References

  1. M. Al-Ejji, D. Ponnamma, K. Zadeh, M. Zubair, A. Yasir, M. Hassan, N. Abdelhadi, K. Song, A.H. Hawari, Advanced membrane technology to remove boron from water and wastewater: a comprehensive study, ACS Appl. Polym. Mater., 5 (2023) 7675–7697.
  2. M. Naderi, S. Nasseri, A.H. Mahvi, A. Mesdaghinia, K. Naddafi, Mechanical trajectory control of water mineral impurities in the electrochemical-magnetic reactor, Desal. Water Treat., 238 (2021) 67–81.
  3. M. Naderi, S. Nasseri, Optimization of free chlorine, electric and current efficiency in an electrochemical reactor for water disinfection purposes by RSM, J. Environ. Health Sci. Eng., 18 (2020) 1343–1350.
  4. S. Gholami, M. Naderi, M. Yousefi, M.M. Arjmand, The electrochemical removal of bacteria from drinking water, Desal. Water Treat., 160 (2019) 110–115.
  5. W.J. Cosgrove, D.P. Loucks, Water management: current and future challenges and research directions, 50th Anniversary of Water Resources Research, Water Resour. Res., 51 (2015) 4823–4839.
  6. M. Moghaddam-Arjmand, M. Naderi, S. Gholami, Investigation of the survival of bacteria under the influence of supporting electrolytes KCl, CuI and NaBr in the electrochemical method, J. Res. Environ. Health, 4 (2018) 104–111.
  7. M.A. Alkhadra, X. Su, M.E. Suss, H. Tian, E.N. Guyes, A.N. Shocron, K.M. Conforti, J. Pedro de Souza, N. Kim, M. Tedesco, K. Khoiruddin, I. Gede Wenten, J.G. Santiago, T. Alan Hatton, M.Z. Bazant, Electrochemical methods for water purification, ion separations, and energy conversion, Chem. Rev., 122 (2022) 13547–13635.
  8. M. Alimohammadi, M. Naderi, Effectiveness of ozone gas on airborne virus inactivation in enclosed spaces: a review study, Ozone Sci. Eng., 43 (2021) 21–31.
  9. X. Zhao, H. Yang, Y. Wang, Z. Sha, Review on the electrochemical extraction of lithium from seawater/brine, J. Electroanal. Chem., 850 (2019) 113389, doi: 10.1016/j.jelechem.2019.113389.
  10. R. Domga, G.B. Noumi, J.B. Tchatchueng, Study of some electrolysis parameters for chlorine and hydrogen production using a new membrane electrolyzer, Int. J. Chem. Eng. Anal. Sci., 2 (2017) 1–8.
  11. M. Naderi, G. Ebrahimzadeh, M. Alimohammadi, V. Past, Effect of ozone on the inactivation of indoor airborne viruses with the COVID-19 virus approach: a systematic review, Tehran Univ. Med. J. TUMS Publ., 80 (2022) 82–90.
  12. S. Wacławek, H.V. Lutze, K. Grübel, V.V. Padil, M. Černík, D.D. Dionysiou, Chemistry of persulfates in water and wastewater treatment: a review, Chem. Eng. J., 330 (2017) 44–62.
  13. I. Garcia-Herrero, M. Margallo, R. Onandía, R. Aldaco, A. Irabien, Life cycle assessment model for the
    chlor-alkali process: a comprehensive review of resources and available technologies, Sustainable Prod. Consumption, 12 (2017) 44–58.
  14. J.G. Ibanez, J.L. Vazquez-Olavarrieta, L. Hernandez-Rivera, M.A. Garcia-Sanchez, E. Garcia-Pintor, A novel combined electrochemical-magnetic method for water treatment, Water Sci. Technol., 65 (2012) 2079–2083.
  15. M. Miranzadeh, M. Naderi, H. Akbari, A. Mahvi, V. Past, Adsorption of arsenic from aqueous solutions by iron filings and the effect of magnetic field, Int. Arch. Health Sci., 3 (2016) 37–42.
  16. M.B. Miranzadeh, M. Naderi, V. Past, The interaction effect of magnetism on arsenic and iron ions in water, Desal. Water Treat., 213 (2021) 343–347.
  17. A. Fitch, P. Balderas-Hernandez, J.G. Ibanez, Electrochemical technologies combined with physical, biological, and chemical processes for the treatment of pollutants and wastes: a review, J. Environ. Chem. Eng., 10 (2022) 107810, doi: 10.1016/j.jece.2022.107810.
  18. D. Fontana, F. Forte, M. Pietrantonio, S. Pucciarmati, C. Marcoaldi, Magnesium recovery from seawater desalination brines: a technical review, Environ. Dev. Sustainability, (2022) 1–22.
  19. M. Naderi, V. Past, M.B. Miranzadeh, A.H. Mahvi, Survey of the magnetic field effect on arsenic removal from drinking water with and without iron filings, J. Environ. Stud., 43 (2017) 45–57.
  20. Y. Liu, Y. Wang, S. Zhao, Journey of electrochemical chlorine production: from brine to seawater, Curr. Opin. Electrochem., 37 (2023) 101202, doi: 10.1016/j.coelec.2022.101202.
  21. R. De Luca, Lorentz force on sodium and chlorine ions in a salt water solution flow under a transverse magnetic field, Eur. J. Phys., 30 (2009) 459–466.
  22. Y.-H. Li, Y.-J. Chen, The effect of magnetic field on the dynamics of gas bubbles in water electrolysis, Sci. Rep., 11 (2021) 9346, doi: 10.1038/s41598-021-87947-9.
  23. F. Zaviska, P. Drogui, G. Pablo, Statistical optimization of active chlorine production from a synthetic saline effluent by electrolysis, Desalination, 296 (2012) 16–23.
  24. D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, Hoboken, New Jersey, 2017.
  25. G.E. Box, An Accidental Statistician: The Life and Memories of George EP Box, John Wiley & Sons, Hoboken, New Jersey, 2013.
  26. R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons, Hoboken, New Jersey, 2016.
  27. C. Zhu, X. Liu, Optimization of extraction process of crude polysaccharides from Pomegranate peel by response surface methodology, Carbohydr. Polym., 92 (2013) 1197–1202.
  28. J.D. Key, J.D.V. Key, G. Okolongo, M. Siguba, Development of a Small-scale Electro-chlorination System for Rural Water Supplies, Water Research Commission, WRC Report No. 1442/1/09, University of the Western Cape, 2010.
  29. E. Lacasa, E. Tsolaki, Z. Sbokou, M.A. Rodrigo, D. Mantzavinos, E. Diamadopoulos, Electrochemical disinfection of simulated ballast water on conductive diamond electrodes, Chem. Eng. J., 223 (2013) 516–523.
  30. J. Saha, S.K. Gupta, A novel electro-chlorinator using low cost graphite electrode for drinking water disinfection, Ionics, 23 (2017) 1903–1913.
  31. M.H. Isa, S.R.M. Kutty, H.A.M. Yusoff, M.J. Bashir, I.H. Farooqi, Electrochemical Production of Free Available Chlorine, International Conference on Emerging Technologies in Environmental Science and Engineering, October 26–28, Aligarh Muslim University, Aligarh, India, 2009.
  32. S. Luo, K. Elouarzaki, Z.J. Xu, Electrochemistry in magnetic fields, Angew. Chem. Int. Ed., 61 (2022) e202203564, doi: 10.1002/anie.202203564.
  33. N. Burton, R. Padilla, A. Rose, H. Habibullah, Increasing the efficiency of hydrogen production from solar powered water electrolysis, Renewable Sustainable Energy Rev., 135 (2021) 110255, doi: 10.1016/j.rser.2020.110255.
  34. K. Kołodziejczyk, E. Miękoś, M. Zieliński, M. Jaksender, D. Szczukocki, K. Czarny, B. Krawczyk, Influence of constant magnetic field on electrodeposition of metals, alloys, conductive polymers, and organic reactions, J. Solid State Electrochem., 22 (2018) 1629–1647.
  35. O. Al-Habahbeh, M. Al-Saqqa, M. Safi, T.A. Khater, Review of magnetohydrodynamic pump applications, Alexandria Eng. J., 55 (2016) 1347–1358.
  36. A. Angulo, P. van der Linde, H. Gardeniers, M. Modestino, D.F. Rivas, Influence of bubbles on the energy conversion efficiency of electrochemical reactors, Joule, 4 (2020) 555–579.
  37. K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Prog. Energy Combust. Sci., 36 (2010) 307–326.
  38. M. Zhou, Y. Chen, G. Fang, S. Liang, Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries, Energy Storage Mater., 45 (2022) 618–646.
  39. L.M. Monzon, J.M.D. Coey, Magnetic fields in electrochemistry: The Lorentz force. A mini-review, Electrochem. Commun., 42 (2014) 38–41.