References
- M. Al-Ejji, D. Ponnamma, K. Zadeh, M. Zubair, A. Yasir,
M. Hassan, N. Abdelhadi, K. Song, A.H. Hawari, Advanced
membrane technology to remove boron from water and
wastewater: a comprehensive study, ACS Appl. Polym. Mater.,
5 (2023) 7675–7697.
- M. Naderi, S. Nasseri, A.H. Mahvi, A. Mesdaghinia, K. Naddafi,
Mechanical trajectory control of water mineral impurities in
the electrochemical-magnetic reactor, Desal. Water Treat.,
238 (2021) 67–81.
- M. Naderi, S. Nasseri, Optimization of free chlorine, electric
and current efficiency in an electrochemical reactor for water
disinfection purposes by RSM, J. Environ. Health Sci. Eng.,
18 (2020) 1343–1350.
- S. Gholami, M. Naderi, M. Yousefi, M.M. Arjmand, The
electrochemical removal of bacteria from drinking water,
Desal. Water Treat., 160 (2019) 110–115.
- W.J. Cosgrove, D.P. Loucks, Water management: current and
future challenges and research directions, 50th Anniversary
of Water Resources Research, Water Resour. Res., 51 (2015)
4823–4839.
- M. Moghaddam-Arjmand, M. Naderi, S. Gholami, Investigation
of the survival of bacteria under the influence of supporting
electrolytes KCl, CuI and NaBr in the electrochemical
method, J. Res. Environ. Health, 4 (2018) 104–111.
- M.A. Alkhadra, X. Su, M.E. Suss, H. Tian, E.N. Guyes,
A.N. Shocron, K.M. Conforti, J. Pedro de Souza, N. Kim,
M. Tedesco, K. Khoiruddin, I. Gede Wenten, J.G. Santiago,
T. Alan Hatton, M.Z. Bazant, Electrochemical methods for
water purification, ion separations, and energy conversion,
Chem. Rev., 122 (2022) 13547–13635.
- M. Alimohammadi, M. Naderi, Effectiveness of ozone gas on
airborne virus inactivation in enclosed spaces: a review study,
Ozone Sci. Eng., 43 (2021) 21–31.
- X. Zhao, H. Yang, Y. Wang, Z. Sha, Review on the electrochemical
extraction of lithium from seawater/brine, J. Electroanal.
Chem., 850 (2019) 113389, doi: 10.1016/j.jelechem.2019.113389.
- R. Domga, G.B. Noumi, J.B. Tchatchueng, Study of some
electrolysis parameters for chlorine and hydrogen production
using a new membrane electrolyzer, Int. J. Chem. Eng. Anal.
Sci., 2 (2017) 1–8.
- M. Naderi, G. Ebrahimzadeh, M. Alimohammadi, V. Past,
Effect of ozone on the inactivation of indoor airborne viruses
with the COVID-19 virus approach: a systematic review,
Tehran Univ. Med. J. TUMS Publ., 80 (2022) 82–90.
- S. Wacławek, H.V. Lutze, K. Grübel, V.V. Padil, M. Černík,
D.D. Dionysiou, Chemistry of persulfates in water and
wastewater treatment: a review, Chem. Eng. J., 330 (2017) 44–62.
- I. Garcia-Herrero, M. Margallo, R. Onandía, R. Aldaco,
A. Irabien, Life cycle assessment model for the
chlor-alkali
process: a comprehensive review of resources and available
technologies, Sustainable Prod. Consumption, 12 (2017) 44–58.
- J.G. Ibanez, J.L. Vazquez-Olavarrieta, L. Hernandez-Rivera,
M.A. Garcia-Sanchez, E. Garcia-Pintor, A novel combined
electrochemical-magnetic method for water treatment,
Water Sci. Technol., 65 (2012) 2079–2083.
- M. Miranzadeh, M. Naderi, H. Akbari, A. Mahvi, V. Past,
Adsorption of arsenic from aqueous solutions by iron filings
and the effect of magnetic field, Int. Arch. Health Sci., 3 (2016)
37–42.
- M.B. Miranzadeh, M. Naderi, V. Past, The interaction effect
of magnetism on arsenic and iron ions in water, Desal. Water
Treat., 213 (2021) 343–347.
- A. Fitch, P. Balderas-Hernandez, J.G. Ibanez, Electrochemical
technologies combined with physical, biological, and chemical
processes for the treatment of pollutants and wastes: a review,
J. Environ. Chem. Eng., 10 (2022) 107810, doi: 10.1016/j.jece.2022.107810.
- D. Fontana, F. Forte, M. Pietrantonio, S. Pucciarmati,
C. Marcoaldi, Magnesium recovery from seawater desalination
brines: a technical review, Environ. Dev. Sustainability,
(2022) 1–22.
- M. Naderi, V. Past, M.B. Miranzadeh, A.H. Mahvi, Survey of
the magnetic field effect on arsenic removal from drinking
water with and without iron filings, J. Environ. Stud., 43 (2017)
45–57.
- Y. Liu, Y. Wang, S. Zhao, Journey of electrochemical chlorine
production: from brine to seawater, Curr. Opin. Electrochem.,
37 (2023) 101202, doi: 10.1016/j.coelec.2022.101202.
- R. De Luca, Lorentz force on sodium and chlorine ions in a
salt water solution flow under a transverse magnetic field,
Eur. J. Phys., 30 (2009) 459–466.
- Y.-H. Li, Y.-J. Chen, The effect of magnetic field on the dynamics
of gas bubbles in water electrolysis, Sci. Rep., 11 (2021) 9346,
doi: 10.1038/s41598-021-87947-9.
- F. Zaviska, P. Drogui, G. Pablo, Statistical optimization of
active chlorine production from a synthetic saline effluent by
electrolysis, Desalination, 296 (2012) 16–23.
- D.C. Montgomery, Design and Analysis of Experiments, John
Wiley & Sons, Hoboken, New Jersey, 2017.
- G.E. Box, An Accidental Statistician: The Life and Memories of
George EP Box, John Wiley & Sons, Hoboken, New Jersey, 2013.
- R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response
Surface Methodology: Process and Product Optimization
Using Designed Experiments, John Wiley & Sons, Hoboken,
New Jersey, 2016.
- C. Zhu, X. Liu, Optimization of extraction process of crude
polysaccharides from Pomegranate peel by response surface
methodology, Carbohydr. Polym., 92 (2013) 1197–1202.
- J.D. Key, J.D.V. Key, G. Okolongo, M. Siguba, Development
of a Small-scale Electro-chlorination System for Rural
Water Supplies, Water Research Commission, WRC Report
No. 1442/1/09, University of the Western Cape, 2010.
- E. Lacasa, E. Tsolaki, Z. Sbokou, M.A. Rodrigo, D. Mantzavinos,
E. Diamadopoulos, Electrochemical disinfection of simulated
ballast water on conductive diamond electrodes, Chem. Eng. J.,
223 (2013) 516–523.
- J. Saha, S.K. Gupta, A novel electro-chlorinator using low cost
graphite electrode for drinking water disinfection, Ionics,
23 (2017) 1903–1913.
- M.H. Isa, S.R.M. Kutty, H.A.M. Yusoff, M.J. Bashir, I.H. Farooqi,
Electrochemical Production of Free Available Chlorine,
International Conference on Emerging Technologies in
Environmental Science and Engineering, October 26–28,
Aligarh Muslim University, Aligarh, India, 2009.
- S. Luo, K. Elouarzaki, Z.J. Xu, Electrochemistry in magnetic
fields, Angew. Chem. Int. Ed., 61 (2022) e202203564,
doi: 10.1002/anie.202203564.
- N. Burton, R. Padilla, A. Rose, H. Habibullah, Increasing the
efficiency of hydrogen production from solar powered water
electrolysis, Renewable Sustainable Energy Rev., 135 (2021)
110255, doi: 10.1016/j.rser.2020.110255.
- K. Kołodziejczyk, E. Miękoś, M. Zieliński, M. Jaksender,
D. Szczukocki, K. Czarny, B. Krawczyk, Influence of constant
magnetic field on electrodeposition of metals, alloys, conductive
polymers, and organic reactions, J. Solid State Electrochem.,
22 (2018) 1629–1647.
- O. Al-Habahbeh, M. Al-Saqqa, M. Safi, T.A. Khater, Review of
magnetohydrodynamic pump applications, Alexandria Eng. J.,
55 (2016) 1347–1358.
- A. Angulo, P. van der Linde, H. Gardeniers, M. Modestino,
D.F. Rivas, Influence of bubbles on the energy conversion
efficiency of electrochemical reactors, Joule, 4 (2020) 555–579.
- K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis
for hydrogen production and applications, Prog. Energy
Combust. Sci., 36 (2010) 307–326.
- M. Zhou, Y. Chen, G. Fang, S. Liang, Electrolyte/electrode
interfacial electrochemical behaviors and optimization
strategies in aqueous zinc-ion batteries, Energy Storage Mater.,
45 (2022) 618–646.
- L.M. Monzon, J.M.D. Coey, Magnetic fields in electrochemistry:
The Lorentz force. A mini-review, Electrochem. Commun.,
42 (2014) 38–41.