References

  1. E. Dobrzyńska, M. Pośniak, M. Szewczyńska, B. Buszewski, Chlorinated volatile organic compounds—old, however, actual analytical and toxicological problem, Crit. Rev. Anal. Chem., 40 (2010) 41–57.
  2. C. Dai, Y. Zhou, H. Peng, S. Huang, P. Qin, J. Zhang, Y. Yang, L. Luo, X. Zhang, Current progress in remediation of chlorinated volatile organic compounds: a review, J. Ind. Eng. Chem., 62 (2018) 106–119.
  3. F.W. Shaarani, B.H. Hameed, Ammonia-modified activated carbon for the adsorption of 2,4-dichlorophenol, Chem. Eng. J., 169 (2011) 180–185.
  4. B. Pavoni, D. Drusian, A. Giacometti, M. Zanette, Assessment of organic chlorinated compound removal from aqueous matrices by adsorption on activated carbon, Water Res., 40 (2006) 3571–3579.
  5. M. Miguet, V. Goetz, G. Plantard, Y. Jaeger, Removal of a chlorinated volatile organic compound (perchloroethylene) from aqueous phase by adsorption on activated carbon, Ind. Eng. Chem. Res., 54 (2015) 9813–9823.
  6. K. Yang, Y.J. Kong, L.Z. Huang, X.M. Hu, Catalytic elimination of chlorinated organic pollutants by emerging single-atom catalysts, Chem. Eng. J., 450 (2022) 138467, doi: 10.1016/j.cej.2022.138467.
  7. M. Mohsenzadeh, S.A. Mirbagheri, S. Sabbaghi, Degradation of 1,2-dichloroethane by photocatalysis using immobilized PAni-TiO2 nano-photocatalyst, Environ. Sci. Pollut. Res., 26 (2019) 31328–31343.
  8. W.-G. Jeong, J.-G. Kim, K. Baek, Removal of 1,2-dichloroethane in groundwater using Fenton oxidation, J. Hazard. Mater., 428 (2022) 128253, doi: 10.1016/j.jhazmat.2022.128253.
  9. W. Zhang, P. Wei, M. Chen, L. Han, Y. Zhao, J. Yan, L. Qian, M. Gu, J. Li, Trichloroethylene dechlorination rates, pathways, and efficiencies of ZVMg/C in aqueous solution, J. Hazard. Mater., 417 (2021) 125993, doi: 10.1016/j.jhazmat.2021.125993.
  10. P. Bhatt, M.S. Kumar, S. Mudliar, T. Chakrabarti, Biodegradation of chlorinated compounds-a review, Crit. Rev. Env. Sci. Technol., 37 (2007) 165–198.
  11. V.S. Priya, L. Philip, Biodegradation of dichloromethane along with other VOCs from pharmaceutical wastewater, Appl. Biochem. Biotechnol., 169 (2013) 1197–1218.
  12. K. Yang, W. Wang, L. Li, Dechlorination of dichloromethane by a biofilter enriched with electroactive bacteria: performance, kinetics, and microbial community, Environ. Res., 215 (2022) 114247, doi: 10.1016/j.envres.2022.114247.
  13. H. Matsukami, T. Kose, M. Watanabe, H. Takigami, Pilotscale incineration of wastes with high content of chlorinated and non-halogenated organophosphorus flame retardants used as alternatives for PBDE, Sci. Total Environ., 493 (2014) 672–681.
  14. D. Wang, X. Xu, S. Chu, Q. Li, Polychlorinated naphthalenes and other chlorinated tricyclic aromatic hydrocarbons emitted from combustion of polyvinylchloride, J. Hazard. Mater., 138 (2006) 273–277.
  15. R.-D. Sun, H. Irie, T. Nishikawa, A. Nakajima, T. Watanabe, K. Hashimoto, Suppressing effect of CaCO3 on the dioxins emission from poly(vinyl chloride) (PVC) incineration, Polym. Degrad. Stab., 79 (2003) 253–256.
  16. T. Hatanaka, A. Kitajima, M. Takeuchi, Role of chlorine in combustion field in formation of polychlorinated dibenzop- dioxins and dibenzofurans during waste incineration, Environ. Sci. Technol., 39 (2005) 9452–9456.
  17. Y. Shen, S. Yu, S. Ge, X. Chen, X. Ge, M. Chen, Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale, Energy, 118 (2017) 312–323.
  18. Z. Yao, X. Ma, A new approach to transforming PVC waste into energy via combined hydrothermal carbonization and fast pyrolysis, Energy, 141 (2017) 1156–1165.
  19. X. Xu, D. Zhu, X. Wang, L. Deng, X. Fan, Z. Ding, A. Zhang, G. Xue, Y. Liu, W. Xuan, X. Li, J. Makinia, Transformation of polyvinyl chloride (PVC) into a versatile and efficient adsorbent of Cu(II) cations and Cr(VI) anions through hydrothermal treatment and sulfonation, J. Hazard. Mater., 423 (2022) 126973, doi: 10.1016/j.jhazmat.2021.126973.
  20. H.-Z. Li, Y.-N. Zhang, J.-Z. Guo, J.-Q. Lv, W.-W. Huan, B. Li, Preparation of hydrochar with high adsorption performance for methylene blue by co-hydrothermal carbonization of polyvinyl chloride and bamboo, Bioresour. Technol., 337 (2021) 125442, doi: 10.1016/j.biortech.2021.125442.
  21. Y. Wei, S. Fakudze, Y. Zhang, R. Ma, Q. Shang, J. Chen, C. Liu, Q. Chu, Co-hydrothermal carbonization of pomelo peel and PVC for production of hydrochar pellets with enhanced fuel properties and dechlorination, Energy, 239 (2022) 122350, doi: 10.1016/j.energy.2021.122350.
  22. X. Lu, X. Ma, X. Chen, Z. Yao, C. Zhang, Co-hydrothermal carbonization of polyvinyl chloride and corncob for clean solid fuel production, Bioresour. Technol., 301 (2020) 122763, doi: 10.1016/j.biortech.2020.122763.
  23. J.A. Field, R.S.-Alvarez, Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds, Rev. Environ. Sci. Biotechnol., 3 (2004) 185–254.
  24. A. Grostern, E.A. Edwards, Characterization of a dehalobacter coculture that dechlorinates 1,2-dichloroethane to ethene and identification of the putative reductive dehalogenase gene, Appl. Environ. Microbiol., 75 (2009) 2684–2693.
  25. Q. Zhang, F, Wang, C. Xue, C. Wang, S. Chi, J. Zhang, Comparative toxicity of nonylphenol, nonylphenol-4- ethoxylate and nonylphenol-10-ethoxylate to wheat seedlings (Triticum aestivum L.), Ecotoxicol. Environ. Saf., 131 (2016) 7–13.
  26. J. Hao, W. Zhang, G. Xue, P. Rao, R. Wang, Treatment of distillation residue waste liquid from NPEOs by hydrothermal carbonization process for resource recovery, Desal. Water Treat., 125 (2018) 26–31.
  27. Q. Chen, W. Zhang, P. Rao, R. Wang, Nonylphenol ethoxylateassisted hydrothermal preparation of carbon adsorbent from phenolic waste liquid, Desal. Water Treat., 175 (2020) 108–114.
  28. State Environmental Protection Administration of China, Water and Wastewater Monitoring and Analysis Methods, 4th ed., China Environmental Science Press, Beijing, 2002, pp. 210–213.
  29. Y. Xia, T. Yang, N. Zhu, D. Li, Z. Chen, Q. Lang, Z. Liu, W. Jiao, Enhanced adsorption of Pb(II) onto modified hydrochar: modeling and mechanism analysis, Bioresour. Technol., 288 (2019) 121593, doi: 10.1016/j.biortech.2019.121593.
  30. F.-X. Ouf, S. Bourrous, C. Vallières, J. Yon, L. Lintis, Specific surface area of combustion emitted particles: impact of primary particle diameter and organic content, J. Aerosol Sci., 137 (2019) 105436, doi: 10.1016/j.jaerosci.2019.105436.
  31. N.T.K. Thanh, N. Maclean, S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution, Chem. Rev., 114 (2014) 7610–7630.
  32. D.D. Eberl, J. Środoń, M. Kralik, B.E. Taylor, Z.E. Peterman, Ostwald ripening of clays and metamorphic minerals, Science, 248 (1990) 474–477.
  33. Z. Xu, R. Qi, D. Zhang, Y. Gao, M. Xiong, W. Chen, Co-hydrothermal carbonization of cotton textile waste and polyvinyl chloride waste for the production of solid fuel: interaction mechanisms and combustion behaviors, J. Cleaner Prod., 316 (2021) 128306, doi: 10.1016/j.jclepro.2021.128306.
  34. F. Ahmada, E.L. Silva, M.B.A. Varesche, Hydrothermal processing of biomass for anaerobic digestion-a review, Renewable Sustainable Energy Rev., 98 (2018) 108–124.
  35. M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials, Chem. Mater., 13 (2001) 3169–3183.
  36. K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem., 57 (1985) 603–619.
  37. Z. Yao, X. Ma, A new approach to transforming PVC waste into energy via combined hydrothermal carbonization and fast pyrolysis, Energy, 141 (2017) 1156–1165.
  38. B. Li, J. Guo, K. Lv, J. Fan, Adsorption of methylene blue and Cd(II) onto maleylated modified hydrochar from water, Environ. Pollut., 254 (2019) 113014, doi: 10.1016/j.envpol.2019.113014.
  39. B.-W. Lv, H. Xu, J.-Z. Guo, L.-Q. Bai, B. Li, Efficient adsorption of methylene blue on carboxylate-rich hydrochar prepared by one-step hydrothermal carbonization of bamboo and acrylic acid with ammonium persulphate, J. Hazard. Mater., 421 (2022) 126741, doi: 10.1016/j.jhazmat.2021.126741.
  40. J. Mosa, A. Durán, M. Aparicio, Sulfonic acid-functionalized hybrid organic–inorganic proton exchange membranes synthesized by sol-gel using 3-mercaptopropyl trimethoxysilane (MPTMS), J. Power Sources, 297 (2015) 208–216.
  41. N. Huang, P. Zhao, S. Ghosh, A. Fedyukhin, Co-hydrothermal carbonization of polyvinyl chloride and moist biomass to remove chlorine and inorganics for clean fuel production, Appl. Energy, 240 (2019) 882–892.
  42. Z. Duan, W. Zhang, M. Lu, Z. Shao, W. Huang, J. Li, Y. Li, J. Mo, Y. Li, C. Chen, Magnetic Fe3O4/activated carbon for combined adsorption and Fenton oxidation of 4-chlorophenol, Carbon, 167 (2020) 351–363.
  43. A. Zubrik, M. Matik, S. Hredzák, M. Lovás, Z. Danková, M. Kováčová, J. Briančin, Preparation of chemically activated carbon from waste biomass by single-stage and two-stage pyrolysis, J. Cleaner Prod., 143 (2017) 643–653.
  44. M.J. Ahmed, S.K. Dhedan, Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons, Fluid Phase Equilib., 317 (2012) 9–14.