References

  1. A.M. Awad, S.M.R. Shaikh, R. Jalab, M.H. Gulied, M.S. Nasser, A. Benamor, S. Adham, Adsorption of organic pollutants by natural and modified clays: a comprehensive review, Sep. Purif. Technol., 228 (2019) 115719, doi: 10.1016/j.seppur.2019.115719.
  2. D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hubner, Evaluation of advanced oxidation processes for water and wastewater treatment - a critical review, Water Res., 139 (2018) 118–131.
  3. A.A. Alqadami, S.M. Wabaidur, B.-H. Jeon, M.A. Khan, Co-hydrothermal valorization of food waste: process optimization, characterization, and water decolorization application, Biomass Conver. Biorefin., (2023) 1–12, doi: 10.1007/s13399-022-03711-7.
  4. I. Ali, O.M.L. Alharbi, Z.A. Alothman, A.M. Al-Mohaimeed, A. Alwarthan, Modeling of fenuron pesticide adsorption on CNTs for mechanistic insight and removal in water, Environ. Res., 170 (2019) 389–397.
  5. D.V. Moiseev, B.R. James, Syntheses and rearrangements of tris(hydroxymethyl)phosphine and tetrakis(hydroxymethyl) phosphonium salts, Phosphorus, Sulfur Silicon Relat. Elem., 195 (2020) 687–712.
  6. B. Zhao, T.J. Kolibaba, S. Lazar, J.C. Grunlan, Environmentallybenign, water-based covalent polymer network for flame retardant cotton, Cellulose, 28 (2021) 5855–5866.
  7. S.X. Shao, L. Jiang, Y. Li, K.Q. Shi, Effect of pH on the phosphorous components in tetra-hydroxymethyl phosphonium chloride solution, Adv. Mater. Res., 560 (2012) 237–241.
  8. D.V. Moiseev, B.R. James, Tetrakis(hydroxymethyl) phosphonium salts: their properties, hazards and toxicities, Phosphorus, Sulfur Silicon Relat. Elem., 195 (2019) 263–279.
  9. S. Liu, H. Zheng, T. Li, Degradation characteristics and microbial community of phosphine biopurification systems, Environ. Eng. Sci., 38 (2021) 802–810.
  10. W.-C. Shao, H. Wu, A. Shiue, C.-H. Tseng, Y.-W. Wang, C.-F. Hsu, G. Leggett, Chitosan-dosed adsorptive filter media for removal of formaldehyde from indoor air - performance and cancer risk assessment, Chem. Phys. Lett., 779 (2021) 138836, doi: 10.1016/j.cplett.2021.138836.
  11. F. Liu, J. Cao, Z. Yang, W. Xiong, Z. Xu, P. Song, M. Jia, S. Sun, Y. Zhang, X. Zhong, Heterogeneous activation of peroxymonosulfate by cobalt-doped MIL-53 (Al) for efficient tetracycline degradation in water: coexistence of radical and non-radical reactions, J. Colloid Interface Sci., 581 (2021) 195–204.
  12. P. Krzeminski, C. Schwermer, A. Wennberg, K. Langford, C. Vogelsang, Occurrence of UV filters, fragrances and organophosphate flame retardants in municipal WWTP effluents and their removal during membrane post-treatment, J. Hazard. Mater., 323 (2017) 166–176.
  13. A.V. Sviridov, T.V. Shushkova, D.O. Epiktetov, S.V. Tarlachkov, I.T. Ermakova, A.A. Leontievsky, Biodegradation of organophosphorus pollutants by soil bacteria: biochemical aspects and unsolved problems, Appl. Biochem. Microbiol., 57 (2021) 836–844.
  14. X. Huang, L. Huang, S.R. Babu Arulmani, J. Yan, Q. Li, J. Tang, K. Wan, H. Zhang, T. Xiao, M. Shao, Research progress of metal organic frameworks and their derivatives for adsorption of anions in water: a review, Environ. Res., 204 (2022) 112381–112381.
  15. H.A. Murad, M. Ahmad, J. Bundschuh, Y. Hashimoto, M. Zhang, B. Sarkar, Y.S. Ok, A remediation approach to chromium-contaminated water and soil using engineered biochar derived from peanut shell, Environ. Res., 204 (2022) 112125, doi: 10.1016/j.envres.2021.112125.
  16. A. Othmani, S. Magdouli, P.S. Kumar, A. Kapoor, P.V. Chellam, O. Gokkus, Agricultural waste materials for adsorptive removal of phenols, chromium(VI) and cadmium(II) from wastewater: a review, Environ. Res., 204 (2022) 111916, doi: 10.1016/j.envres.2021.111916.
  17. M.-X. Zhan, Y.-W. Liu, W.-W. Ye, T. Chen, W.-T. Jiao, Modification of activated carbon using urea to enhance the adsorption of dioxins, Environ. Res., 204 (2022) 112035, doi: 10.1016/j.envres.2021.112035.
  18. H. Xu, S. Zhu, M. Xia, F. Wang, X. Ju, Three-dimension hierarchical composite via in-situ growth of Zn/Al layered double hydroxide plates onto polyaniline-wrapped carbon sphere for efficient naproxen removal, J. Hazard. Mater., 423 (2022) 127192, doi: 10.1016/j.jhazmat.2021.127192.
  19. S. Rezania, A. Mojiri, J. Park, N. Nawrot, E. Wojciechowska, N. Marraiki, N.S.S. Zaghloul, Removal of lead ions from wastewater using lanthanum sulfide nanoparticle decorated over magnetic graphene oxide, Environ. Res., 204 (2022) 111959, doi: 10.1016/j.envres.2021.111959.
  20. J.O. Fernandes, C.A. Rolim Bernardino, C.F. Mahler, R.E. Santelli, B.F. Braz, R.C. Borges, M.C. da Cunha Veloso, G.A. Romeiro, F.H. Cincotto, Biochar generated from agroindustry sugarcane residue by low temperature pyrolysis utilized as an adsorption agent for the removal of thiamethoxam pesticide in wastewater, Water Air Soil Pollut., 232 (2021) 67, doi: 10.1007/s11270-021-05030-5.
  21. J. Hoslett, H. Ghazal, N. Mohamad, H. Jouhara, Removal of methylene blue from aqueous solutions by biochar prepared from the pyrolysis of mixed municipal discarded material, Sci. Total Environ., 714 (2020) 136832, doi: 10.1016/j.scitotenv.2020.136832.
  22. J. Wang, S. Wang, Preparation, modification and environmental application of biochar: a review, J. Cleaner Prod., 227 (2019) 1002–1022.
  23. B. Li, L. Yang, C.-q. Wang, Q.-p. Zhang, Q.-c. Liu, Y.-d. Li, R. Xiao, Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes, Chemosphere, 175 (2017) 332–340.
  24. Q. Yin, R. Wang, Z. Zhao, Application of Mg–Al-modified biochar for simultaneous removal of ammonium, nitrate, and phosphate from eutrophic water, J. Cleaner Prod., 176 (2018) 230–240.
  25. D. Hsu, C. Lu, T. Pang, Y. Wang, G. Wang, Adsorption of ammonium nitrogen from aqueous solution on chemically activated biochar prepared from sorghum distillers grain, Appl. Sci., 9 (2019) 5249, doi: 10.3390/app9235249.
  26. Y.F. Ma, Y. Qi, L. Yang, L. Wu, P. Li, F. Gao, X.B. Qi, Z.L. Zhang, Adsorptive removal of imidacloprid by potassium hydroxide activated magnetic sugarcane bagasse biochar: adsorption efficiency, mechanism and regeneration, J. Cleaner Prod., 292 (2021) 126005, doi: 10.1016/j.jclepro.2021.126005.
  27. Y. Yao, B. Gao, F. Wu, C. Zhang, L. Yang, Engineered biochar from biofuel residue: characterization and its silver removal potential, ACS Appl. Mater. Interfaces, 7 (2015) 10634–10640.
  28. E. Antunes, M.V. Jacob, G. Brodie, P.A. Schneider, Silver removal from aqueous solution by biochar produced from biosolids via microwave pyrolysis, J. Environ. Manage., 203 (2017) 264–272.
  29. Y. Zhou, B. Gao, A.R. Zimmerman, X. Cao, Biochar-supported zerovalent iron reclaims silver from aqueous solution to form antimicrobial nanocomposite, Chemosphere, 117 (2014) 801–805.
  30. Q. Chen, J. Qin, P. Sun, Z. Cheng, G. Shen, Cow dung-derived engineered biochar for reclaiming phosphate from aqueous solution and its validation as slow-release fertilizer in soil crop system, J. Cleaner Prod., 172 (2018) 2009–2018.
  31. B.O. Nardis, J. Santana da Silva Carneiro, I.M.G.D. Souza, R.G.D. Barros, L.C. Azevedo Melo, Phosphorus recovery using magnesium-enriched biochar and its potential use as fertilizer, Arch. Agron. Soil Sci., 67 (2020) 1017–1033.
  32. B. Wang, Y. Ma, X. Lee, P. Wu, F. Liu, X. Zhang, L. Li, M. Chen, Environmental-friendly coal gangue-biochar composites reclaiming phosphate from water as a slow-release fertilizer, Sci. Total Environ., 758 (2021) 143664, doi: 10.1016/j. scitotenv.2020.143664.
  33. C. Schang, A. Lintern, P.L.M. Cook, G. Rooney, R. Coleman, H.M. Murphy, A. Deletic, D. McCarthy, Escherichia coli survival and transfer in estuarine bed sediments, River Res. Appl., 34 (2018) 606–614.
  34. L. Liu, Y. Li, S. Fan, Preparation of KOH and H3PO4 modified biochar and its application in methylene blue removal from aqueous solution, Processes, 7 (2019) 891, doi: 10.3390/pr7120891.
  35. W. Chen, M. Gong, K. Li, M. Xia, Z. Chen, H. Xiao, Y. Fang, Y. Chen, H. Yang, H. Chen, Insight into KOH activation mechanism during biomass pyrolysis: chemical reactions between O-containing groups and KOH, Appl. Energy, 278 (2020) 115730, doi: 10.1016/j.apenergy.2020.115730.
  36. Z. Qiu, Y. Wang, X. Bi, T. Zhou, J. Zhou, J. Zhao, Z. Miao, W. Yi, P. Fu, S. Zhuo, Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors, J. Power Sources, 376 (2018) 82–90.
  37. B.M. Al-Shehri, A.E.R.S. Khder, S.S. Ashour, M.S. Hamdy, A review: the utilization of mesoporous materials in wastewater treatment, Mater. Res. Express, 6 (2019) 122002, doi: 10.1088/2053-1591/ab52af.
  38. L. Yan, Y. Liu, Y. Zhang, S. Liu, C. Wang, W. Chen, C. Liu, Z. Chen, Y. Zhang, ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline, Bioresour. Technol., 297 (2020) 122381, doi: 10.1016/j.biortech.2019.122381.
  39. W. Liu, D. Ren, J. Wu, Z. Wang, S. Zhang, X. Zhang, X. Gong, Adsorption behavior of 2,4-DCP by rice straw biochar modified with CTAB, Environ. Technol., 42 (2021) 3797–3806.
  40. W. Chen, M. Gong, K. Li, M. Xia, Z. Chen, H. Xiao, Y. Fang, Y. Chen, H. Yang, H. Chen, Insight into KOH activation mechanism during biomass pyrolysis: chemical reactions between O-containing groups and KOH, Appl. Energy, 278 (2020) 115730, doi: 10.1016/j.apenergy.2020.115730.
  41. H. Huang, J. Tang, K. Gao, R. He, H. Zhao, D. Werner, Characterization of KOH modified biochars from different pyrolysis temperatures and enhanced adsorption of antibiotics, RSC Adv., 7 (2017) 14640–14648.
  42. J. Li, Q. Li, C. Qian, X. Wang, Y. Lan, B. Wang, W. Yin, Volatile organic compounds analysis and characterization on activated biochar prepared from rice husk, Int. J. Environ. Sci. Technol., 16 (2019) 7653–7662.
  43. C. Yang, S. Miao, T. Li, Influence of water washing treatment on Ulva prolifera-derived biochar properties and sorption characteristics of ofloxacin, Sci. Rep., 11 (2021) 1797, doi: 10.1038/s41598-021-81314-4.
  44. J. Liang, Y. Chen, M. Cai, M. Gan, J. Zhu, One-pot pyrolysis of metal-embedded biochar derived from invasive plant for efficient Cr(VI) removal, J. Environ. Chem. Eng., 9 (2021) 105714, doi: 10.1016/j.jece.2021.105714.
  45. D.V. Moiseev, B.R. James, Tetrakis(hydroxymethyl) phosphonium salts: their properties, hazards and toxicities, Phosphorus, Sulfur Silicon Relat. Elem., 195 (2020) 263–279.
  46. Y. Wu, Z. Liu, M.F. Bakhtari, J. Luo, Preparation of GO/MIL-101(Fe,Cu) composite and its adsorption mechanisms for phosphate in aqueous solution, Environ. Sci. Pollut. Res., 28 (2021) 51391–51403.
  47. Y. Mu, W. He, H. Ma, Enhanced adsorption of tetracycline by the modified tea-based biochar with the developed mesoporous and surface alkalinity, Bioresour. Technol., 342 (2021) 126001, doi: 10.1016/j.biortech.2021.126001.
  48. V.-P. Dinh, T.-D.-T. Huynh, H.M. Le, V.-D. Nguyen, V.-A. Dao, N.Q. Hung, L.A. Tuyen, S. Lee, J. Yi, T.D. Nguyen, L.V. Tan, Insight into the adsorption mechanisms of methylene blue and chromium(III) from aqueous solution onto pomelo fruit peel, RSC Adv., 9 (2019) 25847–25860.
  49. Y. Tong, P.J. McNamara, B.K. Mayer, Adsorption of organic micropollutants onto biochar: a review of relevant kinetics, mechanisms and equilibrium, Environ. Sci. Water Res. Technol., 5 (2019) 821–838.
  50. Z. Luo, B. Yao, X. Yang, L. Wang, Z. Xu, X. Yan, L. Tian, H. Zhou, Y. Zhou, Novel insights into the adsorption of organic contaminants by biochar: a review, Chemosphere, 287 (2022) 132113, doi: 10.1016/j.chemosphere.2021.132113.
  51. P. Zhang, H. Sun, C. Ren, L. Min, H. Zhang, Sorption mechanisms of neonicotinoids on biochars and the impact of deashing treatments on biochar structure and neonicotinoids sorption, Environ. Pollut., 234 (2018) 812–820.
  52. L.H. Nguyen, X.H. Nguyen, N.D.K. Nguyen, H.T. Van, V.N. Thai, H.N. Le, V.D. Pham, N.A. Nguyen, T.P. Nguyen, T.H. Nguyen, H2O2 modified-hydrochar derived from paper waste sludge for enriched surface functional groups and promoted adsorption to ammonium, J. Taiwan Inst. Chem. Eng., 126 (2021) 119–133.
  53. J. Arora, D. Oudit, J.W. Austin, H.S. Ramaswamy, Evaluation of thermal destruction kinetics of Clostridium difficile spores (ATCC 17857) in lean ground beef with first-order/Weibull modeling considerations, J. Food Process Eng., 42 (2019) e13273, doi: 10.1111/jfpe.13273.