References

  1. M.W. Shahzad, M. Burhan, A. Li, K.C. Ng, Energy-water-environment nexus underpinning future desalination sustainability, Desalination, 413 (2017) 52–64.
  2. H. Wang, X.Y. Jiang, Legal measures to reduce marine environmental risks of seawater desalination in China, Nat. Resour. Forum, 44 (2020) 129–143.
  3. A. Ophir, F. Lokiec, Advanced MED process for most economical sea water desalination, Desalination, 182 (2005) 187–198.
  4. M.W. Shahzad, K. Thu, Y.-d. Kim, K.C. Ng, An experimental investigation on MEDAD hybrid desalination cycle, Appl. Energy, 148 (2015) 273–281.
  5. D.Z. Yang, J.H. Liu, X.E. Xiao, L.L. Jiang, Experimental study of composition and influence factors on fouling of stainless steel and copper in seawater, Ann. Nucl. Energy, 94 (2016) 767–772.
  6. A. Al-Karaghouli, L.L. Kazmerski, Energy consumption and water production cost of conventional and renewable-energypowered desalination processes, Renewable Sustainable Energy Rev., 24 (2013) 343–356.
  7. M. Alhaj, M. Abdelnasser, S.G. Al-Ghamdi, Energy efficient multi-effect distillation powered by a solar linear Fresnel collector, Energy Convers. Manage., 171 (2018) 576–586.
  8. S. Liu, Z. Wang, M. Han, J.J. Zhang, Embodied water consumption between typical desalination projects: reverse osmosis versus low-temperature multi-effect distillation, J. Cleaner Prod., 295 (2021) 126340, doi: 10.1016/j.jclepro.2021.126340.
  9. S.M. Parsa, M. Majidniya, W.H. Alawee, H.A. Dhahad, H.M. Ali, M. Afrand, M. Amidpour, Thermodynamic, economic, and sensitivity analysis of salt gradient solar pond (SGSP) integrated with a low-temperature multi effect desalination (MED): case study, Iran, Sustainable Energy Technol. Assess., 47 (2021) 101478, doi: 10.1016/j.seta.2021.101478.
  10. M.S. Kamal, I. Hussein, M. Mahmoud, A.S. Sultan, M.A.S. Saad, Oilfield scale formation and chemical removal: a review, J. Pet. Sci. Eng., 171 (2018) 127–139.
  11. D.Z. Yang, J.H. Liu, X.E. Xiao, L.L. Jiang, Model for seawater fouling and effects of temperature, flow velocity and surface free energy on seawater fouling, Chin. J. Chem. Eng., 24 (2016) 658–664.
  12. S.J. Dyer, G.M. Graham, The effect of temperature and pressure on oilfield scale formation, J. Pet. Sci. Eng., 35 (2002) 95–107.
  13. M.-A. Ahmadi, A. Bahadori, S.R. Shadizadeh, A rigorous model to predict the amount of dissolved calcium carbonate concentration throughout oil field brines: side effect of pressure and temperature, Fuel, 139 (2015) 154–159.
  14. H.C. Jin, X.J. Zhang, Y. Yu, X.M. Chen, High-performance Ti/IrO2-RhOx-TiO2/α-PbO2/β-PbO2 electrodes for scale inhibitors degradation, Chem. Eng. J., 435 (2022) 135167, doi: 10.1016/j.cej.2022.135167.
  15. T.R. Mattsson, J.M.D. Lane, K.R. Cochrane, M.P. Desjarlais, A.P. Thompson, F. Pierce, G.S. Grest, First-principles and classical molecular dynamics simulation of shocked polymers, Phys. Rev. B: Condens. Matter, 81 (2010) 054103, doi: 10.1103/physrevb.81.054103.
  16. Y.W. Zuo, W.Z. Yang, K.G. Zhang, Y. Chen, X.S. Yin, Y. Liu, Experimental and theoretical studies of carboxylic polymers with low molecular weight as inhibitors for calcium carbonate scale, Crystals, 10 (2020) 406, doi: 10.3390/cryst10050406.
  17. G.C. Sosso, J. Chen, S.J. Cox, M. Fitzner, P. Pedevilla, A. Zen, A. Michaelides, Crystal nucleation in liquids: open questions and future challenges in molecular dynamics simulations, Chem. Rev., 116 (2016) 7078–7116.
  18. Y. Guo, Z.H. Chen, X.S. Yin, W.Z. Yang, Y. Chen, Y. Liu, Effect of the passive films on CaCO3 scale depositing on Q235 steel: electrochemical and surface investigation, J. Colloid Interface Sci., 611 (2022) 172–182.
  19. Z.S. Zuo, W.Z. Yang, K.G. Zhang, Y. Chen, M. Li, Y.W. Zuo, X.S. Yin, Y. Liu, Effect of scale inhibitors on the structure and morphology of CaCO3 crystal electrochemically deposited on TA1 alloy, J. Colloid Interface Sci., 562 (2020) 558–566.
  20. C. Barchiche, C. Deslouis, D. Festy, O. Gil, Ph. Refait, S. Touzain, B. Tribollet, Characterization of calcareous deposits in artificial seawater by impedance techniques: 3—Deposit of CaCO3 in the presence of Mg(II), Electrochim. Acta, 48 (2003) 1645–1654.
  21. X.M. Xu, Y.B. Chen, W. Zhou, Z.H. Zhu, C. Su, M.L. Liu, Z.P. Shao, A perovskite electrocatalyst for efficient hydrogen evolution reaction, Adv. Mater., 28 (2016) 6442–6448.
  22. M. Piri, R. Arefinia, Investigation of the hydrogen evolution phenomenon on CaCO3 precipitation in artificial seawater, Desalination, 444 (2018) 142–150.
  23. R. Ketrane, L. Leleyter, F. Baraud, M. Jeannin, O. Gil, B. Saidani, Characterization of natural scale deposits formed in southern Algeria groundwater. Effect of its major ions on calcium carbonate precipitation, Desalination, 262 (2010) 21–30.
  24. J. Marín-Cruz, R. Cabrera-Sierra, M.A. Pech-Canul, I. González, EIS characterization of the evolution of calcium carbonate scaling in cooling systems in presence of inhibitors, J. Solid State Electrochem., 11 (2007) 1245–1252.
  25. O. Devos, C. Gabrielli, B. Tribollet, Simultaneous EIS and in-situ microscope observation on a partially blocked electrode application to scale electrodeposition, Electrochim. Acta, 51 (2006) 1413–1422.
  26. R. De Motte, E. Basilico, R. Mingant, J. Kittel, F. Ropital, P. Combrade, S. Necib, V. Deydier, D. Crusset, S. Marcelin, A study by electrochemical impedance spectroscopy and surface analysis of corrosion product layers formed during CO2 corrosion of low alloy steel, Corros. Sci., 172 (2020) 108666, doi: 10.1016/j.corsci.2020.108666.
  27. Z.C. Chen, S. Xiao, F. Chen, D.Z. Chen, J.L. Fang, M. Zhao, Calcium carbonate phase transformations during the carbonation reaction of calcium heavy alkylbenzene sulfonate over-based nanodetergents preparation, J. Colloid Interface Sci., 359 (2011) 56–67.
  28. F. Bosch Reig, J.V. Gimeno Adelantado, M.C.M. Moya Moreno, FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples, Talanta, 58 (2002) 811–821.
  29. X. Chen, V. Achal, Effect of simulated acid rain on the stability of calcium carbonate immobilized by microbial carbonate precipitation, J. Environ. Manage., 264 (2020) 110419, doi: 10.1016/j.jenvman.2020.110419.
  30. C.G. Kontoyannis, N.V. Vagenas, Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy, Analyst, 125 (2000) 251–255.
  31. Z.Y. Zou, W.J.E.M. Habraken, G. Matveeva, A.C.S. Jensen, L. Bertinetti, M.A. Hood, C.-Y. Sun, P.U.P.A. Gilbert, I. Polishchuk, B. Pokroy, J. Mahamid, Y. Politi, S. Weiner, P. Werner, S. Bette, R. Dinnebier, U. Kolb, E. Zolotoyabko, P. Fratzl, A hydrated crystalline calcium carbonate phase: calcium carbonate hemihydrate, Science, 363 (2019) 396–400.
  32. Y.Y. Wang, Y.J. He, J. Zhan, Z.P. Li, Identification of soil particle size distribution in different sedimentary environments at river basin scale by fractal dimension, Sci. Rep., 12 (2022) 10960,
    doi: 10.1038/s41598-022-15141-6.
  33. X.W. Song, L. Zhang, Y.W. Cao, J.H. Zhu, X.P. Luo, Effect of pH and temperatures on the fast precipitation vaterite particle size and polymorph stability without additives by steamed ammonia liquid waste, Powder Technol., 374 (2020) 263–273.
  34. C. Shen, X. Xu, X.-Y. Hou, D.-X. Wu, J.-H. Yin, Molecular weight effect on PAA antiscale performance in LT-MED desalination system: static experiment and MD simulation, Desalination, 445 (2018) 1–5.
  35. R. Beck, J.-P. Andreassen, The onset of spherulitic growth in crystallization of calcium carbonate, J. Cryst. Growth, 312 (2010) 2226–2238.