References

  1. M.F. Hanafi, N. Sapawe, A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes, Mater. Today Proc., 31 (2021) A141–A150.
  2. N. Ali, A. Said, F. Ali, Z. Ali, F. Raziq, M. Bilal, H.M.N. Iqbal, Photocatalytic degradation of congo red dye from aqueous environment using cobalt ferrite nanostructures: development, characterization, and photocatalytic performance, Water Air Soil Pollut., 231 (2020) 231–250.
  3. R.J. Mueller, Biological degradation of synthetic polyestersenzymes as potential catalysts for polyester recycling, Process Biochem., 41 (2006) 2124–2128.
  4. V.K. Gupta, I. Ali, T.A. Saleh, M.N. Siddiqui, S. Agarwal, Chromium removal from water by activated carbon developed from waste rubber tires, Environ. Sci. Pollut. Res., 20 (2013) 1261–1268.
  5. Z. Xing, D. Sun, Treatment of antibiotic fermentation wastewater by combined polyferric sulfate coagulation, Fenton and sedimentation process, J. Hazard. Mater., 168 (2009) 1264–1268.
  6. M.M. Hassan, C.M. Carr, A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents, Chemosphere, 209 (2018) 201–219.
  7. M.N. Khan, O. Bashir, T.A. Khan, S.A. AL-Thabaiti, Z. Khan, CTAB capped synthesis of bio-conjugated silver nanoparticles and their enhanced catalytic activities, J. Mol. Liq., 258 (2017) 133–141.
  8. M.N. Khan, O. Bashir, T.A. Khan, S.A. Al-Thabaiti, Z. Khan, Catalytic activity of cobalt nanoparticles for dye and 4-nitrophenol degradation: a kinetic and mechanistic study, Int. J. Chem. Kinet., 49 (2017) 438–454.
  9. R. Dvořák, P. Chlápek, D. Jecha, R. Puchýř, P. Stehlík, New approach to common removal of dioxins and NOx as a contribution to environmental protection, J. Cleaner Prod., 18 (2010) 881–888.
  10. D.C.K. Ko, V.K.C. Lee, J.F. Porter, G. Mckay, Improved design and optimization models for the fixed bed adsorption of acid dye and zinc ions from effluents, J. Chem. Technol. Biotechnol., 77 (2002) 1289–1295.
  11. W. Thongpat, J. Taweekun, K, Maliwan, Synthesis and characterization of microporous activated carbon from rubberwood by chemical activation with KOH, Carbon Lett., 31 (2021) 1079–1088.
  12. P. González-García, Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications, Renewable Sustainable Energy Rev., 82 (2018) 1393–1414.
  13. A. Reffas, V. Bernardet, B. David, L. Reinert, M. Bencheikh Lehocine, M. Dubois, N. Batisse, L. Duclaux, Carbons prepared from coffee grounds by H3PO4 activation: characterization and adsorption of methylene blue and Nylosan Red N-2RBL, J. Hazard. Mater., 175 (2010) 779–788.
  14. A. El Kassimi, Y. Achour, M. El Himri, M.R. Laamari, M. El Haddad, Process optimization of high surface area activated carbon prepared from Cucumis melo by H3PO4 activation for the removal of cationic and anionic dyes using full factorial design, Biointerface Res. Appl. Chem., 11 (2021) 12662–12679.
  15. M. Cui, Y. Yu, Y. Zheng, Effective corrosion inhibition of carbon steel in hydrochloric acid
    by dopamine-produced carbon dots, Polymers (Basel), 13 (2021) 1–16.
  16. M. Paredes-Laverde, M. Salamanca, J.D. Diaz-Corrales, E. Flórez, J. Silva-Agredo, R.A. Torres-Palma, Understanding the removal of an anionic dye in textile wastewaters by adsorption on ZnCl2 activated carbons from rice and coffee husk wastes: a combined experimental and theoretical study, J. Environ. Chem. Eng., 9 (2021) 105685, doi: 10.1016/j.jece.2021.105685.
  17. T.A. Khan, M. Nouman, D. Dua, S.A. Khan, S.S. Alharthi, Adsorptive scavenging of cationic dyes from aquatic phase by H3PO4 activated Indian jujube (Ziziphus mauritiana) seeds based activated carbon: isotherm, kinetics, and thermodynamic study, J. Saudi Chem. Soc., 26 (2022) 101417, doi: 10.1016/j.jscs.2021.101417.
  18. M.F. Siddiqui, S.A. Khan, D. Hussain, U. Tabrez, I. Ahamad, T. Fatma,T.A. Khan, A sugarcane bagasse carbon-based composite material to decolor and reduce bacterial loads in waste water from textile industry, Ind. Crops Prod., 176 (2022) 114301, doi: 10.1016/j.indcrop.2021.114301.
  19. M.V. Lopez-Ramon, F. Stoeckli, C. Moreno-Castilla, F. Carrasco-Marin, On the characterization of acidic and basic surface sites on carbons by various techniques, 37 (1999) 1215–1221.
  20. J. Jagiello, T. Kyotani, H. Nishihara, Development of a simple NLDFT model for the analysis of adsorption isotherms on zeolite templated carbon (ZTC), Carbon N. Y., 169 (2020) 205–213.
  21. A. Gómez-Avilés, M. Peñas-Garzón, C. Belver, J.J. Rodriguez, J. Bedia, Equilibrium, kinetics and breakthrough curves of acetaminophen adsorption onto activated carbons from microwave-assisted FeCl3-activation of lignin, Sep. Purif. Technol., 278 (2021) 119654, doi: 10.1016/j.seppur.2021.119654.
  22. N. Abbasi, S.A. Khan, T.A. Khan, Response surface methodology mediated process optimization of Celestine blue B uptake by novel custard apple seeds activated carbon/FeMoO4 nanocomposite, J. Water Process Eng., 43 (2021) 102267, doi: 10.1016/j.jwpe.2021.102267.
  23. L. Tsechansky, E.R. Graber, Methodological limitations to determining acidic groups at biochar surfaces via the Boehm titration, Carbon N. Y., 66 (2014) 730–733.
  24. M. Benadjemia, L. Millière, L. Reinert, N. Benderdouche, L. Duclaux, Preparation, characterization and methylene blue adsorption of phosphoric acid activated carbons from globe artichoke leaves, Fuel Process. Technol., 92 (2011) 1203–1212.
  25. M.A. Al-Ghouti, D.A. Da’ana, Guidelines for the use and interpretation of adsorption isotherm models: a review, J. Hazard. Mater., 393 (2020) 122383, doi: 10.1016/j.jhazmat.2020.122383.
  26. M. Trachi, N. Bourfis, S. Benamara, H. Gougam, Préparation et caractérisation d’un charbon actif à partir de la coquille d’amande (Prunus amygdalus) amère, Biotechnol. Agron. Soc. Environ., 18 (2014) 492–502.
  27. M.H. Armbruster, J.B. Austin, The adsorption of gases on plane surfaces of mica, J. Am. Chem. Soc., 60 (1938) 467–475.
  28. H. Freundlich, Über die Adsorption in Lösungen, Z. Phys. Chem., 57 (1907) 385–470.
  29. F. Kaouah, S. Boumaza, T. Berrama, M. Trari, Z. Bendjama, Preparation and characterization of activated carbon from wild olive cores (oleaster) by H3PO4 for the removal of Basic Red 46, J. Cleaner Prod., 54 (2013) 296–306.
  30. U. Moralı, H. Demiral, S. Şensöz, Optimization of activated carbon production from sunflower seed extracted meal: Taguchi design of experiment approach and analysis of variance, J. Cleaner Prod., 189 (2018) 602–611.
  31. M. Poletto, H.L. Ornaghi Júnior, A.J. Zattera, Native cellulose: structure, characterization and thermal properties, Materials (Basel), 7 (2014) 6105–6119.
  32. A. Zubrik, M. Matik, S. Hredzák, M. Lovás, Z. Danková, M. Kováčová, J. Briančin, Preparation of chemically activated carbon from waste biomass by single-stage and two-stage pyrolysis, J. Cleaner Prod., 143 (2017) 643–653.
  33. G.B. Barin, I. De Fátima Gimenez, L.P. Da Costa, A.G.S. Filho, L.S. Barreto, Influence of hydrothermal carbonization on formation of curved graphite structures obtained from a lignocellulosic precursor, Carbon N. Y., 78 (2014) 609–612.
  34. Z.C. Kampouraki, D.A. Giannakoudakis, K.S. Triantafyllidis, E.A. Deliyanni, Catalytic oxidative desulfurization of a 4,6-DMDBT containing model fuel by metal-free activated carbons: the key role of surface chemistry, Green Chem., 21 (2019) 6685–6698.
  35. A. Gutiérrez-Pardo, J. Ramírez-Rico, R. Cabezas-Rodríguez, J. Martínez-Fernández, Effect of catalytic graphitization on the electrochemical behavior of wood derived carbons for use in supercapacitors, J. Power Sources, 278 (2015) 18–26.
  36. W. Kiciński, M. Norek, M. Bystrzejewski, Monolithic porous graphitic carbons obtained through catalytic graphitization of carbon xerogels, J. Phys. Chem. Solids, 74 (2013) 101–109.
  37. M. Sevilla, A.B. Fuertes, Catalytic graphitization of templated mesoporous carbons, Carbon N. Y., 44 (2006) 468–474.
  38. M. Sevilla, A.B. Fuertes, Graphitic carbon nanostructures from cellulose, Chem. Phys. Lett., 490 (2010) 63–68.
  39. M. Thommes, Physical adsorption characterization of nanoporous materials, Chem. Ing. Tech., 82 (2010) 1059–1073.
  40. A.J. Schwanke, S.B.C. Pergher, Porous heterostructured clays - Recent advances and challenges - Revisão, Ceramica, 59 (2013) 576–587.
  41. E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 73 (1951) 373–380.
  42. F. Suárez-García, A. Martínez-Alonso, J.M.D. Tascón, Porous texture of activated carbons prepared by phosphoric acid activation of apple pulp, Carbon N. Y., 39 (2001) 1111–1115.
  43. M. Jagtoyen, F. Derbyshire, Activated carbons from yellow poplar and white oak by H3PO4 activation, Carbon N. Y., 36 (1998) 1085–1097.
  44. O. Ioannidou, A. Zabaniotou, Agricultural residues as precursors for activated carbon production-a review, Renewable Sustainable Energy Rev., 11 (2007) 1966–2005.
  45. E. Yagmur, M. Ozmak, Z. Aktas, A novel method for production of activated carbon from waste tea by chemical activation with microwave energy, Fuel, 87 (2008) 3278–3285.
  46. M.K.B. Gratuito, T. Panyathanmaporn, R.A. Chumnanklang, N. Sirinuntawittaya, A. Dutta, Production of activated carbon from coconut shell: optimization using response surface methodology, Bioresour. Technol., 99 (2008) 4887–4895.
  47. E. Pehlivan, Production and characterization of activated carbon from pomegranate pulp by phosphoric acid, J. Turkish Chem. Soc. Chem., 5 (2018) 1–8.
  48. D. Angin, Production and characterization of activated carbon from sour cherry stones by zinc chloride, Fuel, 115 (2014) 804–811.
  49. A. Puziy, O. Poddubnaya, A. Martınez-Alonso, F. Suarez-Garcıa, J. Tascon, Synthetic carbons activated with phosphoric acid I. Surface chemistry and ion binding properties, Carbon, 40 (2002) 1493–1505.
  50. A.M. Puziy, O.I. Poddubnaya, A. Martínez-Alonso, F. Suárez-García, J.M.D. Tascón, Surface chemistry of phosphoruscontaining carbons of lignocellulosic origin, Carbon N. Y., 43 (2005) 2857–2868.
  51. S. Yorgun, D. Yildiz, Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4, J. Taiwan Inst. Chem. Eng., 53 (2015) 122–131.
  52. M. Danish, T. Ahmad, A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application, Renewable Sustainable Energy Rev., 87 (2018) 1–21.
  53. B.H. Hameed, A.L. Ahmad, K.N.A. Latiff, Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust, Dyes Pigm., 75 (2007) 143–149.
  54. B. Uçar, A. Güvenç, Ü. Mehmetoğlu, Use of aluminium hydroxide sludge as adsorbents for the removal of reactive dyes: equilibrium, thermodynamic, and kinetic studies, J. Waste Water Treat. Anal., 2 (2011) 1000112, doi: 10.4172/2157-7587.1000112.
  55. Y.R. Lin, H. Teng, Mesoporous carbons from waste tire char and their application in wastewater discoloration, Microporous Mesoporous Mater., 54 (2002) 167–174.
  56. J.C. Santamarina, K.A. Klein, Y.H. Wang, E. Prencke, Specific surface: determination and relevance, Can. Geotech. J., 39 (2002) 233–241.
  57. R. Qadeer, S. Akhtar, Kinetics study of lead ion adsorption on active carbon, Turk. J. Chem., 29 (2005) 95–99.
  58. P.C.C. Faria, J.J.M. Órfão, M.F.R. Pereira, Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries, Water Res., 38 (2004) 2043–2052.
  59. Q. Qian, M. Machida, H. Tatsumoto, Textural and surface chemical characteristics of activated carbons prepared from cattle manure compost, Waste Manage., 28 (2008) 1064–1071.
  60. C.A. Leon y Leon, J.M. Solar, V. Calemma, L.R. Radovic, Evidence for the protonation of basal plane sites on carbon, Carbon N. Y., 30 (1992) 797–811.
  61. A. Bellifa, M. Makhlouf, Z.H. Boumila, Comparative study of the adsorption of methyl orange by bentonite and activated carbon, Acta Phys. Pol. A, 132 (2017) 466–468.
  62. D.R. Tchuifon, S.G. Anagho, E. Njanja, J.N. Ghogomu, N.G. Ndifor-Angwafor,T. Kamgaing, Equilibrium and kinetic modelling of methyl orange adsorption from aqueous solution using rice husk and egussi peeling, Int. J. Chem. Sci., 12 (2014) 741–761.
  63. T.H. Do, V.T. Nguyen, N.Q. Dung, M.N. Chu, D.V. Kiet, T.T.K. Ngan, L.V. Tan, Study on methylene blue adsorption of activated carbon made from Moringa oleifera leaf, Mater. Today Proc., 38 (2020) 3405–3413.
  64. S. Melouki, A. Merrouche, L. Reinert, L. Duclaux, Common reed biochars for the adsorption of methyl orange in aqueous solution, Rev. des Sci. l’Eau., 32 (2020) 349–367.
  65. T.A. Khan, R. Rahman, E.A. Khan, Adsorption of malachite green and methyl orange onto waste tyre activated carbon using batch and fixed-bed techniques: isotherm and kinetics modeling, Model. Earth Syst. Environ., 3 (2017) 38, doi: 10.1007/s40808-017-0284-1.
  66. B.K. Pradhan, N.K. Sandle, B.K. Pradhan, Effect of different oxidizing agent treatments on the surface properties of activated carbons, Carbon, 37 (1999) 1323–1332.
  67. C. Moreno-Castilla, M.V. López-Ramón, F. Carrasco-Marín, Changes in surface chemistry of activated carbons by wet oxidation, Carbon N. Y., 38 (2000) 1995–2001.
  68. A.H. Jawad, S.H. Mallah, M.S. Mastuli, Adsorption behavior of methylene blue on acid-treated rubber (Hevea brasiliensis) leaf, Desal. Water Treat., 124 (2018) 297–307.
  69. R.A. Rashid, A.H. Jawad, M.A.B.M. Ishak, N.N. Kasim, FeCl3-activated carbon developed from coconut leaves: characterization and application for methylene blue removal, Sains Malaysiana, 47 (2018) 603–610.
  70. A.H. Jawad, R.A. Rashid, M.A.M. Ishak, K. Ismail, Adsorptive removal of methylene blue by chemically treated cellulosic waste banana (Musa sapientum) peels, J. Taibah Univ. Sci., 12 (2018) 809–819.
  71. P.S. Kumar, S. Ramalingam, C. Senthamarai, M. Niranjanaa, P. Vijayalakshmi, S. Sivanesan, Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions, Desalination, 261 (2010) 52–60.
  72. A.A. Spagnoli, D.A. Giannakoudakis, S. Bashkova, Adsorption of methylene blue on cashew nut shell based carbons activated with zinc chloride: the role of surface and structural parameters, J. Mol. Liq., 229 (2017) 65–471.
  73. P.S. Kumar, S. Ramalingam, K. Sathishkumar, Removal of methylene blue dye from aqueous solution by activated carbon prepared from cashew nut shell as a new low-cost adsorbent, Korean J. Chem. Eng., 28 (2011) 149–155.