References

  1. R. Shaheed, W.H.M.W. Mohtar, A. El-Shafie, Ensuring water security by using roof-harvested rainwater and lake water treated with a low-cost integrated adsorption-filtration system, Water Sci. Eng., 10 (2017) 115–124.
  2. X. Liu, Z. Ren, H.H. Ngo, X. He, P. Desmond, A. Ding, Membrane technology for rainwater treatment and reuse: a mini review, Water Cycle, 2 (2021) 51–63.
  3. V.K. Gupta, I. Ali, Environmental Water: Advances in Treatment, Remediation and Recycling, Elsevier, UK, 2012.
  4. X. Du, R. Ma, M. Xiao, W. Song, Y. Tan, Z. Wang, A. Hay-Man Ng, W. Zhang, Integrated electro-coagulation and gravity driven ceramic membrane bioreactor for roofing rainwater purification: flux improvement and extreme operating case, Sci. Total Environ., 851 (2022) 158197, doi: 10.1016/j.scitotenv.2022.158197.
  5. G. Lofrano, M. Carotenuto, G. Libralato, R.F. Domingos, A. Markus, L. Dini, R.K. Gautam, D. Baldantoni, M. Rossi, S.K. Sharma, M.C. Chattopadhyaya, M. Giugni, S. Meric, Polymer functionalized nanocomposites for metals removal from water and wastewater: an overview, Water Res., 92 (2016) 22–37.
  6. H.G. Zaman, L. Baloo, R. Pendyala, P.K. Singa, S.U. Ilyas, S.R.M. Kutty, Produced water treatment with conventional adsorbents and MOF as an alternative: a review, Materials, 14 (2021) 7607, doi: 10.3390/ma14247607.
  7. D.S. Dlamini, J.M. Tesha, G.D. Vilakati, B.B. Mamba, A.K. Mishra, J.M. Thwala, J. Li, A critical review of selected membrane- and powder-based adsorbents for water treatment: sustainability and effectiveness, J. Cleaner Prod., 277 (2020) 123497, doi: 10.1016/j.jclepro.2020.123497.
  8. İ. Sevgili, Ö.F. Dilmaç, B. Şimşek, An environmentally sustainable way for effective water purification by adsorptive red mud cementitious composite cubes modified with bentonite and activated carbon, Sep. Purif. Technol., 274 (2021) 119115, doi: 10.1016/j.seppur.2021.119115.
  9. D. Doulia, Ch. Leodopoulos, K. Gimouhopoulos, F. Rigas, Adsorption of humic acid on acid-activated Greek bentonite, J. Colloid Interface Sci., 340 (2009) 131–141.
  10. P.N. Diagboya, B.I. Olu-Owolabi, F.M. Mtunzi, K.O. Adebowale, Clay-carbonaceous material composites: towards a new class of functional adsorbents for water treatment, Surf. Interfaces, 19 (2020) 100506, doi: 10.1016/j.surfin.2020.100506.
  11. M. Nel, F.B. Waanders, E. Fosso-Kankeu, Adsorption Potential of Bentonite Clay and Attapulgite Applied for the Desalination of Seawater, 6th Int’l Conf. on Green Technology, Renewable Energy & Environmental Eng. (ICGTREEE’2014) Nov. 27–28, Cape Town (SA), 2014.
  12. H. Zhang, A.M. Omer, Z. Hu, L. Yang, Ch. Ji, X. Ouyang, Fabrication of magnetic bentonite/carboxymethyl chitosan/sodium alginate hydrogel beads for Cu(II) adsorption, Int. J. Biol. Macromol., 135 (2019) 490–500.
  13. I. Ayouch, I. Barrak, Z. Kassab, M. El Achaby, A. Barhoun, K. Draoui, Improved recovery of cadmium from aqueous medium by alginate composite beads filled by bentonite and phosphate washing sludge, Colloids Surf., A, 604 (2020) 125305, doi: 10.1016/j.colsurfa.2020.125305.
  14. R.R. Pawar, Lalhmunsiama, P.G. Ingole, S.M. Lee, Use of activated bentonite-alginate composite beads for efficient removal of toxic Cu2+ and Pb2+ ions from aquatic environment, Int. J. Biol. Macromol., 164 (2020) 3145–3154.
  15. E.L.M. Amutenya, F. Zhou, J. Liu, W. Long, L. Ma, M. Liu, G. Lv, Preparation of humic acid-bentonite polymer composite: a heavy metal ion adsorbent, Heliyon, 8 (2022) e09720, doi: 10.1016/j.heliyon.2022.e09720.
  16. J. Starý, J. Jirásek, F. Pticen, J. Zahradník, M. Sivek, Review of production, reserves, and processing of clays (including bentonite) in the Czech Republic, Appl. Clay Sci., 205 (2021) 106049, doi: 10.1016/j.clay.2021.106049.
  17. J. Wilson, D. Savage, A. Bond, S. Watson, R. Pusch, D. Bennett, Bentonite: A Review of Key Properties, Processes and Issues for Consideration in the UK Context, QRS-1378ZG-1, February 2011.
  18. F.O. Nwosu, O.J. Ajala, R.M. Owoyemi, B.G. Raheem, Preparation and characterization of adsorbents derived from bentonite and kaolin clays, Appl. Water Sci., 8 (2018) 195, doi: 10.1007/s13201-018-0827-2.
  19. A. Marszałek, G. Kamińska, N.F.A. Salam, Simultaneous adsorption of organic and inorganic micropollutants from rainwater by bentonite and bentonite‑carbon nanotubes composites, J. Water Process Eng., 46 (2022) 102550, doi: 10.1016/j.jwpe.2021.102550.
  20. G. Kamińska, J. Bohdziewicz, Potential of various materials for adsorption of micropollutants from wastewater, Environ. Prot. Eng., 42 (2016) 161–178.
  21. G. Kamińska, Removal of organic micropollutants by grainy bentonite-activated carbon adsorbent in a fixed bed column, Water, 10 (2018) 1791, doi: 10.3390/w10121791.
  22. D. Garmia, H. Zaghouane-Boudiaf, C.V. Ibbora, Preparation and characterization of new low-cost adsorbent beads based on activated bentonite encapsulated with calcium alginate for removal of 2,4-dichlorophenol from aqueous medium, Int. J. Biol. Macromol., 115 (2018) 257–265.
  23. E.W. Maina, H.J. Wanyika, A.N. Gacanja, Instrumental characterization of montmorillonite clay by FT-IR and XRD from J.K.U.A.T Farm, in the Republic of Kenya, Chem. Mater. Res., 7 (2015) 43–49.
  24. J. Yu, J. Wang, Y. Jiang, Removal of uranium from aqueous solution by alginate beads, Nucl. Eng. Technol., 49 (2017) 534–540.
  25. A. Oussalah, A. Boukerroui, A. Aichour, B. Djellouli, Cationic and anionic dyes removal by low-cost hybrid alginate/natural bentonite composite beads: adsorption and reusability studies, Int. J. Biol. Macromol., 124 (2019) 854–862.
  26. D. Humelnicu, M. Ignat, M. Suchea, Evaluation of adsorption capacity of montmorillonite and aluminium-pillared clay for Pb2+, Cu2+ and Zn2+, Acta Chim. Slov., 62 (2015) 947–957.
  27. A. Adewuyi, F.V. Pereira, Nitrilotriacetic acid functionalized Adansonia digitata biosorbent: preparation, characterization and sorption of Pb(II) and Cu(II) pollutants from aqueous solution, J. Adv. Res., 7 (2016) 947–959.
  28. Y. Deng, X. Li, F. Ni, Q. Liu, Y. Yang, M. Wang, T. Ao, W. Chen, Synthesis of magnesium modified biochar for removing copper, lead and cadmium in single and binary systems from aqueous solutions: adsorption mechanism, Water, 13 (2021) 599, doi: 10.3390/w13050599.
  29. U.O. Aigbe, K.E. Ukhurebor, R.B. Onyancha, O.A. Osibote, H. Darmokoesoemo, H.S. Kusuma, Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: a review, J. Mater. Res. Technol., 14 (2021) 2751–2774.
  30. M. Bilgin, Ş. Tulun Use of diatomite for the removal of lead ions from water: thermodynamics and kinetics, Biotechnol. Biotechnol. Equip., 29 (2015) 696–704.
  31. M. Yusuf, K. Song, L. Li, Fixed bed column and artificial neural network model to predict heavy metals adsorption dynamic on surfactant decorated graphene, Colloids Surf., A, 585 (2020) 124076, doi: 10.1016/j.colsurfa.2019.124076.
  32. G. Kamińska, Removal of organic micropollutants by grainy bentonite-activated carbon adsorbent in a fixed bed column, Water, 10 (2018) 1791, doi: 10.3390/w10121791.
  33. J. Górski, Ł. Bąk, A. Sałata, K. Górska, A. Rabajczyk, Changes of heavy metal concentration in rainfall wastewater in urban catchment, Desal. Water Treat., 117 (2018) 257–266.
  34. DIN EN 17093 - Domestic Appliances Used for Drinking Water Treatment Not Connected to Water Supply - Jug Water Filter Systems - Safety and Performance Requirements, Labeling and Information to be Supplied.
  35. K. Górska, M. Sikorski, J. Górski, Occurrence of heavy metals in rain wastewater on example of urban catchment in Kielce, Ecol. Chem. Eng. A, 20 (2013) 961–974.
  36. S. Kondaveeti, D.F.S. Petri, H.E. Jeong, Efficiency of air-dried and freeze-dried alginate/xanthan beads in batch, recirculating and column adsorption processes, Int. J. Biol. Macromol., 204 (2022) 345–355.
  37. V. Rocher, J.M. Siaugue, V. Cabuil, A. Bee, Removal of organic dyes by magnetic alginate beads, Water Res., 42 (2008) 1290–1298.
  38. Regulation of the Minister of Health of 7 December 2017 on the Quality of Water Intended for Human Consumption (in Polish).
  39. R.R. Pawar, P.G. Ingole, S.M. Lee, Use of activated bentonitealginate composite beads for efficient removal of toxic Cu2+ and Pb2+ ions from aquatic environment, Int. J. Biol. Macromol., 164 (2020) 3145–3154.
  40. A.B. Amor, M. Arenas, J. Martín, A. Ouakouak, J.L. Santos, I. Aparicio, N. Hamdi, Alginate/geopolymer hybrid beads as an innovative adsorbent applied to the removal of 5-fluorouracil from contaminated environmental water, Chemosphere, 335 (2023) 139092, doi: 10.1016/j.chemosphere.2023.139092.
  41. I.A. Kumar, N. Viswanathan, Fabrication of zirconium(IV) cross-linked alginate/kaolin hybrid beads for nitrate and phosphate retention, Arabian J. Chem., 13 (2020) 4111–4125.
  42. L. Zhang, Q. Li, J. Zhu, H. Liu, X. Liu, Y. Wang, L. Li, H2O2 modified peanut shell-derived biochar/alginate composite beads as a green adsorbent for removal of Cu(II) from aqueous solution, Int. J. Biol. Macromol., 240 (2023) 124466, doi: 10.1016/j.ijbiomac.2023.124466.