References

  1. S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58 (2013) 1388–1442.
  2. M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Water desalination via capacitive deionization: what is it and what can we expect from it?, Energy Environ. Sci., 8 (2015) 2296–2319.
  3. M.A. Ahmed, S. Tewari, Capacitive deionization: processes, materials and state of the technology, J. Electroanal. Chem., 813 (2018) 178–192.
  4. J. Landon, X. Gao, A. Omosebi, K. Liu, Progress and outlook for capacitive deionization technology, Curr. Opin. Chem. Eng., 25 (2019) 1–8.
  5. S.D. Datar, R. Mane, N. Jha, Recent progress in materials and architectures for capacitive deionization:
    a comprehensive review, Water Environ. Res., 94 (2022) e10696, doi: 10.1002/wer.10696.
  6. S.I. Jeon, H.R. Park, J.G. Yeo, S. Yang, C.H. Cho, M.H. Han, D.K. Kim, Desalination via a new membrane capacitive deionization process utilizing flow-electrodes, Energy Environ. Sci., 6 (2013) 1471–1475.
  7. F. Yang, Y. He, L. Rosentsvit, M.E. Suss, Z. Zhang, T. Gao, P. Liang, Flow-electrode capacitive deionization:
    a review and new perspectives, Water Res., 200 (2021) 117222, doi: 10.1016/j.watres.2021.117222.
  8. X. Gao, A. Omosebi, J. Landon, K. Liu, Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior, Energy Environ. Sci., 8 (2015) 897–909.
  9. J. Lee, S. Kim, C. Kim, J. Yoon, Hybrid capacitive deionization to enhance the desalination performance of capacitive deionization, Energy Environ. Sci., 7 (2014) 3683–3689.
  10. W. Tang, J. Liang, D. He. J. Gong, L. Tang, Z. Liu, D. Wang, G. Zeng, Various cell architectures of capacitive deionization: recent advances and future trends, Water Res., 150 (2019) 225–251.
  11. J. Choi, P. Dorji, H.K. Shon, S. Hong, Applications of capacitive deionization: desalination, softening, selective removal, and energy efficiency, Desalination, 449 (2019) 118–130.
  12. Z.H. Huang, Z. Yang, F. Kang, M. Inagaki, Carbon electrodes for capacitive deionization, J. Mater. Chem. A, 5 (2017) 470–496.
  13. Z. Zhao, H. Wei, H. Zhao, Y. Wang, N. Tang, Electrode materials for capacitive deionization: a review, J. Electroanal. Chem., 873 (2020) 114416, doi: 10.1016/j.jelechem.2020.114416.
  14. S. Vafakhah, Z. Beiramzaheh, M. Saeedikhani, H.Y. Yang, A review on free-standing electrodes for energy-effective desalination: recent advances and perspectives in capacitive deionization, Desalination, 49 (2020) 114662, doi: 10.1016/j.desal.2020.114662.
  15. M.A. Luciano, H. Ribeiro, G.E. Bruch, G.G. Silva, Efficiency for capacitive deionization using carbon materials-based electrodes for water desalination, J. Electroanal. Chem., 859 (2020) 113840, doi: 10.1016/j.jelechem.2020.113840.
  16. L. Han, K.G. Karthikeyan, M.A. Anderson, K.B. Gregory, Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization, J. Colloid Interface Sci., 430 (2014) 93–99.
  17. Y. Cheng, Z. Hao, C. Hao, Y. Deng, X. Li, K. Li, Y. Zhao, A review of modification of carbon electrode material in capacitive deionization, RSC Adv., 9 (2019) 24401–24419.
  18. P. Shui, E. Alhseinat, Quantitative insight into the effect of ions size and electrodes pores on capacitive deionization performance, Electrochim. Acta, 329 (2020) 135176, doi: 10.1016/j.electacta.2019.135176.
  19. J. Oladunni, J.H. Zain, A. Hai, F. Banat, G. Bharath, E. Alhseinat, A comprehensive review on recently developed carbon-based nanocomposites for capacitive deionization: from theory to practice, Sep. Purif. Technol., 207 (2018) 291–320.
  20. K. Singh, S. Porada, H.D. de Gier, P.M. Biesheuvel, L.C.P.M. de Smet, Timeline on the application of intercalation materials in capacitive deionization, Desalination, 455 (2019) 115–134.
  21. R.L. Zornitta, L.A.M. Ruotolo, L.C.P.M. de Smet, Highperformance carbon electrodes modified with polyaniline for stable and selective anion separation, Sep. Purif. Technol., 290 (2022) 120807, doi: 10.1016/j.seppur.2022.120807.
  22. X. Xu, M. Eguchi, Y. Asakura, L. Pan, Y. Yamauchi, Metal–organic framework derivatives for promoted capacitive deionization oxygenated saline water, Energy Environ. Sci., 16 (2023) 1815–1820.
  23. X. Liu, X. Xu, X. Xuan, W. Xia, G. Feng, S. Zhang, Z.G. Wu, B. Zhong, X. Guo, K. Xie, Y. Yamauchi, Unlocking enhanced capacitive deionization of NaTi2(PO4)3/carbon materials by the yolk-shell design, J. Am. Chem. Soc., 145 (2023) 9242–9253.
  24. R. Zhao, S. Porada, P.M. Biesheuvel, A. van der Wal, Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis, Desalination, 330 (2013) 35–41.
  25. R. Zhao, O. Satpradit, H.H.M. Rijnaarts, P.M. Biesheuvel, A. van der Wal, Optimization of salt adsorption rate in membrane capacitive deionization, Water Res., 47 (2013) 1941–1952.