References

  1. W.M. Xie, F.P. Zhou, X.L. Bi, D.D. Chen, J. Li, S.Y. Sun, J.Y. Liu, X.Q. Chen, Accelerated crystallization of magnetic 4A-zeolite synthesized from red mud for application in removal of mixed heavy metal ions, J. Hazard. Mater., 358 (2018) 441–449.
  2. S. Lakshmi Narayanan, G. Venkatesan, I. Vetha Potheher, Equilibrium studies on removal of lead(II) ions from aqueous solution by adsorption using modified red mud, Int. J. Environ. Sci. Technol., 15 (2018) 1687–1698.
  3. N.T. do Prado, A.P. Heitmann, H.S. Mansur, A.A. Mansur, L.C.A. Oliveira, C.S. de Castro, PET-modified red mud as catalysts for oxidative desulfurization reactions, J. Environ. Sci., 57 (2017) 312–320.
  4. A.N. Babu, G. Mohan, K. Kalpana, K. Ravindhranath, Removal of lead from water using calcium alginate beads doped with hydrazine sulphate-activated red mud as adsorbent, J. Anal. Methods Chem., 2017 (2017) 4650594, doi: 10.1155/2017/4650594.
  5. M.A. Zahed, S. Salehi, Y. Tabari, H. Farraji, S. Ataei-Kachooei, A.A. Zinatizadeh, N. Kamali, M. Mahjouri, Phosphorus removal and recovery: state of the science and challenges, Environ. Sci. Pollut. Res., 29 (2022) 58561–58589.
  6. S.M. Scherrenberg, A.F. van Nieuwenhuijzen, H. Menkveld, J. den Elzen, J. van der Graaf, Innovative phosphorus distribution method to achieve advanced chemical phosphorus removal, Water Sci. Technol., 58 (2008) 1727–1733.
  7. C. Zhang, A. Guisasola, J.A. Baeza, A review on the integration of mainstream P-recovery strategies with enhanced biological phosphorus removal, Water Res., 212 (2022) 118102, doi: 10.1016/j.watres.2022.118102.
  8. Q. Li, S. Wang, L.F. Wang, L. Zhang, X.H. Wan, Z.G. Sun, The recovery of phosphorus from acidic ultra-high phosphorous wastewater by the struvite crystallization, Water, 12 (2020) 946, doi: 10.3390/w12040946.
  9. N.Y. Acelas, B.D. Martin, D. López, B. Jefferson, Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media, Chemosphere, 119 (2015) 1353–1360.
  10. Q. Yue, Y. Zhao, Q. Li, W. Li, B. Gao, S. Han, Y. Qi, H. Yu, Research on the characteristics of red mud granular adsorbents (RMGA) for phosphate removal, J. Hazard. Mater., 176 (2010) 741–748.
  11. Y. Zhao, Q. Yue, Q. Li, Q. Li, B. Gao, S. Han, H. Yu, Influence of sintering temperature on orthophosphate and pyrophosphate removal behaviors of red mud granular adsorbents (RMGA), Colloids Surf., A, 394 (2012) 1–7.
  12. Y.Q. Zhao, Q.Y. Yue, Q. Li, X. Xu, Z.L. Yang, X.J. Wang, B.Y. Gao, H. Yu, Characterization of red mud granular adsorbent (RMGA) and its performance on phosphate removal from aqueous solution, Chem. Eng. J., 193 (2012) 161–168.
  13. Y. Li, C. Liu, Z. Luan, X. Peng, C. Zhu, Z. Chen, Z. Zhang, J. Fan, Z. Jia, Phosphate removal from aqueous solutions using raw and activated red mud and fly ash, J. Hazard. Mater., 137 (2006) 374–383.
  14. Y. Li, X.M. Liu, Z.P. Li, Y.Y. Ren, Y.G. Wang, W. Zhang, Preparation, characterization and application of red mud, fly ash and desulfurized gypsum based eco-friendly road base materials, J. Cleaner Prod., 284 (2021) 124777, doi: 10.1016/j.jclepro.2020.124777.
  15. F. Ni, J. He, Y. Wang, Z. Luan, Preparation and characterization of a cost-effective red mud/polyaluminum chloride composite coagulant for enhanced phosphate removal from aqueous solutions, J. Water Process Eng., 6 (2015) 158–165.
  16. Y. Zhao, J. Wang, Z. Luan, X. Peng, Z. Liang, L. Shi, Removal of phosphate from aqueous solution by red mud using a factorial design, J. Hazard. Mater., 165 (2009) 1193–1199.
  17. W. Huang, S. Wang, Z. Zhu, L. Li, X. Yao, V. Rudolph, F. Haghseresht, Phosphate removal from wastewater using red mud, J. Hazard. Mater., 158 (2008) 35–42.
  18. V. Somogyi, V. Pitas, K.M. Berta, R. Kurdi, Red mud as adsorbent to recover phosphorous from wastewater streams, Sustainability, 14 (2022) 13202, doi: 10.3390/su142013202.
  19. G.K. Mohan, A.N. Babu, K. Kalpana, K. Ravindhranath, Zirconium-treated fine red mud impregnated in Zn-alginate beads as adsorbent in removal of phosphate from water, Asian J. Chem., 29 (2017) 2549–2558.
  20. S.S. Prajapati, P.A. Najar, V.M. Tangde, Removal of phosphate using red mud: an environmentally hazardous waste by-product of alumina industry, Adv. Phys. Chem., 2016 (2016) 9075206, doi: 10.1155/2016/9075206.
  21. A.H. Al-Fatlawi, M.M. Neamah, Column study of the adsorption of phosphate by using drinking water treatment sludge and red mud, Int. J. Environ. Sci. Technol., 6 (2015) 8–19.
  22. İ. Sevgili, Ö.F. Dilmaç, B. Şimşek, An environmentally sustainable way for effective water purification by adsorptive red mud cementitious composite cubes modified with bentonite and activated carbon, Sep. Purif. Technol., 274 (2021) 119115, doi: 10.1016/j.seppur.2021.119115.
  23. A. Deng, C. Li, Q. Yu, H. Wang, D. Fan, Phosphate removal from swine wastewater with unburned red mud ceramsite, IOP Conf. Ser.: Earth Environ. Sci., 252 (2019) 32036, doi: 10.1088/1755-1315/252/3/032036.
  24. J. Ye, P. Zhang, E. Hoffmann, G. Zeng, Y. Tang, J. Dresely, Y. Liu, Comparison of response surface methodology and artificial neural network in optimization and prediction of acid activation of bauxsol for phosphorus adsorption, Water Air Soil Pollut., 225 (2014) 2225, doi: 10.1007/s11270-014-2225-1.
  25. S. Singh, A. Thakur, Red mud-based binder: a sustainable material for removal of chromium(VI) from water, Mater. Today Proc., 46 (2021) 2955–2959.
  26. M.A. Khairul, J. Zanganeh, B. Moghtaderi, The composition, recycling and utilisation of Bayer red mud, Resour. Conserv. Recyl., 141 (2019) 483–498.
  27. X. Zhong, H.Y. Zhang, L.Y. Zhang, Y.L. Tian, Y.W. Xiong, P.I. Destech, Ammonium Removal From Aqueous Solution by Sintering Process Red Mud and the Acid-Activated Sintering Process Red Mud, Presented at the 3rd International Conference on Energy and Environmental Protection, Xi’An, China, April 2015, pp. 26–27.
  28. S.G. Xue, X.F. Kong, F. Zhu, W. Hartley, X.F. Li, Y.W. Li, Proposal for management and alkalinity transformation of bauxite residue in China, Environ. Sci. Pollut. Res., 23 (2016) 12822–12834.
  29. C.H. Guo, H.X. Li, F. Fang, Y.S. Ji, Y.X. Xing, Y.B. Fan, Y. Liu, Study on distribution of phosphorus fractions and adsorption–desorption characteristics in surface sediments of the yellow river by molybdenum antimony spectrophotometry, Spectrosc. Spect. Anal., 38 (2018) 218–223.
  30. S. Berchmans, T.B. Issa, P. Singh, Determination of inorganic phosphate by electroanalytical methods: a review, Anal. Chim. Acta, 729 (2012) 7–20.
  31. S. Motomizu, Z.H. Li, Trace and ultratrace analysis methods for the determination of phosphorus by flow-injection techniques, Talanta, 66 (2005) 332–340.
  32. H.S. Kim, Y.J. Koo, M. Lee, E.C. Pack, D.Y. Jang, S.H. Lee, K.M. Lim, D. Choi, An optimised method for the rapid analysis of condensed phosphates in fishery and processed marine food products using ion chromatography and microwave sample processing, Food Addit. Contam., Part A, 37 (2020) 205–215.
  33. T. Kaur, J. Sharma, A. Ganguli, M. Ghosh, Application of biopolymer produced from metabolic engineered Acinetobacter sp. for the development of phosphate optoelectronic sensor, Compos. Interfaces, 21 (2014) 143–151.
  34. M. Antunes, F.T. Conceicao, G. Navarro, A.M. Fernandes, S.F. Durrant, Use of red mud activated at different temperatures as a low-cost adsorbent of reactive dye, Eng. Sanit. Ambient, 26 (2021) 805–811.
  35. K.C. de Souza, M.L.P. Antunes, S.J. Couperthwaite, F.T. da Conceição, T.R. de Barros, R. Frost, Adsorption of reactive dye on seawater-neutralised bauxite refinery residue, J. Colloid Interface Sci., 396 (2013) 210–214.
  36. S. Babel, R.S. Chauhan, N. Ali, V. Yadav, Preparation of phosphate mine tailings and low-grade rock phosphate enriched bio-fertilizer, J. Sci. Ind. Res. India, 75 (2016) 120–123.
  37. P.S. Ranawat, K.M. Kumar, N.K. Sharma, Production of epsom, gypsum and other industrial products from the mill tailings of Jhamarkotra rock phosphate project, India, Curr. Sci., 96 (2009) 713–717.
  38. B. Shen, X. Yu, W. Jiang, H. Yuan, M. Zhao, H. Zhou, Z. Pan, Green conversion of saponins to diosgenin in an alcoholysis system catalyzed by solid acid derived from phosphorus tailings, ACS Omega, 6 (2021) 5423–5435.
  39. B. Tu, K.Q. Zhou, Q.Q. Zhou, K.L. Gong, D.T. Hu, Waste to resource: preparation of an efficient adsorbent and its sustainable utilization in flame retardant polyurethane composites, RSC Adv., 11 (2021) 9942–9954.
  40. W. Ding, J.H. Xiao, Y. Peng, S.Y. Shen, T. Chen, K. Zou, Z. Wang, A novel process for extraction of iron from a refractory red mud, Physicochem. Probl. Miner. Process., 56 (2020) 125–136.
  41. H. Vojoudi, A. Badiei, S. Bahar, G. Mohammadi Ziarani, F. Faridbod, M.R. Ganjali, A new nano-sorbent for fast and efficient removal of heavy metals from aqueous solutions based on modification of magnetic mesoporous silica nanospheres, J. Magn. Magn. Mater., 441 (2017) 193–203.
  42. Y.H. Kim, J.S. Han, G.S. An, Surface physicochemical characteristics for sodium ion removal with sodium silicate modified magnetite core-shell nanoparticles and activation of their plasmid DNA purification ability, Ceram. Int., 48 (2022) 36218–36225.
  43. L. Xiao, Y. Li, Q. Kong, Y. Lan, From wastes to functions: preparation of layered double hydroxides from industrial waste and its removal performance towards phosphates, Environ. Sci. Pollut. Res., 29 (2022) 11893–11906.
  44. P. Hu, Y. Zhang, F. Lv, W. Tong, H. Xin, Z. Meng, X. Wang, P.K. Chu, Preparation of layered double hydroxides using boron mud and red mud industrial wastes and adsorption mechanism to phosphate, Water Environ. J., 31 (2017) 145–157.
  45. Y. Wang, Y. Yu, H. Li, C. Shen, Comparison study of phosphorus adsorption on different waste solids: fly ash, red mud and ferric–alum water treatment residues, J. Environ. Sci., 50 (2016) 79–86.
  46. T.F. Guo, H.Q. Yang, Q.Y. Liu, H.N. Gu, N. Wang, W.B. Yu, Y. Dai, Adsorptive removal of phosphate from aqueous solutions using different types of red mud, Water Sci. Technol., 2017 (2018) 570–577.
  47. V.M. Tangde, S.S. Prajapati, B.B. Mandal, N.P. Kulkarni, Study of kinetics and thermodynamics of removal of phosphate from aqueous solution using activated red mud, Int. J. Environ. Res., 11 (2017) 39–47.
  48. J. Ye, X. Cong, P. Zhang, E. Hoffmann, G. Zeng, Y. Liu, W. Fang, Y. Wu, H. Zhang, Interaction between phosphate and acidactivated neutralized red mud during adsorption process, Appl. Surf. Sci., 356 (2015) 128–134.
  49. J. Park, J.J. Wang, D. Seo, Sorption characteristics of phosphate by bauxite residue in aqueous solution, Colloids Surf., A, 618 (2021) 126465, doi: 10.1016/j.colsurfa.2021.126465.
  50. E. Tarso Souza Costa, L. Roberto Guimarães Guilherme, G. Lopes, J. Maria de Lima, F. Benedito Ono, N. Curi, Comparing the sorptive affinity of an aluminum-mining by-product for cationic and anionic pollutants, Int. J. Environ. Sci. Technol., 18 (2021) 1237–1252.
  51. N. Shabnam, Y. Ahn, A. Maksachev, J.H. Lee, C. Huang, H. Kim, Application of red-mud based ceramic media for phosphate uptake from water and evaluation of their effects on growth of Iris latifolia seedling, Sci. Total Environ., 688 (2019) 724–731.
  52. Z. Liang, X. Peng, Z. Luan, W. Li, Y. Zhao, Reduction of phosphorus release from high phosphorus soil by red mud, Environ. Earth Sci., 65 (2012) 581–588.
  53. E.T. de Souza Costa, L.R.G. Guilherme, G. Lopes, J.M. de Lima, N. Curi, Sorption of cadmium, lead, arsenate, and phosphate on red mud combined with phosphogypsum, Int. J. Environ. Res., 15 (2021) 427–444.
  54. Y. Zhao, Z. Niu, Q. Zhong, L. Wang, S. He, M. Xu, J. Wang, Preparation and characterization of red mud/fly ash composite material (RFCM) for phosphate removal, Bull. Environ. Contam. Toxicol., 109 (2022) 169–179.
  55. X. Li, M. Ji, L.D. Nghiem, Y. Zhao, D. Liu, Y. Yang, Q. Wang, Q.T. Trinh, D.N. Vo, V.Q. Pham, N.H. Tran, A novel red mud adsorbent for phosphorus and diclofenac removal from wastewater, J. Mol. Liq., 303 (2020) 112286, doi: 10.1016/j.molliq.2019.112286.
  56. Z. Zhao, B. Wang, Q. Feng, M. Chen, X. Zhang, R. Zhao, Recovery of nitrogen and phosphorus in wastewater by red mud-modified biochar and its potential application, Sci. Total Environ., 860 (2023) 160289, doi: 10.1016/j.scitotenv.2022.160289.
  57. R.A. Pepper, S.J. Couperthwaite, G.J. Millar, Re-use of waste red mud: production of a functional iron oxide adsorbent for removal of phosphorous, J. Water Process Eng., 25 (2018) 138–148.
  58. J. Lu, Y. Xie, M. Meng, Y. Cao, L. Feng, X. Ao, M. Yang, Adsorption performance of red mud magnetic composite material modified by spirit-based distillers’ grains for low-concentration phosphorus in water, J. Chem. Technol. Biotechnol., 97 (2022) 2648–2657.
  59. J. Ye, X. Cong, P. Zhang, G. Zeng, E. Hoffmann, Y. Wu, H. Zhang, W. Fang, Operational parameter impact and back propagation artificial neural network modeling for phosphate adsorption onto acid-activated neutralized red mud, J. Mol. Liq., 216 (2016) 35–41.
  60. J. Ye, X. Cong, P. Zhang, E. Hoffmann, G. Zeng, Y. Wu, H. Zhang, W. Fang, Preparation of a new granular acid-activated neutralized red mud and evaluation of its performance for phosphate adsorption, ACS Sustainable Chem. Eng., 3 (2015) 3324–3331.
  61. Y.L. Li, F. Alam, Y.W. Cui, Red mud reuse for phosphate adsorption via zirconium modification: performance, kinetics, and mechanism, Desal. Water Treat., 225 (2021) 331–339.
  62. H. Vu, M.D. Khan, R. Chilakala, T.Q. Lai, T. Thenepalli, J.W. Ahn, D.U. Park, J. Kim, Utilization of lime mud waste from paper mills for efficient phosphorus removal, Sustainability, 11 (2019) 1524, doi: 10.3390/su11061524.
  63. C. Zhao, Y. Li, Y. Pang, D. Peng, T. Huang, J. Chen, Red mud as a magnesium carrier for enhanced N and P recovery from wastewater by the struvite method, Environ. Technol. Innovation, 30 (2023) 103030, doi: 10.1016/j.eti.2023.103030.
  64. F. Hassani, M. Noaparast, S.Z. Shafaei Tonkaboni, A study on the effect of ultrasound irradiation as pretreatment method on flotation of sedimentary phosphate rock with carbonate–silicate gangue, Iran. J. Sci. Technol. Trans. Sci., 43 (2019) 2787–2798.
  65. J. Ye, X. Cong, P. Zhang, E. Hoffmann, G. Zeng, Y. Wu, H. Zhang, W. Fan, Phosphate adsorption onto granular-acid-activatedneutralized red mud: parameter optimization, kinetics, isotherms, and mechanism analysis, Water Air Soil Pollut., 226 (2015) 306, doi: 10.1007/s11270-015-2577-1.
  66. J. Lin, M. Kim, D. Li, H. Kim, C. Huang, The removal of phosphate by thermally treated red mud from water: the effect of surface chemistry on phosphate immobilization, Chemosphere, 247 (2020) 125867, doi: 10.1016/j.chemosphere.2020.125867.
  67. J.X. Tie, D. Chen, Y.J. Wan, C. Yan, X.W. Zhang, Adsorption removal of phosphorus from aqueous solution by heatactivated alum sludge, Asian J. Chem., 25 (2013) 9129–9134.
  68. A.J. Deng, C.H. Li, Q.D. Yu, H.C. Wang, D.D. Fan, IOP, Phosphate removal from swine wastewater with Unburned red mud ceramsite, IOP Conf. Ser.: Earth Environ. Sci., 252 (2019) 032036,
    doi: 10.1088/1755-1315/252/3/032036.
  69. K. Furuya, A. Hafuka, M. Kuroiwa, H. Satoh, Y. Watanabe, H. Yamamura, Development of novel polysulfone membranes with embedded zirconium sulfate-surfactant micelle mesostructure for phosphate recovery from water through membrane filtration, Water Res., 124 (2017) 521–526.
  70. Y. Zhang, X.Y. Kou, H.S. Lu, X.J. Lv, The feasibility of adopting zeolite in phosphorus removal from aqueous solutions, Desal. Water Treat., 52 (2014) 4298–4304.
  71. S.Y. Wei, W.F. Tan, F. Liu, W. Zhao, L.P. Weng, Surface properties and phosphate adsorption of binary systems containing goethite and kaolinite, Geoderma, 213 (2014) 478–484.
  72. Z.N. Hong, J.Y. Li, J. Jiang, Z.D. Liu, R.K. Xu, Presence of bacteria reduced phosphate adsorption on goethite, Eur. J. Soil Sci., 66 (2015) 406–416.
  73. L.F. de Castro, V.S. Brandao, L.C. Bertolino, W. de Souza, V.G. Teixeira, Phosphate adsorption by montmorillonites modified with lanthanum/iron and a laboratory test using water from the Jacarepagua Lagoon (RJ, Brazil), J. Brazil Chem. Soc., 30 (2019) 641–657.
  74. X.L. Yuan, W.T. Xia, J. An, J.G. Yin, X.J. Zhou, W.Q. Yang, Kinetic and thermodynamic studies on the phosphate adsorption removal by dolomite mineral, J. Chem-Ny., 2015 (2015) 853105, doi: 10.1155/2015/853105.
  75. J.W. Huo, X.P. Min, Y. Wang, Zirconium-modified natural clays for phosphate removal: effect of clay minerals, Environ. Res., 194 (2021) 110685, doi: 10.1016/j.envres.2020.110685.
  76. V. Masindi, W.M. Gitari, K.G. Pindihama, Synthesis of cryptocrystalline magnesite/bentonite clay composite and its application for removal of phosphate from municipal wastewaters, Environ. Technol., 37 (2016) 603–612.
  77. H.B. Yin, X.W. Yan, X.H. Gu, Evaluation of thermally-modified calcium-rich attapulgite as a low-cost substrate for rapid phosphorus removal in constructed wetlands, Water Res., 115 (2017) 329–338.
  78. H.H. Zhang, J.X. Gao, W.X. Li, B. Liang, H.L. Zhang, W. Zhuang, G.Q. Li, J. Wu, C.C. Gao, B. Liu, The phosphate adsorption behavior of coal and sewage sludge incineration slag from aqueous solutions, Fresenius Environ. Bull., 22 (2013) 372–378.
  79. M.A. Fulazzaky, N. Salim, M.H. Khamidun, M.H. Puteh, A. Yusoff, N.H. Abdullah, A. Syafiuddin, M. Zaini, The mechanisms and kinetics of phosphate adsorption onto ironcoated waste mussel shell observed from hydrodynamic column, Int. J. Environ. Sci. Technol., 19 (2022) 6345–6358.
  80. L.Y. Liu, C.H. Zhang, S.R. Chen, L. Ma, Y.M. Li, Y.F. Lu, Phosphate adsorption characteristics of La(OH)3-modified, canna-derived biochar, Chemosphere, 286 (2022) 131773, doi: 10.1016/j.chemosphere.2021.131773.
  81. M.H. Feng, M.M. Li, L.S. Zhang, Y. Luo, D. Zhao, M.Y. Yuan, K.Q. Zhang, F. Wang, Oyster shell modified tobacco straw biochar: efficient phosphate adsorption at wide range of pH values, Int. J. Environ. Res. Public Health, 19 (2022) 7227, doi: 10.3390/ijerph19127227.
  82. J. Yu, X.D. Li, M. Wu, K. Lin, L.H. Xu, T. Zeng, H.X. Shi, M. Zhang, Synergistic role of inherent calcium and iron minerals in paper mill sludge biochar for phosphate adsorption, Sci. Total Environ., 834 (2022) 155193, doi: 10.1016/j.scitotenv.2022.155193.
  83. W.Z. Zhou, Z.S. Huang, C.P. Sun, H.X. Zhao, Y.Z. Zhang, Enhanced phosphorus removal from wastewater by growing deep-sea bacterium combined with basic oxygen furnace slag, Bioresour. Technol., 214 (2016) 534–540.
  84. W.S. Ge, S.Q. Li, M.Q. Jiang, G.H. He, W.J. Zhang, Cu/Fe bimetallic modified fly ash: an economical adsorbent for enhanced phosphorus removal from aqueous solutions, Water Air Soil Pollut., 233 (2022) 182, doi: 10.1007/s11270-022-05628-3.
  85. Q. Zhang, Y.M. Ding, L. Lu, J.X. Li, M.N. Liang, Y.N. Zhu, Phosphate adsorption onto bagasse iron oxide biochar: parameter optimization, kinetic analysis, and study of mechanisms, Bioresources, 16 (2021) 1335–1357.
  86. X.F. Wei, J. Miao, Z. Lv, X.Y. Wan, N. Zhang, R.C. Zhang, S.G. Peng, Phosphate adsorption onto an Al-Ti bimetal oxide composite in neutral aqueous solution: performance and thermodynamics, Appl. Sci., 12 (2022) 2309, doi: 10.3390/app12052309.
  87. Y.B. Lan, S. Gai, K. Cheng, J.S. Li, F. Yang, Lanthanum carbonate hydroxide/magnetite nanoparticles functionalized porous biochar for phosphate adsorption and recovery: advanced capacity and mechanisms study, Environ. Res., 214 (2022) 113783, doi: 10.1016/j.envres.2022.113783.
  88. D.C. Zhu, Y.Q. Chen, H.P. Yang, S.H. Wang, X.H. Wang, S.H. Zhang, H.P. Chen, Synthesis and characterization of magnesium oxide nanoparticle-containing biochar composites for efficient phosphorus removal from aqueous solution, Chemosphere, 247 (2020) 125847, doi: 10.1016/j.chemosphere.2020.125847.
  89. D. Jiang, X. Wang, L. Feng, Y. Yu, J. Hu, X. Liu, H. Wu, Structural insight into the alginate derived
    nano-La(OH)3/porous carbon composites for highly selective adsorption of phosphate, Int. J. Biol. Macromol., 200 (2022) 172–181.
  90. Q. Zhou, X. Wang, J. Liu, L. Zhang, Phosphorus removal from wastewater using nano-particulates of hydrated ferric oxide doped activated carbon fiber prepared by sol–gel method, Chem. Eng. J., 200–202 (2012) 619–626.
  91. L. Zhang, Y. Gao, M. Li, J. Liu, Expanded graphite loaded with lanthanum oxide used as a novel adsorbent for phosphate removal from water: performance and mechanism study, Environ. Technol., 36 (2015) 1016–1025.
  92. S. Mahdavi, D. Akhzari, The removal of phosphate from aqueous solutions using two nano-structures: copper oxide and carbon tubes, Clean Technol. Environ. Policy, 18 (2016) 817–827.
  93. H. Rashidi Nodeh, H. Sereshti, E. Zamiri Afsharian, N. Nouri, Enhanced removal of phosphate and nitrate ions from aqueous media using nanosized lanthanum hydrous doped on magnetic graphene nanocomposite, J. Environ. Manage., 197 (2017) 265–274.
  94. T. Atnafu, S. Leta, Plasticized magnetic starch-based Fe3O4 clay polymer nanocomposites for phosphate adsorption from aqueous solution, Heliyon, 7 (2021) e07973, doi: 10.1016/j.heliyon.2021.e07973.
  95. N. Abbasi, S.A. Khan, Z.C. Liu, T.A. Khan, Natural deep eutectic solvent (fructose-glycine) functionalized-celite/polyethylene glycol hydrogel nanocomposite for phosphate adsorption: statistical analysis, J. Environ. Manage., 330 (2023) 117206, doi: 10.1016/j.jenvman.2022.117206.
  96. S. Sudhakaran, E.V. Abraham, H. Mahadevan, K.A. Krishnan, Crosslinked chitosan-montmorillonite biocomposite with Fe intercalation: enhancing surface chemistry for improved phosphate adsorption, Surf. Interfaces, 27 (2021) 101468, doi: 10.1016/j.surfin.2021.101468.
  97. J. Jang, D.S. Lee, Effective phosphorus removal using chitosan/ Ca-organically modified montmorillonite beads in batch and fixed-bed column studies, J. Hazard. Mater., 375 (2019) 9–18.
  98. Z. Wang, S. Guan, Y.J. Wang, W. Li, K. Shi, J.K. Li, Z.Q. Xu, High purity struvite recovery from hydrothermally-treated sludge supernatant using magnetic zirconia adsorbent, Int. J. Environ. Res. Public Health, 19 (2022) 13156, doi: 10.3390/ijerph192013156.
  99. M.A. Rahman, D. Lamb, A. Kunhikrishnan, M.M. Rahman, Kinetics, Isotherms and adsorption-desorption behavior of phosphorus from aqueous solution using zirconium-iron and iron modified biosolid biochars, Water, 13 (2021) 3320, doi: 10.3390/w13233320.
  100. Y. Zhou, Y. Wang, S. Dong, H. Hao, J. Li, C. Liu, X. Li, Y. Tong, Phosphate removal by a La(OH)3 loaded magnetic MAPTAC-based cationic hydrogel: enhanced surface charge density and Donnan membrane effect, J. Environ. Sci., 113 (2022) 26–39.
  101. A. Ramirez, S. Giraldo, J. García-Nunez, E. Flórez, N. Acelas, Phosphate removal from water using a hybrid material in a fixed-bed column, J. Water Process Eng., 26 (2018) 131–137.
  102. H.Y. Lin, T. Ouyang, C.S. Chiou, Y.L. Ma, Preparation and application of modified magnetic particles to remove phosphate in aqueous media, J. Nanosci. Nanotechnol., 15 (2015) 4596–4603.
  103. T.S. Anirudhan, T.A. Rauf, S.R. Rejeena, Removal and recovery of phosphate ions from aqueous solutions by amine functionalized epichlorohydrin-grafted cellulose, Desalination, 285 (2012) 277–284.
  104. V.E. Comparán Padilla, M.T. Romero de la Cruz, Y.E. Ávila Alvarado, R. García Díaz, C.E. Rodríguez García, G. Hernández Cocoletzi, Studies of hydrogen sulfide and ammonia adsorption on P- and Si-doped graphene: density functional theory calculations, J. Mol. Model., 25 (2019) 94, doi: 10.1007/s00894-019-3974-y.
  105. L.J. Li, Q. Zhang, X.B. Li, W. Cheng, L. Ban, Preparation of activated red mud particle adsorbent and its adsorption mechanism for phosphate ions, Desal. Water Treat., 188 (2020) 169–184.
  106. N.Y. Acelas, S.M. Mejia, F. Mondragón, E. Flórez, Density functional theory characterization of phosphate and sulfate adsorption on Fe-(hydr)oxide: reactivity, pH effect, estimation of Gibbs free energies, and topological analysis of hydrogen bonds, Comput. Theor. Chem., 1005 (2013) 16–24.
  107. X.T. Zhou, L.J. Li, Y.Q. Qiu, W.S. Liu, Adsorption of phosphate by cancrinite in red mud: a first-principles study, Mater. Res. Express, 9 (2022) 045503, doi: 10.1088/2053-1591/ac5e20.
  108. W. Liu, V.G. Ruiz, G.X. Zhang, B. Santra, X.G. Ren, M. Scheffler, A. Tkatchenko, Structure and energetics of benzene adsorbed on transition-metal surfaces: densityfunctional theory with van der Waals interactions including collective substrate response, New J. Phys., 15 (2013) 053046,
    doi: 10.1088/1367-2630/15/5/053046.
  109. S. Hu, X. Chen, Q. Li, F. Li, Z. Fan, H. Wang, Y. Wang, B. Zheng, G. Wu, Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: the experimental and density functional theory simulation analysis, Appl. Catal., B, 201 (2017) 58–69.
  110. C. Peng, Y. Zhong, F. Min, Adsorption of alkylamine cations on montmorillonite (001) surface: a density functional theory study, Appl. Clay Sci., 152 (2018) 249–258.
  111. Y. Zou, Y. Liu, X. Wang, G. Sheng, S. Wang, Y. Ai, Y. Ji, Y. Liu, T. Hayat, X. Wang, Glycerol-modified binary layered double hydroxide nanocomposites for uranium immobilization via extended X-ray absorption fine structure technique and density functional theory calculation, ACS Sustainable Chem. Eng., 5 (2017) 3583–3595.
  112. N.Y. Dzade, A. Roldan, N.H. de Leeuw, A density functional theory study of the adsorption of benzene on hematite (α-Fe2O3) surfaces, Minerals-Basel, 4 (2014) 89–115.
  113. Y. Chen, W. Zhang, S. Yang, A. Hobiny, A. Alsaedi, X. Wang, Understanding the adsorption mechanism of Ni(II) on graphene oxides by batch experiments and density functional theory studies, Sci. China Chem., 59 (2016) 412–419.
  114. J. Landers, G.Y. Gor, A.V. Neimark, Density functional theory methods for characterization of porous materials, Colloids Surf., A, 437 (2013) 3–32.
  115. N. Qiu, Y. Xue, Y. Guo, W. Sun, W. Chu, Adsorption of methane on carbon models of coal surface studied by the density functional theory including dispersion correction (DFT-D3), Comput. Theor. Chem., 992 (2012) 37–47.
  116. A. Mosahebfard, R. Safaiee, M.H. Sheikhi, Density functional theory of influence of methane adsorption on the electronic properties of a PbS cluster, Pramana-J. Phys., 93 (2019) 9, doi: 10.1007/s12043-019-1759-6.
  117. H.Y. Ammar, H.M. Badran, A. Umar, H. Fouad, O.Y. Alothman, ZnO nanocrystal-based chloroform detection: density functional theory (DFT) study, Coatings, 9 (2019) 769, doi: 10.3390/coatings9110769.
  118. Z.D. Li, Z.H. Jin, A. Firoozabadi, Phase behavior and adsorption of pure substances and mixtures and characterization in nanopore structures by density functional theory, SPE J., 19 (2014) 1096–1109.