References
- M.W. Shahzad, M. Burhan, A. Li, K.C. Ng, Energy-water-environment
nexus underpinning future desalination
sustainability, Desalination, 413 (2017) 52–64.
- H. Wang, X.Y. Jiang, Legal measures to reduce marine
environmental risks of seawater desalination in China,
Nat. Resour. Forum, 44 (2020) 129–143.
- A. Ophir, F. Lokiec, Advanced MED process for most economical
sea water desalination, Desalination, 182 (2005) 187–198.
- M.W. Shahzad, K. Thu, Y.-d. Kim, K.C. Ng, An experimental
investigation on MEDAD hybrid desalination cycle,
Appl. Energy, 148 (2015) 273–281.
- D.Z. Yang, J.H. Liu, X.E. Xiao, L.L. Jiang, Experimental study of
composition and influence factors on fouling of stainless steel
and copper in seawater, Ann. Nucl. Energy, 94 (2016) 767–772.
- A. Al-Karaghouli, L.L. Kazmerski, Energy consumption and
water production cost of conventional and renewable-energypowered
desalination processes, Renewable Sustainable
Energy Rev., 24 (2013) 343–356.
- M. Alhaj, M. Abdelnasser, S.G. Al-Ghamdi, Energy efficient
multi-effect distillation powered by a solar linear Fresnel
collector, Energy Convers. Manage., 171 (2018) 576–586.
- S. Liu, Z. Wang, M. Han, J.J. Zhang, Embodied water consumption
between typical desalination projects: reverse osmosis
versus low-temperature multi-effect distillation, J. Cleaner
Prod., 295 (2021) 126340, doi: 10.1016/j.jclepro.2021.126340.
- S.M. Parsa, M. Majidniya, W.H. Alawee, H.A. Dhahad, H.M. Ali,
M. Afrand, M. Amidpour, Thermodynamic, economic, and
sensitivity analysis of salt gradient solar pond (SGSP) integrated
with a low-temperature multi effect desalination (MED): case
study, Iran, Sustainable Energy Technol. Assess., 47 (2021)
101478, doi: 10.1016/j.seta.2021.101478.
- M.S. Kamal, I. Hussein, M. Mahmoud, A.S. Sultan, M.A.S. Saad,
Oilfield scale formation and chemical removal: a review,
J. Pet. Sci. Eng., 171 (2018) 127–139.
- D.Z. Yang, J.H. Liu, X.E. Xiao, L.L. Jiang, Model for seawater
fouling and effects of temperature, flow velocity and surface
free energy on seawater fouling, Chin. J. Chem. Eng., 24 (2016)
658–664.
- S.J. Dyer, G.M. Graham, The effect of temperature and pressure
on oilfield scale formation, J. Pet. Sci. Eng., 35 (2002) 95–107.
- M.-A. Ahmadi, A. Bahadori, S.R. Shadizadeh, A rigorous
model to predict the amount of dissolved calcium carbonate
concentration throughout oil field brines: side effect of pressure
and temperature, Fuel, 139 (2015) 154–159.
- H.C. Jin, X.J. Zhang, Y. Yu, X.M. Chen, High-performance Ti/IrO2-RhOx-TiO2/α-PbO2/β-PbO2 electrodes for scale inhibitors
degradation, Chem. Eng. J., 435 (2022) 135167, doi: 10.1016/j.cej.2022.135167.
- T.R. Mattsson, J.M.D. Lane, K.R. Cochrane, M.P. Desjarlais,
A.P. Thompson, F. Pierce, G.S. Grest, First-principles and
classical molecular dynamics simulation of shocked polymers,
Phys. Rev. B: Condens. Matter, 81 (2010) 054103, doi: 10.1103/physrevb.81.054103.
- Y.W. Zuo, W.Z. Yang, K.G. Zhang, Y. Chen, X.S. Yin, Y. Liu,
Experimental and theoretical studies of carboxylic polymers
with low molecular weight as inhibitors for calcium carbonate
scale, Crystals, 10 (2020) 406, doi: 10.3390/cryst10050406.
- G.C. Sosso, J. Chen, S.J. Cox, M. Fitzner, P. Pedevilla, A. Zen,
A. Michaelides, Crystal nucleation in liquids: open questions
and future challenges in molecular dynamics simulations,
Chem. Rev., 116 (2016) 7078–7116.
- Y. Guo, Z.H. Chen, X.S. Yin, W.Z. Yang, Y. Chen, Y. Liu, Effect
of the passive films on CaCO3 scale depositing on Q235
steel: electrochemical and surface investigation, J. Colloid
Interface Sci., 611 (2022) 172–182.
- Z.S. Zuo, W.Z. Yang, K.G. Zhang, Y. Chen, M. Li, Y.W. Zuo,
X.S. Yin, Y. Liu, Effect of scale inhibitors on the structure and
morphology of CaCO3 crystal electrochemically deposited on
TA1 alloy, J. Colloid Interface Sci., 562 (2020) 558–566.
- C. Barchiche, C. Deslouis, D. Festy, O. Gil, Ph. Refait, S. Touzain,
B. Tribollet, Characterization of calcareous deposits in artificial
seawater by impedance techniques: 3—Deposit of CaCO3 in
the presence of Mg(II), Electrochim. Acta, 48 (2003) 1645–1654.
- X.M. Xu, Y.B. Chen, W. Zhou, Z.H. Zhu, C. Su, M.L. Liu,
Z.P. Shao, A perovskite electrocatalyst for efficient hydrogen
evolution reaction, Adv. Mater., 28 (2016) 6442–6448.
- M. Piri, R. Arefinia, Investigation of the hydrogen evolution
phenomenon on CaCO3 precipitation in artificial seawater,
Desalination, 444 (2018) 142–150.
- R. Ketrane, L. Leleyter, F. Baraud, M. Jeannin, O. Gil, B. Saidani,
Characterization of natural scale deposits formed in southern
Algeria groundwater. Effect of its major ions on calcium
carbonate precipitation, Desalination, 262 (2010) 21–30.
- J. Marín-Cruz, R. Cabrera-Sierra, M.A. Pech-Canul, I. González,
EIS characterization of the evolution of calcium carbonate
scaling in cooling systems in presence of inhibitors, J. Solid
State Electrochem., 11 (2007) 1245–1252.
- O. Devos, C. Gabrielli, B. Tribollet, Simultaneous EIS and
in-situ microscope observation on a partially blocked electrode
application to scale electrodeposition, Electrochim. Acta,
51 (2006) 1413–1422.
- R. De Motte, E. Basilico, R. Mingant, J. Kittel, F. Ropital,
P. Combrade, S. Necib, V. Deydier, D. Crusset, S. Marcelin,
A study by electrochemical impedance spectroscopy and
surface analysis of corrosion product layers formed during
CO2 corrosion of low alloy steel, Corros. Sci., 172 (2020) 108666,
doi: 10.1016/j.corsci.2020.108666.
- Z.C. Chen, S. Xiao, F. Chen, D.Z. Chen, J.L. Fang, M. Zhao,
Calcium carbonate phase transformations during the
carbonation reaction of calcium heavy alkylbenzene sulfonate
over-based nanodetergents preparation, J. Colloid Interface Sci.,
359 (2011) 56–67.
- F. Bosch Reig, J.V. Gimeno Adelantado, M.C.M. Moya Moreno,
FTIR quantitative analysis of calcium carbonate (calcite)
and silica (quartz) mixtures using the constant ratio method.
Application to geological samples, Talanta, 58 (2002) 811–821.
- X. Chen, V. Achal, Effect of simulated acid rain on the stability
of calcium carbonate immobilized by microbial carbonate
precipitation, J. Environ. Manage., 264 (2020) 110419,
doi: 10.1016/j.jenvman.2020.110419.
- C.G. Kontoyannis, N.V. Vagenas, Calcium carbonate phase
analysis using XRD and FT-Raman spectroscopy, Analyst,
125 (2000) 251–255.
- Z.Y. Zou, W.J.E.M. Habraken, G. Matveeva, A.C.S. Jensen,
L. Bertinetti, M.A. Hood, C.-Y. Sun, P.U.P.A. Gilbert,
I. Polishchuk, B. Pokroy, J. Mahamid, Y. Politi, S. Weiner,
P. Werner, S. Bette, R. Dinnebier, U. Kolb, E. Zolotoyabko,
P. Fratzl, A hydrated crystalline calcium carbonate phase:
calcium carbonate hemihydrate, Science, 363 (2019) 396–400.
- Y.Y. Wang, Y.J. He, J. Zhan, Z.P. Li, Identification of soil particle
size distribution in different sedimentary environments at river
basin scale by fractal dimension, Sci. Rep., 12 (2022) 10960,
doi: 10.1038/s41598-022-15141-6.
- X.W. Song, L. Zhang, Y.W. Cao, J.H. Zhu, X.P. Luo, Effect of
pH and temperatures on the fast precipitation vaterite particle
size and polymorph stability without additives by steamed
ammonia liquid waste, Powder Technol., 374 (2020) 263–273.
- C. Shen, X. Xu, X.-Y. Hou, D.-X. Wu, J.-H. Yin, Molecular weight
effect on PAA antiscale performance in LT-MED desalination
system: static experiment and MD simulation, Desalination,
445 (2018) 1–5.
- R. Beck, J.-P. Andreassen, The onset of spherulitic growth in
crystallization of calcium carbonate, J. Cryst. Growth, 312 (2010)
2226–2238.