References
- W.M. Xie, F.P. Zhou, X.L. Bi, D.D. Chen, J. Li, S.Y. Sun, J.Y. Liu,
X.Q. Chen, Accelerated crystallization of magnetic 4A-zeolite
synthesized from red mud for application in removal of
mixed heavy metal ions, J. Hazard. Mater., 358 (2018) 441–449.
- S. Lakshmi Narayanan, G. Venkatesan, I. Vetha Potheher,
Equilibrium studies on removal of lead(II) ions from aqueous
solution by adsorption using modified red mud, Int. J. Environ.
Sci. Technol., 15 (2018) 1687–1698.
- N.T. do Prado, A.P. Heitmann, H.S. Mansur, A.A. Mansur,
L.C.A. Oliveira, C.S. de Castro, PET-modified red mud as
catalysts for oxidative desulfurization reactions, J. Environ. Sci.,
57 (2017) 312–320.
- A.N. Babu, G. Mohan, K. Kalpana, K. Ravindhranath, Removal
of lead from water using calcium alginate beads doped with
hydrazine sulphate-activated red mud as adsorbent, J. Anal.
Methods Chem., 2017 (2017) 4650594, doi: 10.1155/2017/4650594.
- M.A. Zahed, S. Salehi, Y. Tabari, H. Farraji, S. Ataei-Kachooei,
A.A. Zinatizadeh, N. Kamali, M. Mahjouri, Phosphorus removal
and recovery: state of the science and challenges, Environ. Sci.
Pollut. Res., 29 (2022) 58561–58589.
- S.M. Scherrenberg, A.F. van Nieuwenhuijzen, H. Menkveld,
J. den Elzen, J. van der Graaf, Innovative phosphorus distribution
method to achieve advanced chemical phosphorus
removal, Water Sci. Technol., 58 (2008) 1727–1733.
- C. Zhang, A. Guisasola, J.A. Baeza, A review on the integration
of mainstream P-recovery strategies with enhanced biological
phosphorus removal, Water Res., 212 (2022) 118102,
doi: 10.1016/j.watres.2022.118102.
- Q. Li, S. Wang, L.F. Wang, L. Zhang, X.H. Wan, Z.G. Sun, The
recovery of phosphorus from acidic ultra-high phosphorous
wastewater by the struvite crystallization, Water, 12 (2020) 946,
doi: 10.3390/w12040946.
- N.Y. Acelas, B.D. Martin, D. López, B. Jefferson, Selective
removal of phosphate from wastewater using hydrated
metal oxides dispersed within anionic exchange media,
Chemosphere, 119 (2015) 1353–1360.
- Q. Yue, Y. Zhao, Q. Li, W. Li, B. Gao, S. Han, Y. Qi,
H. Yu, Research on the characteristics of red mud granular
adsorbents (RMGA) for phosphate removal, J. Hazard. Mater.,
176 (2010) 741–748.
- Y. Zhao, Q. Yue, Q. Li, Q. Li, B. Gao, S. Han, H. Yu, Influence of
sintering temperature on orthophosphate and pyrophosphate
removal behaviors of red mud granular adsorbents (RMGA),
Colloids Surf., A, 394 (2012) 1–7.
- Y.Q. Zhao, Q.Y. Yue, Q. Li, X. Xu, Z.L. Yang, X.J. Wang,
B.Y. Gao, H. Yu, Characterization of red mud granular
adsorbent (RMGA) and its performance on phosphate removal
from aqueous solution, Chem. Eng. J., 193 (2012) 161–168.
- Y. Li, C. Liu, Z. Luan, X. Peng, C. Zhu, Z. Chen, Z. Zhang, J. Fan,
Z. Jia, Phosphate removal from aqueous solutions using raw
and activated red mud and fly ash, J. Hazard. Mater., 137 (2006)
374–383.
- Y. Li, X.M. Liu, Z.P. Li, Y.Y. Ren, Y.G. Wang, W. Zhang,
Preparation, characterization and application of red mud, fly
ash and desulfurized gypsum based eco-friendly road base
materials, J. Cleaner Prod., 284 (2021) 124777, doi: 10.1016/j.jclepro.2020.124777.
- F. Ni, J. He, Y. Wang, Z. Luan, Preparation and characterization
of a cost-effective red mud/polyaluminum chloride composite
coagulant for enhanced phosphate removal from aqueous
solutions, J. Water Process Eng., 6 (2015) 158–165.
- Y. Zhao, J. Wang, Z. Luan, X. Peng, Z. Liang, L. Shi, Removal of
phosphate from aqueous solution by red mud using a factorial
design, J. Hazard. Mater., 165 (2009) 1193–1199.
- W. Huang, S. Wang, Z. Zhu, L. Li, X. Yao, V. Rudolph,
F. Haghseresht, Phosphate removal from wastewater using
red mud, J. Hazard. Mater., 158 (2008) 35–42.
- V. Somogyi, V. Pitas, K.M. Berta, R. Kurdi, Red mud as
adsorbent to recover phosphorous from wastewater streams,
Sustainability, 14 (2022) 13202, doi: 10.3390/su142013202.
- G.K. Mohan, A.N. Babu, K. Kalpana, K. Ravindhranath,
Zirconium-treated fine red mud impregnated in Zn-alginate
beads as adsorbent in removal of phosphate from water,
Asian J. Chem., 29 (2017) 2549–2558.
- S.S. Prajapati, P.A. Najar, V.M. Tangde, Removal of phosphate
using red mud: an environmentally hazardous waste
by-product of alumina industry, Adv. Phys. Chem., 2016 (2016)
9075206, doi: 10.1155/2016/9075206.
- A.H. Al-Fatlawi, M.M. Neamah, Column study of the
adsorption of phosphate by using drinking water treatment
sludge and red mud, Int. J. Environ. Sci. Technol., 6 (2015) 8–19.
- İ. Sevgili, Ö.F. Dilmaç, B. Şimşek, An environmentally
sustainable way for effective water purification by adsorptive
red mud cementitious composite cubes modified with bentonite
and activated carbon, Sep. Purif. Technol., 274 (2021) 119115,
doi: 10.1016/j.seppur.2021.119115.
- A. Deng, C. Li, Q. Yu, H. Wang, D. Fan, Phosphate removal
from swine wastewater with unburned red mud ceramsite,
IOP Conf. Ser.: Earth Environ. Sci., 252 (2019) 32036,
doi: 10.1088/1755-1315/252/3/032036.
- J. Ye, P. Zhang, E. Hoffmann, G. Zeng, Y. Tang, J. Dresely,
Y. Liu, Comparison of response surface methodology and
artificial neural network in optimization and prediction of
acid activation of bauxsol for phosphorus adsorption, Water
Air Soil Pollut., 225 (2014) 2225, doi: 10.1007/s11270-014-2225-1.
- S. Singh, A. Thakur, Red mud-based binder: a sustainable
material for removal of chromium(VI) from water, Mater. Today
Proc., 46 (2021) 2955–2959.
- M.A. Khairul, J. Zanganeh, B. Moghtaderi, The composition,
recycling and utilisation of Bayer red mud, Resour. Conserv.
Recyl., 141 (2019) 483–498.
- X. Zhong, H.Y. Zhang, L.Y. Zhang, Y.L. Tian, Y.W. Xiong,
P.I. Destech, Ammonium Removal From Aqueous Solution by
Sintering Process Red Mud and the Acid-Activated Sintering
Process Red Mud, Presented at the 3rd International Conference
on Energy and Environmental Protection, Xi’An, China,
April 2015, pp. 26–27.
- S.G. Xue, X.F. Kong, F. Zhu, W. Hartley, X.F. Li, Y.W. Li,
Proposal for management and alkalinity transformation of
bauxite residue in China, Environ. Sci. Pollut. Res., 23 (2016)
12822–12834.
- C.H. Guo, H.X. Li, F. Fang, Y.S. Ji, Y.X. Xing, Y.B. Fan, Y. Liu,
Study on distribution of phosphorus fractions and adsorption–desorption characteristics in surface sediments of the
yellow river by molybdenum antimony spectrophotometry,
Spectrosc. Spect. Anal., 38 (2018) 218–223.
- S. Berchmans, T.B. Issa, P. Singh, Determination of inorganic
phosphate by electroanalytical methods: a review, Anal. Chim.
Acta, 729 (2012) 7–20.
- S. Motomizu, Z.H. Li, Trace and ultratrace analysis methods
for the determination of phosphorus by flow-injection
techniques, Talanta, 66 (2005) 332–340.
- H.S. Kim, Y.J. Koo, M. Lee, E.C. Pack, D.Y. Jang, S.H. Lee,
K.M. Lim, D. Choi, An optimised method for the rapid analysis
of condensed phosphates in fishery and processed marine
food products using ion chromatography and microwave
sample processing, Food Addit. Contam., Part A, 37 (2020)
205–215.
- T. Kaur, J. Sharma, A. Ganguli, M. Ghosh, Application of
biopolymer produced from metabolic engineered Acinetobacter
sp. for the development of phosphate optoelectronic sensor,
Compos. Interfaces, 21 (2014) 143–151.
- M. Antunes, F.T. Conceicao, G. Navarro, A.M. Fernandes,
S.F. Durrant, Use of red mud activated at different temperatures
as a low-cost adsorbent of reactive dye, Eng. Sanit. Ambient,
26 (2021) 805–811.
- K.C. de Souza, M.L.P. Antunes, S.J. Couperthwaite, F.T. da
Conceição, T.R. de Barros, R. Frost, Adsorption of reactive dye
on seawater-neutralised bauxite refinery residue, J. Colloid
Interface Sci., 396 (2013) 210–214.
- S. Babel, R.S. Chauhan, N. Ali, V. Yadav, Preparation of
phosphate mine tailings and low-grade rock phosphate
enriched bio-fertilizer, J. Sci. Ind. Res. India, 75 (2016) 120–123.
- P.S. Ranawat, K.M. Kumar, N.K. Sharma, Production of epsom,
gypsum and other industrial products from the mill tailings of
Jhamarkotra rock phosphate project, India, Curr. Sci., 96 (2009)
713–717.
- B. Shen, X. Yu, W. Jiang, H. Yuan, M. Zhao, H. Zhou, Z. Pan,
Green conversion of saponins to diosgenin in an alcoholysis
system catalyzed by solid acid derived from phosphorus
tailings, ACS Omega, 6 (2021) 5423–5435.
- B. Tu, K.Q. Zhou, Q.Q. Zhou, K.L. Gong, D.T. Hu, Waste
to resource: preparation of an efficient adsorbent and its
sustainable utilization in flame retardant polyurethane
composites, RSC Adv., 11 (2021) 9942–9954.
- W. Ding, J.H. Xiao, Y. Peng, S.Y. Shen, T. Chen, K. Zou, Z. Wang,
A novel process for extraction of iron from a refractory red
mud, Physicochem. Probl. Miner. Process., 56 (2020) 125–136.
- H. Vojoudi, A. Badiei, S. Bahar, G. Mohammadi Ziarani,
F. Faridbod, M.R. Ganjali, A new nano-sorbent for fast and
efficient removal of heavy metals from aqueous solutions based
on modification of magnetic mesoporous silica nanospheres,
J. Magn. Magn. Mater., 441 (2017) 193–203.
- Y.H. Kim, J.S. Han, G.S. An, Surface physicochemical
characteristics for sodium ion removal with sodium silicate
modified magnetite core-shell nanoparticles and activation of
their plasmid DNA purification ability, Ceram. Int., 48 (2022)
36218–36225.
- L. Xiao, Y. Li, Q. Kong, Y. Lan, From wastes to functions:
preparation of layered double hydroxides from industrial
waste and its removal performance towards phosphates,
Environ. Sci. Pollut. Res., 29 (2022) 11893–11906.
- P. Hu, Y. Zhang, F. Lv, W. Tong, H. Xin, Z. Meng, X. Wang,
P.K. Chu, Preparation of layered double hydroxides using
boron mud and red mud industrial wastes and adsorption
mechanism to phosphate, Water Environ. J., 31 (2017) 145–157.
- Y. Wang, Y. Yu, H. Li, C. Shen, Comparison study of phosphorus
adsorption on different waste solids: fly ash, red mud and
ferric–alum water treatment residues, J. Environ. Sci., 50 (2016)
79–86.
- T.F. Guo, H.Q. Yang, Q.Y. Liu, H.N. Gu, N. Wang, W.B. Yu,
Y. Dai, Adsorptive removal of phosphate from aqueous
solutions using different types of red mud, Water Sci. Technol.,
2017 (2018) 570–577.
- V.M. Tangde, S.S. Prajapati, B.B. Mandal, N.P. Kulkarni, Study
of kinetics and thermodynamics of removal of phosphate from
aqueous solution using activated red mud, Int. J. Environ. Res.,
11 (2017) 39–47.
- J. Ye, X. Cong, P. Zhang, E. Hoffmann, G. Zeng, Y. Liu, W. Fang,
Y. Wu, H. Zhang, Interaction between phosphate and acidactivated
neutralized red mud during adsorption process,
Appl. Surf. Sci., 356 (2015) 128–134.
- J. Park, J.J. Wang, D. Seo, Sorption characteristics of phosphate
by bauxite residue in aqueous solution, Colloids Surf., A,
618 (2021) 126465, doi: 10.1016/j.colsurfa.2021.126465.
- E. Tarso Souza Costa, L. Roberto Guimarães Guilherme,
G. Lopes, J. Maria de Lima, F. Benedito Ono, N. Curi, Comparing
the sorptive affinity of an aluminum-mining by-product for
cationic and anionic pollutants, Int. J. Environ. Sci. Technol.,
18 (2021) 1237–1252.
- N. Shabnam, Y. Ahn, A. Maksachev, J.H. Lee, C. Huang, H. Kim,
Application of red-mud based ceramic media for phosphate
uptake from water and evaluation of their effects on growth of
Iris latifolia seedling, Sci. Total Environ., 688 (2019) 724–731.
- Z. Liang, X. Peng, Z. Luan, W. Li, Y. Zhao, Reduction of
phosphorus release from high phosphorus soil by red mud,
Environ. Earth Sci., 65 (2012) 581–588.
- E.T. de Souza Costa, L.R.G. Guilherme, G. Lopes, J.M. de Lima,
N. Curi, Sorption of cadmium, lead, arsenate, and phosphate on
red mud combined with phosphogypsum, Int. J. Environ. Res.,
15 (2021) 427–444.
- Y. Zhao, Z. Niu, Q. Zhong, L. Wang, S. He, M. Xu, J. Wang,
Preparation and characterization of red mud/fly ash composite
material (RFCM) for phosphate removal, Bull. Environ.
Contam. Toxicol., 109 (2022) 169–179.
- X. Li, M. Ji, L.D. Nghiem, Y. Zhao, D. Liu, Y. Yang, Q. Wang,
Q.T. Trinh, D.N. Vo, V.Q. Pham, N.H. Tran, A novel red mud
adsorbent for phosphorus and diclofenac removal from
wastewater, J. Mol. Liq., 303 (2020) 112286, doi: 10.1016/j.molliq.2019.112286.
- Z. Zhao, B. Wang, Q. Feng, M. Chen, X. Zhang, R. Zhao,
Recovery of nitrogen and phosphorus in wastewater by red
mud-modified biochar and its potential application, Sci. Total
Environ., 860 (2023) 160289, doi: 10.1016/j.scitotenv.2022.160289.
- R.A. Pepper, S.J. Couperthwaite, G.J. Millar, Re-use of waste
red mud: production of a functional iron oxide adsorbent
for removal of phosphorous, J. Water Process Eng., 25 (2018)
138–148.
- J. Lu, Y. Xie, M. Meng, Y. Cao, L. Feng, X. Ao, M. Yang, Adsorption
performance of red mud magnetic composite material
modified by spirit-based distillers’ grains for low-concentration
phosphorus in water, J. Chem. Technol. Biotechnol., 97 (2022)
2648–2657.
- J. Ye, X. Cong, P. Zhang, G. Zeng, E. Hoffmann, Y. Wu,
H. Zhang, W. Fang, Operational parameter impact and back
propagation artificial neural network modeling for phosphate
adsorption onto acid-activated neutralized red mud, J. Mol.
Liq., 216 (2016) 35–41.
- J. Ye, X. Cong, P. Zhang, E. Hoffmann, G. Zeng, Y. Wu, H. Zhang,
W. Fang, Preparation of a new granular acid-activated
neutralized red mud and evaluation of its performance for
phosphate adsorption, ACS Sustainable Chem. Eng., 3 (2015)
3324–3331.
- Y.L. Li, F. Alam, Y.W. Cui, Red mud reuse for phosphate
adsorption via zirconium modification: performance, kinetics,
and mechanism, Desal. Water Treat., 225 (2021) 331–339.
- H. Vu, M.D. Khan, R. Chilakala, T.Q. Lai, T. Thenepalli,
J.W. Ahn, D.U. Park, J. Kim, Utilization of lime mud waste from
paper mills for efficient phosphorus removal, Sustainability,
11 (2019) 1524, doi: 10.3390/su11061524.
- C. Zhao, Y. Li, Y. Pang, D. Peng, T. Huang, J. Chen, Red
mud as a magnesium carrier for enhanced N and P recovery
from wastewater by the struvite method, Environ. Technol.
Innovation, 30 (2023) 103030, doi: 10.1016/j.eti.2023.103030.
- F. Hassani, M. Noaparast, S.Z. Shafaei Tonkaboni, A study on
the effect of ultrasound irradiation as pretreatment method on
flotation of sedimentary phosphate rock with carbonate–silicate
gangue, Iran. J. Sci. Technol. Trans. Sci., 43 (2019) 2787–2798.
- J. Ye, X. Cong, P. Zhang, E. Hoffmann, G. Zeng, Y. Wu, H. Zhang,
W. Fan, Phosphate adsorption onto granular-acid-activatedneutralized
red mud: parameter optimization, kinetics,
isotherms, and mechanism analysis, Water Air Soil Pollut.,
226 (2015) 306, doi: 10.1007/s11270-015-2577-1.
- J. Lin, M. Kim, D. Li, H. Kim, C. Huang, The removal of phosphate
by thermally treated red mud from water: the effect of surface
chemistry on phosphate immobilization, Chemosphere,
247 (2020) 125867, doi: 10.1016/j.chemosphere.2020.125867.
- J.X. Tie, D. Chen, Y.J. Wan, C. Yan, X.W. Zhang, Adsorption
removal of phosphorus from aqueous solution by heatactivated
alum sludge, Asian J. Chem., 25 (2013) 9129–9134.
- A.J. Deng, C.H. Li, Q.D. Yu, H.C. Wang, D.D. Fan, IOP,
Phosphate removal from swine wastewater with Unburned red
mud ceramsite, IOP Conf. Ser.: Earth Environ. Sci., 252 (2019)
032036,
doi: 10.1088/1755-1315/252/3/032036.
- K. Furuya, A. Hafuka, M. Kuroiwa, H. Satoh, Y. Watanabe,
H. Yamamura, Development of novel polysulfone membranes
with embedded zirconium sulfate-surfactant micelle
mesostructure for phosphate recovery from water through
membrane filtration, Water Res., 124 (2017) 521–526.
- Y. Zhang, X.Y. Kou, H.S. Lu, X.J. Lv, The feasibility of adopting
zeolite in phosphorus removal from aqueous solutions,
Desal. Water Treat., 52 (2014) 4298–4304.
- S.Y. Wei, W.F. Tan, F. Liu, W. Zhao, L.P. Weng, Surface properties
and phosphate adsorption of binary systems containing
goethite and kaolinite, Geoderma, 213 (2014) 478–484.
- Z.N. Hong, J.Y. Li, J. Jiang, Z.D. Liu, R.K. Xu, Presence of
bacteria reduced phosphate adsorption on goethite, Eur. J. Soil
Sci., 66 (2015) 406–416.
- L.F. de Castro, V.S. Brandao, L.C. Bertolino, W. de Souza,
V.G. Teixeira, Phosphate adsorption by montmorillonites
modified with lanthanum/iron and a laboratory test using
water from the Jacarepagua Lagoon (RJ, Brazil), J. Brazil Chem.
Soc., 30 (2019) 641–657.
- X.L. Yuan, W.T. Xia, J. An, J.G. Yin, X.J. Zhou, W.Q. Yang, Kinetic
and thermodynamic studies on the phosphate adsorption
removal by dolomite mineral, J. Chem-Ny., 2015 (2015) 853105,
doi: 10.1155/2015/853105.
- J.W. Huo, X.P. Min, Y. Wang, Zirconium-modified natural clays
for phosphate removal: effect of clay minerals, Environ. Res.,
194 (2021) 110685, doi: 10.1016/j.envres.2020.110685.
- V. Masindi, W.M. Gitari, K.G. Pindihama, Synthesis of
cryptocrystalline magnesite/bentonite clay composite and
its application for removal of phosphate from municipal
wastewaters, Environ. Technol., 37 (2016) 603–612.
- H.B. Yin, X.W. Yan, X.H. Gu, Evaluation of thermally-modified
calcium-rich attapulgite as a low-cost substrate for rapid
phosphorus removal in constructed wetlands, Water Res.,
115 (2017) 329–338.
- H.H. Zhang, J.X. Gao, W.X. Li, B. Liang, H.L. Zhang, W. Zhuang,
G.Q. Li, J. Wu, C.C. Gao, B. Liu, The phosphate adsorption
behavior of coal and sewage sludge incineration slag from
aqueous solutions, Fresenius Environ. Bull., 22 (2013) 372–378.
- M.A. Fulazzaky, N. Salim, M.H. Khamidun, M.H. Puteh,
A. Yusoff, N.H. Abdullah, A. Syafiuddin, M. Zaini, The
mechanisms and kinetics of phosphate adsorption onto ironcoated
waste mussel shell observed from hydrodynamic
column, Int. J. Environ. Sci. Technol., 19 (2022) 6345–6358.
- L.Y. Liu, C.H. Zhang, S.R. Chen, L. Ma, Y.M. Li, Y.F. Lu,
Phosphate adsorption characteristics of La(OH)3-modified,
canna-derived biochar, Chemosphere, 286 (2022) 131773,
doi: 10.1016/j.chemosphere.2021.131773.
- M.H. Feng, M.M. Li, L.S. Zhang, Y. Luo, D. Zhao, M.Y. Yuan,
K.Q. Zhang, F. Wang, Oyster shell modified tobacco straw
biochar: efficient phosphate adsorption at wide range of pH
values, Int. J. Environ. Res. Public Health, 19 (2022) 7227,
doi: 10.3390/ijerph19127227.
- J. Yu, X.D. Li, M. Wu, K. Lin, L.H. Xu, T. Zeng, H.X. Shi, M. Zhang,
Synergistic role of inherent calcium and iron minerals in
paper mill sludge biochar for phosphate adsorption, Sci. Total
Environ., 834 (2022) 155193, doi: 10.1016/j.scitotenv.2022.155193.
- W.Z. Zhou, Z.S. Huang, C.P. Sun, H.X. Zhao, Y.Z. Zhang,
Enhanced phosphorus removal from wastewater by growing
deep-sea bacterium combined with basic oxygen furnace slag,
Bioresour. Technol., 214 (2016) 534–540.
- W.S. Ge, S.Q. Li, M.Q. Jiang, G.H. He, W.J. Zhang, Cu/Fe
bimetallic modified fly ash: an economical adsorbent for
enhanced phosphorus removal from aqueous solutions, Water
Air Soil Pollut., 233 (2022) 182, doi: 10.1007/s11270-022-05628-3.
- Q. Zhang, Y.M. Ding, L. Lu, J.X. Li, M.N. Liang, Y.N. Zhu,
Phosphate adsorption onto bagasse iron oxide biochar:
parameter optimization, kinetic analysis, and study of
mechanisms, Bioresources, 16 (2021) 1335–1357.
- X.F. Wei, J. Miao, Z. Lv, X.Y. Wan, N. Zhang, R.C. Zhang, S.G. Peng,
Phosphate adsorption onto an Al-Ti bimetal oxide composite in
neutral aqueous solution: performance and thermodynamics,
Appl. Sci., 12 (2022) 2309, doi: 10.3390/app12052309.
- Y.B. Lan, S. Gai, K. Cheng, J.S. Li, F. Yang, Lanthanum carbonate
hydroxide/magnetite nanoparticles functionalized porous
biochar for phosphate adsorption and recovery: advanced
capacity and mechanisms study, Environ. Res., 214 (2022)
113783, doi: 10.1016/j.envres.2022.113783.
- D.C. Zhu, Y.Q. Chen, H.P. Yang, S.H. Wang, X.H. Wang, S.H. Zhang,
H.P. Chen, Synthesis and characterization of magnesium
oxide nanoparticle-containing biochar composites for efficient
phosphorus removal from aqueous solution, Chemosphere,
247 (2020) 125847, doi: 10.1016/j.chemosphere.2020.125847.
- D. Jiang, X. Wang, L. Feng, Y. Yu, J. Hu, X. Liu, H. Wu, Structural
insight into the alginate derived
nano-La(OH)3/porous carbon
composites for highly selective adsorption of phosphate,
Int. J. Biol. Macromol., 200 (2022) 172–181.
- Q. Zhou, X. Wang, J. Liu, L. Zhang, Phosphorus removal from
wastewater using nano-particulates of hydrated ferric oxide
doped activated carbon fiber prepared by sol–gel method,
Chem. Eng. J., 200–202 (2012) 619–626.
- L. Zhang, Y. Gao, M. Li, J. Liu, Expanded graphite loaded with
lanthanum oxide used as a novel adsorbent for phosphate
removal from water: performance and mechanism study,
Environ. Technol., 36 (2015) 1016–1025.
- S. Mahdavi, D. Akhzari, The removal of phosphate from
aqueous solutions using two nano-structures: copper oxide and
carbon tubes, Clean Technol. Environ. Policy, 18 (2016) 817–827.
- H. Rashidi Nodeh, H. Sereshti, E. Zamiri Afsharian, N. Nouri,
Enhanced removal of phosphate and nitrate ions from aqueous
media using nanosized lanthanum hydrous doped on magnetic
graphene nanocomposite, J. Environ. Manage., 197 (2017) 265–274.
- T. Atnafu, S. Leta, Plasticized magnetic starch-based Fe3O4
clay polymer nanocomposites for phosphate adsorption from
aqueous solution, Heliyon, 7 (2021) e07973, doi: 10.1016/j.heliyon.2021.e07973.
- N. Abbasi, S.A. Khan, Z.C. Liu, T.A. Khan, Natural deep eutectic
solvent (fructose-glycine) functionalized-celite/polyethylene
glycol hydrogel nanocomposite for phosphate adsorption:
statistical analysis, J. Environ. Manage., 330 (2023) 117206,
doi: 10.1016/j.jenvman.2022.117206.
- S. Sudhakaran, E.V. Abraham, H. Mahadevan, K.A. Krishnan,
Crosslinked chitosan-montmorillonite biocomposite with
Fe intercalation: enhancing surface chemistry for improved
phosphate adsorption, Surf. Interfaces, 27 (2021) 101468,
doi: 10.1016/j.surfin.2021.101468.
- J. Jang, D.S. Lee, Effective phosphorus removal using chitosan/
Ca-organically modified montmorillonite beads in batch and
fixed-bed column studies, J. Hazard. Mater., 375 (2019) 9–18.
- Z. Wang, S. Guan, Y.J. Wang, W. Li, K. Shi, J.K. Li, Z.Q. Xu,
High purity struvite recovery from hydrothermally-treated
sludge supernatant using magnetic zirconia adsorbent, Int.
J. Environ. Res. Public Health, 19 (2022) 13156, doi: 10.3390/ijerph192013156.
- M.A. Rahman, D. Lamb, A. Kunhikrishnan, M.M. Rahman,
Kinetics, Isotherms and adsorption-desorption behavior of
phosphorus from aqueous solution using zirconium-iron
and iron modified biosolid biochars, Water, 13 (2021) 3320,
doi: 10.3390/w13233320.
- Y. Zhou, Y. Wang, S. Dong, H. Hao, J. Li, C. Liu, X. Li, Y. Tong,
Phosphate removal by a La(OH)3 loaded magnetic MAPTAC-based
cationic hydrogel: enhanced surface charge density and
Donnan membrane effect, J. Environ. Sci., 113 (2022) 26–39.
- A. Ramirez, S. Giraldo, J. García-Nunez, E. Flórez, N. Acelas,
Phosphate removal from water using a hybrid material in a
fixed-bed column, J. Water Process Eng., 26 (2018) 131–137.
- H.Y. Lin, T. Ouyang, C.S. Chiou, Y.L. Ma, Preparation
and application of modified magnetic particles to remove
phosphate in aqueous media, J. Nanosci. Nanotechnol.,
15 (2015) 4596–4603.
- T.S. Anirudhan, T.A. Rauf, S.R. Rejeena, Removal and
recovery of phosphate ions from aqueous solutions by
amine functionalized epichlorohydrin-grafted cellulose,
Desalination, 285 (2012) 277–284.
- V.E. Comparán Padilla, M.T. Romero de la Cruz,
Y.E. Ávila Alvarado, R. García Díaz, C.E. Rodríguez García,
G. Hernández Cocoletzi, Studies of hydrogen sulfide and
ammonia adsorption on P- and Si-doped graphene: density
functional theory calculations, J. Mol. Model., 25 (2019) 94,
doi: 10.1007/s00894-019-3974-y.
- L.J. Li, Q. Zhang, X.B. Li, W. Cheng, L. Ban, Preparation of
activated red mud particle adsorbent and its adsorption
mechanism for phosphate ions, Desal. Water Treat., 188 (2020)
169–184.
- N.Y. Acelas, S.M. Mejia, F. Mondragón, E. Flórez, Density
functional theory characterization of phosphate and sulfate
adsorption on Fe-(hydr)oxide: reactivity, pH effect, estimation
of Gibbs free energies, and topological analysis of hydrogen
bonds, Comput. Theor. Chem., 1005 (2013) 16–24.
- X.T. Zhou, L.J. Li, Y.Q. Qiu, W.S. Liu, Adsorption of phosphate
by cancrinite in red mud: a first-principles study, Mater. Res.
Express, 9 (2022) 045503, doi: 10.1088/2053-1591/ac5e20.
- W. Liu, V.G. Ruiz, G.X. Zhang, B. Santra, X.G. Ren,
M. Scheffler, A. Tkatchenko, Structure and energetics of
benzene adsorbed on transition-metal surfaces: densityfunctional
theory with van der Waals interactions including
collective substrate response, New J. Phys., 15 (2013) 053046,
doi: 10.1088/1367-2630/15/5/053046.
- S. Hu, X. Chen, Q. Li, F. Li, Z. Fan, H. Wang, Y. Wang, B. Zheng,
G. Wu, Fe3+ doping promoted N2 photofixation ability of
honeycombed graphitic carbon nitride: the experimental and
density functional theory simulation analysis, Appl. Catal., B,
201 (2017) 58–69.
- C. Peng, Y. Zhong, F. Min, Adsorption of alkylamine cations
on montmorillonite (001) surface: a density functional theory
study, Appl. Clay Sci., 152 (2018) 249–258.
- Y. Zou, Y. Liu, X. Wang, G. Sheng, S. Wang, Y. Ai, Y. Ji, Y. Liu,
T. Hayat, X. Wang, Glycerol-modified binary layered double
hydroxide nanocomposites for uranium immobilization
via extended X-ray absorption fine structure technique and
density functional theory calculation, ACS Sustainable Chem.
Eng., 5 (2017) 3583–3595.
- N.Y. Dzade, A. Roldan, N.H. de Leeuw, A density functional
theory study of the adsorption of benzene on hematite
(α-Fe2O3) surfaces, Minerals-Basel, 4 (2014) 89–115.
- Y. Chen, W. Zhang, S. Yang, A. Hobiny, A. Alsaedi, X. Wang,
Understanding the adsorption mechanism of Ni(II) on
graphene oxides by batch experiments and density functional
theory studies, Sci. China Chem., 59 (2016) 412–419.
- J. Landers, G.Y. Gor, A.V. Neimark, Density functional theory
methods for characterization of porous materials, Colloids
Surf., A, 437 (2013) 3–32.
- N. Qiu, Y. Xue, Y. Guo, W. Sun, W. Chu, Adsorption of
methane on carbon models of coal surface studied by the
density functional theory including dispersion correction
(DFT-D3), Comput. Theor. Chem., 992 (2012) 37–47.
- A. Mosahebfard, R. Safaiee, M.H. Sheikhi, Density functional
theory of influence of methane adsorption on the electronic
properties of a PbS cluster, Pramana-J. Phys., 93 (2019) 9,
doi: 10.1007/s12043-019-1759-6.
- H.Y. Ammar, H.M. Badran, A. Umar, H. Fouad,
O.Y. Alothman, ZnO nanocrystal-based chloroform detection:
density functional theory (DFT) study, Coatings, 9 (2019) 769,
doi: 10.3390/coatings9110769.
- Z.D. Li, Z.H. Jin, A. Firoozabadi, Phase behavior and adsorption
of pure substances and mixtures and characterization in
nanopore structures by density functional theory, SPE J.,
19 (2014) 1096–1109.