References
- E. Dobrzyńska, M. Pośniak, M. Szewczyńska, B. Buszewski,
Chlorinated volatile organic compounds—old, however, actual
analytical and toxicological problem, Crit. Rev. Anal. Chem.,
40 (2010) 41–57.
- C. Dai, Y. Zhou, H. Peng, S. Huang, P. Qin, J. Zhang, Y. Yang,
L. Luo, X. Zhang, Current progress in remediation of chlorinated
volatile organic compounds: a review, J. Ind. Eng. Chem.,
62 (2018) 106–119.
- F.W. Shaarani, B.H. Hameed, Ammonia-modified activated
carbon for the adsorption of 2,4-dichlorophenol, Chem. Eng. J.,
169 (2011) 180–185.
- B. Pavoni, D. Drusian, A. Giacometti, M. Zanette, Assessment
of organic chlorinated compound removal from aqueous
matrices by adsorption on activated carbon, Water Res.,
40 (2006) 3571–3579.
- M. Miguet, V. Goetz, G. Plantard, Y. Jaeger, Removal of a
chlorinated volatile organic compound (perchloroethylene)
from aqueous phase by adsorption on activated carbon,
Ind. Eng. Chem. Res., 54 (2015) 9813–9823.
- K. Yang, Y.J. Kong, L.Z. Huang, X.M. Hu, Catalytic elimination
of chlorinated organic pollutants by emerging single-atom
catalysts, Chem. Eng. J., 450 (2022) 138467, doi: 10.1016/j.cej.2022.138467.
- M. Mohsenzadeh, S.A. Mirbagheri, S. Sabbaghi, Degradation
of 1,2-dichloroethane by photocatalysis using immobilized
PAni-TiO2 nano-photocatalyst, Environ. Sci. Pollut. Res.,
26 (2019) 31328–31343.
- W.-G. Jeong, J.-G. Kim, K. Baek, Removal of 1,2-dichloroethane
in groundwater using Fenton oxidation, J. Hazard. Mater.,
428 (2022) 128253, doi: 10.1016/j.jhazmat.2022.128253.
- W. Zhang, P. Wei, M. Chen, L. Han, Y. Zhao, J. Yan, L. Qian,
M. Gu, J. Li, Trichloroethylene dechlorination rates, pathways,
and efficiencies of ZVMg/C in aqueous solution, J. Hazard.
Mater., 417 (2021) 125993, doi: 10.1016/j.jhazmat.2021.125993.
- P. Bhatt, M.S. Kumar, S. Mudliar, T. Chakrabarti, Biodegradation
of chlorinated compounds-a review, Crit. Rev. Env.
Sci. Technol., 37 (2007) 165–198.
- V.S. Priya, L. Philip, Biodegradation of dichloromethane
along with other VOCs from pharmaceutical wastewater,
Appl. Biochem. Biotechnol., 169 (2013) 1197–1218.
- K. Yang, W. Wang, L. Li, Dechlorination of dichloromethane by
a biofilter enriched with electroactive bacteria: performance,
kinetics, and microbial community, Environ. Res., 215 (2022)
114247, doi: 10.1016/j.envres.2022.114247.
- H. Matsukami, T. Kose, M. Watanabe, H. Takigami, Pilotscale
incineration of wastes with high content of chlorinated
and non-halogenated organophosphorus flame retardants
used as alternatives for PBDE, Sci. Total Environ., 493 (2014)
672–681.
- D. Wang, X. Xu, S. Chu, Q. Li, Polychlorinated naphthalenes
and other chlorinated tricyclic aromatic hydrocarbons emitted
from combustion of polyvinylchloride, J. Hazard. Mater.,
138 (2006) 273–277.
- R.-D. Sun, H. Irie, T. Nishikawa, A. Nakajima, T. Watanabe,
K. Hashimoto, Suppressing effect of CaCO3 on the dioxins
emission from poly(vinyl chloride) (PVC) incineration,
Polym. Degrad. Stab., 79 (2003) 253–256.
- T. Hatanaka, A. Kitajima, M. Takeuchi, Role of chlorine in
combustion field in formation of polychlorinated dibenzop-
dioxins and dibenzofurans during waste incineration,
Environ. Sci. Technol., 39 (2005) 9452–9456.
- Y. Shen, S. Yu, S. Ge, X. Chen, X. Ge, M. Chen, Hydrothermal
carbonization of medical wastes and lignocellulosic biomass
for solid fuel production from lab-scale to pilot-scale, Energy,
118 (2017) 312–323.
- Z. Yao, X. Ma, A new approach to transforming PVC waste
into energy via combined hydrothermal carbonization and
fast pyrolysis, Energy, 141 (2017) 1156–1165.
- X. Xu, D. Zhu, X. Wang, L. Deng, X. Fan, Z. Ding, A. Zhang,
G. Xue, Y. Liu, W. Xuan, X. Li, J. Makinia, Transformation of
polyvinyl chloride (PVC) into a versatile and efficient adsorbent
of Cu(II) cations and Cr(VI) anions through hydrothermal
treatment and sulfonation, J. Hazard. Mater., 423 (2022) 126973,
doi: 10.1016/j.jhazmat.2021.126973.
- H.-Z. Li, Y.-N. Zhang, J.-Z. Guo, J.-Q. Lv, W.-W. Huan, B. Li,
Preparation of hydrochar with high adsorption performance
for methylene blue by co-hydrothermal carbonization of
polyvinyl chloride and bamboo, Bioresour. Technol., 337 (2021)
125442, doi: 10.1016/j.biortech.2021.125442.
- Y. Wei, S. Fakudze, Y. Zhang, R. Ma, Q. Shang, J. Chen, C. Liu,
Q. Chu, Co-hydrothermal carbonization of pomelo peel and
PVC for production of hydrochar pellets with enhanced fuel
properties and dechlorination, Energy, 239 (2022) 122350,
doi: 10.1016/j.energy.2021.122350.
- X. Lu, X. Ma, X. Chen, Z. Yao, C. Zhang, Co-hydrothermal
carbonization of polyvinyl chloride and corncob for clean
solid fuel production, Bioresour. Technol., 301 (2020) 122763,
doi: 10.1016/j.biortech.2020.122763.
- J.A. Field, R.S.-Alvarez, Biodegradability of chlorinated
solvents and related chlorinated aliphatic compounds,
Rev. Environ. Sci. Biotechnol., 3 (2004) 185–254.
- A. Grostern, E.A. Edwards, Characterization of a dehalobacter
coculture that dechlorinates 1,2-dichloroethane to ethene and
identification of the putative reductive dehalogenase gene,
Appl. Environ. Microbiol., 75 (2009) 2684–2693.
- Q. Zhang, F, Wang, C. Xue, C. Wang, S. Chi, J. Zhang,
Comparative toxicity of nonylphenol, nonylphenol-4-
ethoxylate and nonylphenol-10-ethoxylate to wheat seedlings
(Triticum aestivum L.), Ecotoxicol. Environ. Saf., 131 (2016) 7–13.
- J. Hao, W. Zhang, G. Xue, P. Rao, R. Wang, Treatment of
distillation residue waste liquid from NPEOs by hydrothermal
carbonization process for resource recovery, Desal. Water
Treat., 125 (2018) 26–31.
- Q. Chen, W. Zhang, P. Rao, R. Wang, Nonylphenol ethoxylateassisted
hydrothermal preparation of carbon adsorbent from
phenolic waste liquid, Desal. Water Treat., 175 (2020) 108–114.
- State Environmental Protection Administration of China, Water
and Wastewater Monitoring and Analysis Methods, 4th ed.,
China Environmental Science Press, Beijing, 2002, pp. 210–213.
- Y. Xia, T. Yang, N. Zhu, D. Li, Z. Chen, Q. Lang, Z. Liu,
W. Jiao, Enhanced adsorption of Pb(II) onto modified
hydrochar: modeling and mechanism analysis, Bioresour.
Technol., 288 (2019) 121593, doi: 10.1016/j.biortech.2019.121593.
- F.-X. Ouf, S. Bourrous, C. Vallières, J. Yon, L. Lintis, Specific
surface area of combustion emitted particles: impact of primary
particle diameter and organic content, J. Aerosol Sci., 137 (2019)
105436, doi: 10.1016/j.jaerosci.2019.105436.
- N.T.K. Thanh, N. Maclean, S. Mahiddine, Mechanisms of
nucleation and growth of nanoparticles in solution, Chem. Rev.,
114 (2014) 7610–7630.
- D.D. Eberl, J. Środoń, M. Kralik, B.E. Taylor, Z.E. Peterman,
Ostwald ripening of clays and metamorphic minerals, Science,
248 (1990) 474–477.
- Z. Xu, R. Qi, D. Zhang, Y. Gao, M. Xiong, W. Chen,
Co-hydrothermal carbonization of cotton textile waste and
polyvinyl chloride waste for the production of solid fuel:
interaction mechanisms and combustion behaviors, J. Cleaner
Prod., 316 (2021) 128306, doi: 10.1016/j.jclepro.2021.128306.
- F. Ahmada, E.L. Silva, M.B.A. Varesche, Hydrothermal
processing of biomass for anaerobic digestion-a review,
Renewable Sustainable Energy Rev., 98 (2018) 108–124.
- M. Kruk, M. Jaroniec, Gas adsorption characterization of
ordered organic-inorganic nanocomposite materials, Chem.
Mater., 13 (2001) 3169–3183.
- K.S.W. Sing, Reporting physisorption data for gas/solid systems
with special reference to the determination of surface area
and porosity (Recommendations 1984), Pure Appl. Chem.,
57 (1985) 603–619.
- Z. Yao, X. Ma, A new approach to transforming PVC waste
into energy via combined hydrothermal carbonization and
fast pyrolysis, Energy, 141 (2017) 1156–1165.
- B. Li, J. Guo, K. Lv, J. Fan, Adsorption of methylene blue
and Cd(II) onto maleylated modified hydrochar from
water, Environ. Pollut., 254 (2019) 113014, doi: 10.1016/j.envpol.2019.113014.
- B.-W. Lv, H. Xu, J.-Z. Guo, L.-Q. Bai, B. Li, Efficient adsorption
of methylene blue on carboxylate-rich hydrochar prepared by
one-step hydrothermal carbonization of bamboo and acrylic
acid with ammonium persulphate, J. Hazard. Mater., 421 (2022)
126741, doi: 10.1016/j.jhazmat.2021.126741.
- J. Mosa, A. Durán, M. Aparicio, Sulfonic acid-functionalized
hybrid organic–inorganic proton exchange membranes
synthesized by sol-gel using 3-mercaptopropyl trimethoxysilane
(MPTMS), J. Power Sources, 297 (2015) 208–216.
- N. Huang, P. Zhao, S. Ghosh, A. Fedyukhin, Co-hydrothermal
carbonization of polyvinyl chloride and moist biomass to
remove chlorine and inorganics for clean fuel production,
Appl. Energy, 240 (2019) 882–892.
- Z. Duan, W. Zhang, M. Lu, Z. Shao, W. Huang, J. Li, Y. Li, J. Mo,
Y. Li, C. Chen, Magnetic Fe3O4/activated carbon for combined
adsorption and Fenton oxidation of 4-chlorophenol, Carbon,
167 (2020) 351–363.
- A. Zubrik, M. Matik, S. Hredzák, M. Lovás, Z. Danková,
M. Kováčová, J. Briančin, Preparation of chemically activated
carbon from waste biomass by single-stage and two-stage
pyrolysis, J. Cleaner Prod., 143 (2017) 643–653.
- M.J. Ahmed, S.K. Dhedan, Equilibrium isotherms and kinetics
modeling of methylene blue adsorption on agricultural
wastes-based activated carbons, Fluid Phase Equilib.,
317 (2012) 9–14.