References
- M.F. Hanafi, N. Sapawe, A review on the water problem
associate with organic pollutants derived from phenol, methyl
orange, and remazol brilliant blue dyes, Mater. Today Proc.,
31 (2021) A141–A150.
- N. Ali, A. Said, F. Ali, Z. Ali, F. Raziq, M. Bilal, H.M.N. Iqbal,
Photocatalytic degradation of congo red dye from aqueous
environment using cobalt ferrite nanostructures: development,
characterization, and photocatalytic performance, Water Air
Soil Pollut., 231 (2020) 231–250.
- R.J. Mueller, Biological degradation of synthetic polyestersenzymes
as potential catalysts for polyester recycling, Process
Biochem., 41 (2006) 2124–2128.
- V.K. Gupta, I. Ali, T.A. Saleh, M.N. Siddiqui, S. Agarwal,
Chromium removal from water by activated carbon developed
from waste rubber tires, Environ. Sci. Pollut. Res., 20 (2013)
1261–1268.
- Z. Xing, D. Sun, Treatment of antibiotic fermentation wastewater
by combined polyferric sulfate coagulation, Fenton and
sedimentation process, J. Hazard. Mater., 168 (2009) 1264–1268.
- M.M. Hassan, C.M. Carr, A critical review on recent
advancements of the removal of reactive dyes from dyehouse
effluent by ion-exchange adsorbents, Chemosphere, 209 (2018)
201–219.
- M.N. Khan, O. Bashir, T.A. Khan, S.A. AL-Thabaiti, Z. Khan,
CTAB capped synthesis of bio-conjugated silver nanoparticles
and their enhanced catalytic activities, J. Mol. Liq., 258 (2017)
133–141.
- M.N. Khan, O. Bashir, T.A. Khan, S.A. Al-Thabaiti,
Z. Khan, Catalytic activity of cobalt nanoparticles for dye and
4-nitrophenol degradation: a kinetic and mechanistic study,
Int. J. Chem. Kinet., 49 (2017) 438–454.
- R. Dvořák, P. Chlápek, D. Jecha, R. Puchýř, P. Stehlík, New
approach to common removal of dioxins and NOx as a
contribution to environmental protection, J. Cleaner Prod.,
18 (2010) 881–888.
- D.C.K. Ko, V.K.C. Lee, J.F. Porter, G. Mckay, Improved design
and optimization models for the fixed bed adsorption of acid
dye and zinc ions from effluents, J. Chem. Technol. Biotechnol.,
77 (2002) 1289–1295.
- W. Thongpat, J. Taweekun, K, Maliwan, Synthesis and
characterization of microporous activated carbon from
rubberwood by chemical activation with KOH, Carbon Lett.,
31 (2021) 1079–1088.
- P. González-García, Activated carbon from lignocellulosics
precursors: a review of the synthesis methods, characterization
techniques and applications, Renewable Sustainable Energy
Rev., 82 (2018) 1393–1414.
- A. Reffas, V. Bernardet, B. David, L. Reinert, M. Bencheikh
Lehocine, M. Dubois, N. Batisse, L. Duclaux, Carbons prepared
from coffee grounds by H3PO4 activation: characterization
and adsorption of methylene blue and Nylosan Red N-2RBL,
J. Hazard. Mater., 175 (2010) 779–788.
- A. El Kassimi, Y. Achour, M. El Himri, M.R. Laamari, M. El
Haddad, Process optimization of high surface area activated
carbon prepared from Cucumis melo by H3PO4 activation for
the removal of cationic and anionic dyes using full factorial
design, Biointerface Res. Appl. Chem., 11 (2021) 12662–12679.
- M. Cui, Y. Yu, Y. Zheng, Effective corrosion inhibition of carbon
steel in hydrochloric acid
by dopamine-produced carbon dots,
Polymers (Basel), 13 (2021) 1–16.
- M. Paredes-Laverde, M. Salamanca, J.D. Diaz-Corrales, E. Flórez,
J. Silva-Agredo, R.A. Torres-Palma, Understanding the removal
of an anionic dye in textile wastewaters by adsorption on ZnCl2
activated carbons from rice and coffee husk wastes: a combined
experimental and theoretical study, J. Environ. Chem. Eng.,
9 (2021) 105685, doi: 10.1016/j.jece.2021.105685.
- T.A. Khan, M. Nouman, D. Dua, S.A. Khan, S.S. Alharthi,
Adsorptive scavenging of cationic dyes from aquatic phase
by H3PO4 activated Indian jujube (Ziziphus mauritiana) seeds
based activated carbon: isotherm, kinetics, and thermodynamic
study, J. Saudi Chem. Soc., 26 (2022) 101417, doi: 10.1016/j.jscs.2021.101417.
- M.F. Siddiqui, S.A. Khan, D. Hussain, U. Tabrez, I. Ahamad,
T. Fatma,T.A. Khan, A sugarcane bagasse carbon-based
composite material to decolor and reduce bacterial loads in
waste water from textile industry, Ind. Crops Prod., 176 (2022)
114301, doi: 10.1016/j.indcrop.2021.114301.
- M.V. Lopez-Ramon, F. Stoeckli, C. Moreno-Castilla, F. Carrasco-Marin, On the characterization of acidic and basic surface
sites on carbons by various techniques, 37 (1999) 1215–1221.
- J. Jagiello, T. Kyotani, H. Nishihara, Development of a simple
NLDFT model for the analysis of adsorption isotherms on
zeolite templated carbon (ZTC), Carbon N. Y., 169 (2020)
205–213.
- A. Gómez-Avilés, M. Peñas-Garzón, C. Belver, J.J. Rodriguez,
J. Bedia, Equilibrium, kinetics and breakthrough curves
of acetaminophen adsorption onto activated carbons from
microwave-assisted FeCl3-activation of lignin, Sep. Purif.
Technol., 278 (2021) 119654, doi: 10.1016/j.seppur.2021.119654.
- N. Abbasi, S.A. Khan, T.A. Khan, Response surface
methodology mediated process optimization of Celestine
blue B uptake by novel custard apple seeds activated carbon/FeMoO4 nanocomposite, J. Water Process Eng., 43 (2021) 102267,
doi: 10.1016/j.jwpe.2021.102267.
- L. Tsechansky, E.R. Graber, Methodological limitations to
determining acidic groups at biochar surfaces via the Boehm
titration, Carbon N. Y., 66 (2014) 730–733.
- M. Benadjemia, L. Millière, L. Reinert, N. Benderdouche,
L. Duclaux, Preparation, characterization and methylene blue
adsorption of phosphoric acid activated carbons from globe
artichoke leaves, Fuel Process. Technol., 92 (2011) 1203–1212.
- M.A. Al-Ghouti, D.A. Da’ana, Guidelines for the use and
interpretation of adsorption isotherm models: a review,
J. Hazard. Mater., 393 (2020) 122383, doi: 10.1016/j.jhazmat.2020.122383.
- M. Trachi, N. Bourfis, S. Benamara, H. Gougam, Préparation
et caractérisation d’un charbon actif à partir de la coquille
d’amande (Prunus amygdalus) amère, Biotechnol. Agron. Soc.
Environ., 18 (2014) 492–502.
- M.H. Armbruster, J.B. Austin, The adsorption of gases on plane
surfaces of mica, J. Am. Chem. Soc., 60 (1938) 467–475.
- H. Freundlich, Über die Adsorption in Lösungen, Z. Phys.
Chem., 57 (1907) 385–470.
- F. Kaouah, S. Boumaza, T. Berrama, M. Trari, Z. Bendjama,
Preparation and characterization of activated carbon from
wild olive cores (oleaster) by H3PO4 for the removal of Basic
Red 46, J. Cleaner Prod., 54 (2013) 296–306.
- U. Moralı, H. Demiral, S. Şensöz, Optimization of activated
carbon production from sunflower seed extracted meal:
Taguchi design of experiment approach and analysis of
variance, J. Cleaner Prod., 189 (2018) 602–611.
- M. Poletto, H.L. Ornaghi Júnior, A.J. Zattera, Native cellulose:
structure, characterization and thermal properties, Materials
(Basel), 7 (2014) 6105–6119.
- A. Zubrik, M. Matik, S. Hredzák, M. Lovás, Z. Danková,
M. Kováčová, J. Briančin, Preparation of chemically activated
carbon from waste biomass by single-stage and two-stage
pyrolysis, J. Cleaner Prod., 143 (2017) 643–653.
- G.B. Barin, I. De Fátima Gimenez, L.P. Da Costa, A.G.S. Filho,
L.S. Barreto, Influence of hydrothermal carbonization on
formation of curved graphite structures obtained from a
lignocellulosic precursor, Carbon N. Y., 78 (2014) 609–612.
- Z.C. Kampouraki, D.A. Giannakoudakis, K.S. Triantafyllidis,
E.A. Deliyanni, Catalytic oxidative desulfurization of a 4,6-DMDBT containing model fuel by metal-free activated carbons:
the key role of surface chemistry, Green Chem., 21 (2019)
6685–6698.
- A. Gutiérrez-Pardo, J. Ramírez-Rico, R. Cabezas-Rodríguez,
J. Martínez-Fernández, Effect of catalytic graphitization on the
electrochemical behavior of wood derived carbons for use in
supercapacitors, J. Power Sources, 278 (2015) 18–26.
- W. Kiciński, M. Norek, M. Bystrzejewski, Monolithic porous
graphitic carbons obtained through catalytic graphitization of
carbon xerogels, J. Phys. Chem. Solids, 74 (2013) 101–109.
- M. Sevilla, A.B. Fuertes, Catalytic graphitization of templated
mesoporous carbons, Carbon N. Y., 44 (2006) 468–474.
- M. Sevilla, A.B. Fuertes, Graphitic carbon nanostructures
from cellulose, Chem. Phys. Lett., 490 (2010) 63–68.
- M. Thommes, Physical adsorption characterization of
nanoporous materials, Chem. Ing. Tech., 82 (2010) 1059–1073.
- A.J. Schwanke, S.B.C. Pergher, Porous heterostructured
clays - Recent advances and challenges - Revisão, Ceramica,
59 (2013) 576–587.
- E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of
pore volume and area distributions in porous substances. I.
Computations from nitrogen isotherms, J. Am. Chem. Soc.,
73 (1951) 373–380.
- F. Suárez-García, A. Martínez-Alonso, J.M.D. Tascón, Porous
texture of activated carbons prepared by phosphoric acid
activation of apple pulp, Carbon N. Y., 39 (2001) 1111–1115.
- M. Jagtoyen, F. Derbyshire, Activated carbons from yellow
poplar and white oak by H3PO4 activation, Carbon N. Y.,
36 (1998) 1085–1097.
- O. Ioannidou, A. Zabaniotou, Agricultural residues as
precursors for activated carbon production-a review,
Renewable Sustainable Energy Rev., 11 (2007) 1966–2005.
- E. Yagmur, M. Ozmak, Z. Aktas, A novel method for production
of activated carbon from waste tea by chemical activation with
microwave energy, Fuel, 87 (2008) 3278–3285.
- M.K.B. Gratuito, T. Panyathanmaporn, R.A. Chumnanklang,
N. Sirinuntawittaya, A. Dutta, Production of activated carbon
from coconut shell: optimization using response surface
methodology, Bioresour. Technol., 99 (2008) 4887–4895.
- E. Pehlivan, Production and characterization of activated
carbon from pomegranate pulp by phosphoric acid, J. Turkish
Chem. Soc. Chem., 5 (2018) 1–8.
- D. Angin, Production and characterization of activated carbon
from sour cherry stones by zinc chloride, Fuel, 115 (2014)
804–811.
- A. Puziy, O. Poddubnaya, A. Martınez-Alonso, F. Suarez-Garcıa, J. Tascon, Synthetic carbons activated with phosphoric
acid I. Surface chemistry and ion binding properties, Carbon,
40 (2002) 1493–1505.
- A.M. Puziy, O.I. Poddubnaya, A. Martínez-Alonso, F. Suárez-García, J.M.D. Tascón, Surface chemistry of phosphoruscontaining
carbons of lignocellulosic origin, Carbon N. Y.,
43 (2005) 2857–2868.
- S. Yorgun, D. Yildiz, Preparation and characterization
of activated carbons from Paulownia wood by chemical
activation with H3PO4, J. Taiwan Inst. Chem. Eng., 53 (2015)
122–131.
- M. Danish, T. Ahmad, A review on utilization of wood
biomass as a sustainable precursor for activated carbon
production and application, Renewable Sustainable Energy
Rev., 87 (2018) 1–21.
- B.H. Hameed, A.L. Ahmad, K.N.A. Latiff, Adsorption of basic
dye (methylene blue) onto activated carbon prepared from
rattan sawdust, Dyes Pigm., 75 (2007) 143–149.
- B. Uçar, A. Güvenç, Ü. Mehmetoğlu, Use of aluminium
hydroxide sludge as adsorbents for the removal of
reactive dyes: equilibrium, thermodynamic, and kinetic
studies, J. Waste Water Treat. Anal., 2 (2011) 1000112,
doi: 10.4172/2157-7587.1000112.
- Y.R. Lin, H. Teng, Mesoporous carbons from waste tire
char and their application in wastewater discoloration,
Microporous Mesoporous Mater., 54 (2002) 167–174.
- J.C. Santamarina, K.A. Klein, Y.H. Wang, E. Prencke, Specific
surface: determination and relevance, Can. Geotech. J.,
39 (2002) 233–241.
- R. Qadeer, S. Akhtar, Kinetics study of lead ion adsorption on
active carbon, Turk. J. Chem., 29 (2005) 95–99.
- P.C.C. Faria, J.J.M. Órfão, M.F.R. Pereira, Adsorption of anionic
and cationic dyes on activated carbons with different surface
chemistries, Water Res., 38 (2004) 2043–2052.
- Q. Qian, M. Machida, H. Tatsumoto, Textural and surface
chemical characteristics of activated carbons prepared from
cattle manure compost, Waste Manage., 28 (2008) 1064–1071.
- C.A. Leon y Leon, J.M. Solar, V. Calemma, L.R. Radovic,
Evidence for the protonation of basal plane sites on carbon,
Carbon N. Y., 30 (1992) 797–811.
- A. Bellifa, M. Makhlouf, Z.H. Boumila, Comparative study of
the adsorption of methyl orange by bentonite and activated
carbon, Acta Phys. Pol. A, 132 (2017) 466–468.
- D.R. Tchuifon, S.G. Anagho, E. Njanja, J.N. Ghogomu,
N.G. Ndifor-Angwafor,T. Kamgaing, Equilibrium and kinetic
modelling of methyl orange adsorption from aqueous solution
using rice husk and egussi peeling, Int. J. Chem. Sci., 12 (2014)
741–761.
- T.H. Do, V.T. Nguyen, N.Q. Dung, M.N. Chu, D.V. Kiet,
T.T.K. Ngan, L.V. Tan, Study on methylene blue adsorption
of activated carbon made from Moringa oleifera leaf, Mater.
Today Proc., 38 (2020) 3405–3413.
- S. Melouki, A. Merrouche, L. Reinert, L. Duclaux, Common
reed biochars for the adsorption of methyl orange in aqueous
solution, Rev. des Sci. l’Eau., 32 (2020) 349–367.
- T.A. Khan, R. Rahman, E.A. Khan, Adsorption of malachite
green and methyl orange onto waste tyre activated carbon
using batch and fixed-bed techniques: isotherm and kinetics
modeling, Model. Earth Syst. Environ., 3 (2017) 38, doi: 10.1007/s40808-017-0284-1.
- B.K. Pradhan, N.K. Sandle, B.K. Pradhan, Effect of different
oxidizing agent treatments on the surface properties of
activated carbons, Carbon, 37 (1999) 1323–1332.
- C. Moreno-Castilla, M.V. López-Ramón, F. Carrasco-Marín,
Changes in surface chemistry of activated carbons by wet
oxidation, Carbon N. Y., 38 (2000) 1995–2001.
- A.H. Jawad, S.H. Mallah, M.S. Mastuli, Adsorption behavior of
methylene blue on acid-treated rubber (Hevea brasiliensis) leaf,
Desal. Water Treat., 124 (2018) 297–307.
- R.A. Rashid, A.H. Jawad, M.A.B.M. Ishak, N.N. Kasim,
FeCl3-activated carbon developed from coconut leaves:
characterization and application for methylene blue removal,
Sains Malaysiana, 47 (2018) 603–610.
- A.H. Jawad, R.A. Rashid, M.A.M. Ishak, K. Ismail, Adsorptive
removal of methylene blue by chemically treated cellulosic
waste banana (Musa sapientum) peels, J. Taibah Univ. Sci.,
12 (2018) 809–819.
- P.S. Kumar, S. Ramalingam, C. Senthamarai, M. Niranjanaa,
P. Vijayalakshmi, S. Sivanesan, Adsorption of dye from aqueous
solution by cashew nut shell: studies on equilibrium isotherm,
kinetics and thermodynamics of interactions, Desalination,
261 (2010) 52–60.
- A.A. Spagnoli, D.A. Giannakoudakis, S. Bashkova, Adsorption
of methylene blue on cashew nut shell based carbons
activated with zinc chloride: the role of surface and structural
parameters, J. Mol. Liq., 229 (2017) 65–471.
- P.S. Kumar, S. Ramalingam, K. Sathishkumar, Removal of
methylene blue dye from aqueous solution by activated
carbon prepared from cashew nut shell as a new low-cost
adsorbent, Korean J. Chem. Eng., 28 (2011) 149–155.