oper. Res. Manage. Sci., 216 (2015) 81–104.
  43. B. Aliakbarian, D. de Faveri, A. Converti, P. Perego, Optimisation of olive oil extraction by means of enzyme processing aids using response surface methodology, Biochem. Eng. J., 42 (2008) 34–40.
  44. C. Wang, H. Wang, G. Gu, Ultrasound-assisted xanthation of cellulose from lignocellulosic biomass optimized by response surface methodology for Pb(II) sorption, Carbohydr. Polym., 182, (2018) 21–28.
  45. N. Aslan, Y. Cebeci, Application of Box–Behnken design and response surface methodology for modeling of some Turkish coals, Fuel, 86 (2007) 90–97.
  46. S.L.C. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David, G.C. Brandão, E.P. da Silva, L.A. Portugal, P.S. dos Reis, A.S. Souza, W.N.L. dos Santos, Box–Behnken design: an alternative for the optimization of analytical methods, Anal. Chim. Acta, 597 (2007) 179–186.
  47. J. Prakash Maran, S. Manikandan, K. Thirugnanasambandham, C. Vigna Nivetha, R. Dinesh, Box–Behnken design based statistical modeling for ultrasound-assisted extraction of corn silk polysaccharide, Carbohydr. Polym., 92 (2013) 604–611.
  48. V. Sangeetha, V. Sivakumar, A. Sudha, K.S. Priyenka Devi, Optimization of process parameters for COD removal by coagulation treatment using Box–Behnken design, Int. J. Eng. Technol., 6 (2014) 1053–1058.
  49. S.T. Lin, S.I. Sandler, A priori phase equilibrium prediction from a segment contribution solvation model, Ind. Eng. Chem. Res., 41 (2002) 899–913.
  50. C. Arun, P. Sivashanmugam, Enhanced production of biohydrogen from dairy waste activated sludge pre-treated using multi hydrolytic garbage enzyme complex and ultrasound-optimization, Energy Convers. Manage., 164 (2018) 277–287.
  51. J.B. Deshpande, G.R. Navale, M.S. Dharne, A.A. Kulkarni, Continuous interfacial centrifugal separation and recovery of silver nanoparticles, Chem. Eng. Technol., 43 (2020) 582–592.
  52. H.S. Azevedo, F.M. Gama, R.L. Reis, In-vitro assessment of the enzymatic degradation of several starch based biomaterials, Biomacromolecules, 4 (2003) 1703–1712.
  53. F.G. Khedr, E.Y. Tohamy, A. Darwish El-Gamal, A.M. Abouelwafa, Bioconversion of rice straw into bioethanol by enzymatic hydrolysis of Bacillus subtilis, IOSR J. Pharm. Biol. Sci. (IOSR-JPBS), 14 (2019) 9–29.
  54. Q. Li, A. Al Loman, A.M. Coffman, L.K. Ju, Soybean hull induced production of carbohydrases and protease among Aspergillus and their effectiveness in soy flour carbohydrate and protein separation, J. Biotechnol., 248 (2017) 35–42.
  55. K. Miloski, K. Wallace, A. Fenger, E. Schneider, K. Bendinskas, Comparison of biochemical and chemical digestion and detection methods for carbohydrates, Am. J. Undergrad. Res., 7 (2008) 7–18.