References

  1. H.D. Liu, G.R. Xu, G.B. Li, Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline, J. Colloid Interface Sci., 587 (2021) 271–278.
  2. J.Y. Pan, X.T. Bai, Y.Y. Li, B.H. Yang, P.Y. Yang, F. Yu, J. Ma, HKUST-1 derived carbon adsorbents for tetracycline removal with excellent adsorption performance, Environ. Res., 205 (2022) 112425, doi: 10.1016/j.envres.2021.112425.
  3. N.M. El-Metwaly, H.A. Katouah, M.G. El-Desouky, A.A. El-Bindary, M.A. El-Bindary, Fabricating of Fe3O4@
    Ag-MOF nanocomposite and evaluating its adsorption activity for removal of doxorubicin, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 57 (2022) 13–14.
  4. Y.Q. Shen, K. Zhu, D.D. He, J. Huang, H.M. He, L.L. Lei, W.J. Chen, Tetracycline removal via adsorption and metalfree catalysis with 3D macroscopic N-doped porous carbon nanosheets: non-radical mechanism and degradation pathway, Environ. Sci., 42 (2022) 351–366.
  5. M.C. Sun, Y.K. Ma, Y.J. Yang, X.F. Zhu, Effect of iron impregnation ratio on the properties and adsorption of KOH activated biochar for removal of tetracycline and heavy metals, Bioresour. Technol., 380 (2023) 129081, doi: 10.1016/j. biortech.2023.129081.
  6. W. Xiang, X.Y. Zhang, J.J. Chen, W.X. Zou, F. He, X. Hu, D.CW. Tsang, Y.S. Ok, B. Gao, Biochar technology in wastewater treatment: a critical review, Chemosphere, 252 (2020) 126539, doi: 10.1016/j.chemosphere.2020.126539.
  7. S.U. Masrura, P. Dissanayake, Y.Q. Sun, Y.S. Ok, D.C.W. Tsang, E. Khan, Sustainable use of biochar for resource recovery and pharmaceutical removal from human urine: a critical review, Crit. Rev. Env. Sci. Technol., 51 (2021) 3016–3048.
  8. T.A. Altalhi, M.M. Ibrahim, G.A.M. Mersal, M.H.H. Mahmoud, T. Kumeria, M.G. El-Desouky, A.A. El-Bindary, M.A. El-Bindary, Adsorption of doxorubicin hydrochloride onto thermally treated green adsorbent: equilibrium, kinetic and thermodynamic studies, J. Mol. Struct., 1263 (2022) 133160, doi: 10.1016/j.molstruc.2022.133160.
  9. F.F. Zhang, J.N. Wang, Y.J. Tian, C.X. Liu, S.Q. Zhang, L.C. Cao, Y.M. Zhou, S.C. Zhang, Effective removal of tetracycline antibiotics from water by magnetic functionalized biochar derived from rice waste, Environ. Pollut., 330 (2023) 121681, doi: 10.1016/j.envpol.2023.121681.
  10. W.L. Jiang, Y.R. Cai, D. Liu, Q.X. Shi, Q. Wang, Adsorption properties and mechanism of suaeda biochar and modified materials for tetracycline, Environ. Res., 235 (2023) 116549, doi: 10.1016/j.envres.2023.116549.
  11. Q.Y. Shi, W.B. Wang, H.M. Zhang, H.L. Bai, K.Q. Liu, J.F. Zhang, Z.H. Li, W.H. Zhu, Porous biochar derived from walnut shell as an efficient adsorbent for tetracycline removal, Bioresour. Technol., 383 (2023) 129213, doi: 10.1016/j.biortech.2023.129213.
  12. F.Z. Chen, B. Wang, G.H. Zhao, X.P. Liang, S.H. Liu, J. Liu, Optimization extraction of flavonoids from peony pods by response surface methodology, antioxidant activity and bioaccessibility in vitro, J. Food Meas. Charact., 17 (2023) 460–471.
  13. L.H. Xie, Z.G. Yan, M.C. Li, Y. Tian, A. Kilaru, L.X. Niu, Y.L. Zhang, Identification of phytochemical markers for quality evaluation of tree peony stamen using comprehensive HPLC-based analysis, Ind. Crops Prod., 154 (2020) 112711, doi: 10.5004/dwt.2021.27504.
  14. Q. Liu, L.B. Qu, B.Z. Ren, Effective removal of copper ions from aqueous solution by iminodiacetic acid-functionalized Paeonia ostii seed coats, J. Dispersion Sci. Technol., 41 (2020) 1126–1135.
  15. Q. Liu, T. Li, S.W. Zhang, L.B. Qu, B.Z. Ren, optimization and evaluation of alkali-pretreated Paeonia ostii seed coats as adsorbent for the removal of MB from aqueous solution, Pol. J. Chem. Technol., 20 (2018) 29–36.
  16. Q. Liu, R.P. Han, L.B. Qu, B.Z. Ren, Enhanced adsorption of copper ions by phosphoric acid-modified Paeonia ostii seed coats, Environ. Sci. Pollut. Res., 27 (2020) 43906–43916.
  17. S.L. Huo, X. Song, Y.B. Zhao, W. Ni, H. Wang, K.X. Li, Insight into the significant contribution of intrinsic carbon defects for the high-performance capacitive desalination of brackish water, J. Mater. Chem. A, 8 (2020) 19927–19937.
  18. H.A. Kiwaan, F.S. Mohamed, N.A. El-Ghamaz, N.M. Beshry, A.A. El-Bindary, Experimental and electrical studies of Na-X zeolite for the adsorption of different dyes, J. Mol. Liq., 42 (2021) 115877, doi: 10.1016/j.molliq.2021.115877.
  19. Y. Qin, B. Chai, C.L. Wang, J.T. Yan, G.Z. Fan, G.S. Song, New insight into remarkable tetracycline removal by enhanced graphitization of hierarchical porous carbon aerogel: performance and mechanism, Colloids Surf., A, 655 (2022) 130197, doi: 10.1016/j.colsurfa.2022.130197.
  20. Z.H. Lin, R.K. Wang, S.T. Tan, K. Zhang, Q.Q. Yin, Z.H. Zhao, P. Gao, Nitrogen-doped hydrochar prepared by biomass and nitrogen-containing wastewater for dye adsorption: effect of nitrogen source in wastewater on the adsorption performance of hydrochar, J. Environ. Manage., 334 (2023) 117503, doi: 10.1016/j.jenvman.2023.117503.
  21. C.D. Ma, J.L. Bai, X. Hu, Z.H. Jiang, L.L. Wang, Nitrogen-doped porous carbons from polyacrylonitrile fiber as effective CO2 adsorbents, Environ. Sci., 125 (2023) 533–543.
  22. M.A. El-Bindary, M.G. El-Desouky, A.A. El-Bindary, Metal–organic frameworks encapsulated with an anticancer compound as drug delivery system: synthesis, characterization, antioxidant, anticancer, antibacterial, and molecular docking investigation, Appl. Organomet. Chem., 36 (2022) e6660, doi: 10.1002/aoc.6660.
  23. T. Wang, L. Xue, Y.H. Liu, L. Zhang, B.S. Xing, N self-doped hierarchically porous carbon derived from biomass as an efficient adsorbent for the removal of tetracycline antibiotics, Sci. Total Environ., 822 (2022) 153567, doi: 10.1016/j.scitotenv.2022.153567.
  24. Q.C. Wang, Y.J. Ji, Y.P. Lei, Y.B. Wang, Y.D. Wang, Y.Y. Li, S.Y. Wang, Pyridinic-N-dominated doped defective graphene as a superior oxygen electrocatalyst for ultrahigh-energydensity Zn-air batteries, ACS Energy Lett., 3 (2018) 1183–1191.
  25. J. Yang, J.D. Dai, L.L. Wang, W.N. Ge, A.T. Xie, J.S. He, Y.S. Yan, Ultrahigh adsorption of tetracycline on willow branche-derived porous carbons with tunable pore structure: isotherm, kinetics, thermodynamic and new mechanism study, J. Taiwan Inst. Chem. Eng., 96 (2019) 473–482.
  26. J. Xie, M.H. Liu, M. He, Y.F. Liu, J. Li, F.X. Yu, Ultra-efficient adsorption of diclofenac sodium on fish-scale biochar functionalized with H3PO4 via synergistic mechanisms, Environ. Pollut., 322 (2023) 121226, doi: 10.1016/j.envpol.2023.121226.
  27. W.H. Ding, G.L. Zhou, S.Z. Wen, J.Z. Yin, C. Liu, Y.S. Fu, L.L. Zhang, Two-dimensional activated carbon nanosheets for rapid removal of tetracycline via strong π–π electron donor receptor interactions, Bioresour. Technol., 360 (2022) 127544, doi: 10.1016/j.biortech.2022.127544.
  28. Q.H. Zhou, Y.Y. Wu, H.J. Chen, G.Y. Zhu, Y.P. Zhang, D.D. Liang, G. Chen, S.S, Tang, Preparation of Quercus mongolica leaf-derived porous carbon with a large specific surface area for highly effective removal of dye and antibiotic from water, Arabian J. Chem., 15 (2022) 104031, doi: 10.1016/j.arabjc.2022.104031.
  29. H.J. Wang, Q. Liu, Z.Q. Wang, R.P. Han, Adsorption of 4-chloro-2,5-dimethoxyaniline from solution in batch mode using chemical activated pyrolytic char, Desal. Water Treat., 231 (2021) 367–376.
  30. T. Wang, L. Xue, Y.H. Liu, L. Zhang, B.S. Xing, N self-doped hierarchically porous carbon derived from biomass as an efficient adsorbent for the removal of tetracycline antibiotics, Sci. Total Environ., 822 (2022) 153567, doi: 10.1016/j.scitotenv.2022.153567.
  31. J. Xu, Y. Zhang, B. Li, S.S. Fan, H.C. Xu, D.X. Guan, Improved adsorption properties of tetracycline on KOH/KMnO4 modified biochar derived from wheat straw, Chemosphere, 296 (2022)133981, doi: 10.1016/j.chemosphere.2022.133981.
  32. B. Li, Y. Zhang, J. Xu, Y.L. Mei, S.S. Fan, H.C. Xu, Effect of carbonization methods on the properties of tea waste biochars and their application in tetracycline removal from aqueous solutions, Chemosphere, 267 (2021) 129283, doi: 10.1016/j.chemosphere.2020.129283.
  33. F.K. Mostafapour, M. Yilmaz, A.H. Mahvi, A. Younesi, F. Ganji, D. Balarak, Adsorptive removal of tetracycline from aqueous solution by surfactant-modifed zeolite: equilibrium, kinetics and thermodynamics, Desal. Water. Treat., 247 (2022) 216–228.
  34. A.D. Khatibi, A.H. Mahvi, N. Mengelizadeh, D. Balarak, Adsorption–desorption of tetracycline onto molecularly imprinted polymer: isotherm, kinetics, and thermodynamics studies, Desal. Water. Treat., 230 (2021) 240–251.
  35. D. Balarak, F.K. Mostafapour, H. Azarpira, Adsorption isotherm studies of tetracycline antibiotics from aqueous solutions by maize stalks as a cheap biosorbent, Desal. Water. Treat., 8 (2016) 16664–16675.
  36. Y.L. Mei, J. Xu, Y. Zhang, B. Li, S.S. Fan, H.C. Xu, Effect of Fe–N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution, Bioresour. Technol., 325 (2021) 124732, doi: 10.1016/j.biortech.2021.124732.
  37. J.Y. Tang, Y.F. Ma, Z.K. Deng, P. Li, X.B. Qi, Z.L. Zhang, Onepot preparation of layered double oxides-engineered biochar for the sustained removal of tetracycline in water, Bioresour. Technol., 381 (2023) 129119, doi: 10.1016/j.biortech.2023.129119.
  38. J.E. Kim, S.K. Bhatia, H.J. Song, E.J. Yoo, Y.K. Choi, Adsorptive removal of tetracycline from aqueous solution by maple leaf-derived biochar, Bioresour. Technol., 306 (2020) 123092, doi: 10.1016/j.biortech.2020.123092.
  39. Y.J. Ai, Y. Liu, Y.Z. Huo, C.F. Zhao, L. Sun, B. Han, X.R. Cao, X.K. Wang, Insights into the adsorption mechanism and dynamic behavior of tetracycline antibiotics on reduced graphene oxide (RGO) and graphene oxide (GO) materials, Environ. Sci. Nano, 6 (2019) 3336–3348.
  40. Y.Y. Wang, L.H. Xu, F. Wei, D. Tal, M. Zhang, R.L. Zhu, Insights into the adsorption mechanism of tetracycline on hierarchically porous carbon and the effect of nanoporous geometry, Chem. Eng. J., 437 (2022) 135454, doi: 10.1016/j.cej.2022.135454.
  41. A. Ejsmont, J. Goscianska, Morphology controlled nitrogendoped mesoporous carbon vehicles for sustained release of paracetamol, Microporous Mesoporous Mater., 350 (2023) 112449, doi: 10.1016/j.micromeso.2023.112449.
  42. G. Joanna, A. Ejsmont, A. Stasiłowicz-Krzemień, S. Sip, J. Cielecka-Piontek, Enhancing antimicrobial activity of
    β-lactam antibiotic via functionalized mesoporous carbonbased delivery platforms, Microporous Mesoporous Mater., 343 (2022): 112160, doi: 10.1016/j.micromeso.2022.112160.
  43. G. Joanna, A. Ejsmont, A. Kubiak, D. Ludowicz, A. Stasilowicz, J. Cielecka-Piontek, Amine-grafted mesoporous carbons as benzocaine-delivery platforms, Materials, 14 (2021) 2188, doi: 10.3390/ma14092188.
  44. J.L. Liu, E. Zong, H.Y. Fu, S.R. Zheng, Z.Y. Xu, D.Q. Zhu, Adsorption of aromatic compounds on porous covalent triazine-based framework, J. Colloid Interface Sci., 372 (2012) 99–107.
  45. R.W. Newberry, R.T. Raines, The n→π* interaction, Acc. Chem. Res., 50 (2017) 1838–1846.