References

  1. N. Itankar, Y. Patil, Assessing physicochemical technologies for removing hexavalent chromium from contaminated waters—an overview and future research directions, Water Air Soil Pollut., 233 (2022) 355, doi: 10.1007/s11270-022-05745-z.
  2. M.A. Hamdan, E.T. Sublaban, J.J. Al-Asfar, M.A. Banisaid, Wastewater treatment using activated carbon produced from oil shale, J. Ecol. Eng., 24 (2023) 131–139.
  3. I. Loulidi, M. Jabri, A. Amar, A. Kali, A. Alrashdi, C. Hadey, M. Ouchabi, P.S. Abdullah, H. Lgaz, Y. Cho, F. Boukhlifi, Comparative study on adsorption of crystal violet and chromium(VI) by activated carbon derived from spent coffee grounds, Appl. Sci., 13 (2023) 985, doi: 10.3390/app13020985.
  4. J. Sharma, M. Sharma, S. Nigam, M. Joshi, Environmentalfriendly algal-mediated magnetic activated carbon for adsorptive removal of contaminants from water, Chem. Phys. Impact, 6 (2023) 100169, doi: 10.1016/j.chphi.2023.100169.
  5. L. Qiu, Y. Wang, R. Sui, C. Zhu, Y. Weiwei, Y. Yu, J. Li, Preparation of a novel metal-free polypyrrole-red phosphorus adsorbent for efficient removal of Cr(VI) from aqueous solution, Environ. Res., 224 (2023) 115458, doi: 10.1016/j.envres.2023.115458.
  6. H. Zuo, Y. Xia, H. Liu, Z. Liu, Y. Huang, Preparation of activated carbon with high nitrogen content from agro-industrial waste for efficient treatment of chromium(VI) in water, Ind. Crops Prod., 194 (2023) 116403, doi: 10.1016/j.indcrop.2023.116403.
  7. N. Shabelskaya, M. Egorova, A. Radjabov, M. Burachevskaya, I. Lobzenko, I.T. Minkina, S. Sushkova, Formation of biochar nanocomposite materials based on CoFe2O4 for purification of aqueous solutions from chromium compounds(VI), Water, 15 (2023) 93, doi: 10.3390/w15010093.
  8. N. Redwan, D. Tsegaye, B. Abebe, Synthesis of iron-magnetite nanocomposites for hexavalent chromium sorption, Res. Chem., 5 (2023) 100797, doi: 10.1016/j.rechem.2023.100797.
  9. P. Semalti, J. Saroha, J.S. Tawale, S.N. Sharma, Visible-light driven noble metal (Au, Ag) permeated multicomponent Cu2ZnSnS4 nanocrystals: a potential low-cost photocatalyst for textile effluents and heavy metal removal, Environ. Res., 217 (2023) 114875, doi: 10.1016/j.envres.2022.114875.
  10. F. Liu, S. Wang, B. Hu, Electrostatic self-assembly of nanoscale FeS onto MXenes with enhanced reductive immobilization capability for U(VI) and Cr(VI), Chem. Eng. J., 456 (2023) 141100, doi: 10.1016/j.cej.2022.141100.
  11. A. Bukhari, I. Ijaz, H. Zain, U. Mehmood, M. Mudassir Iqbal, E. Gilani, A. Nazir, Introduction of CdO nanoparticles into graphene and graphene oxide nanosheets for increasing adsorption capacity of Cr from wastewater collected from petroleum refinery, Arabian J. Chem., 16 (2023) 104445, doi: 10.1016/j.arabjc.2022.104445.
  12. M. Arif, Extraction of iron(III) ions by core-shell microgel for in situ formation of iron nanoparticles to reduce harmful pollutants from water, J. Environ. Chem. Eng., 11 (2023) 109270, doi: 10.1016/j.jece.2023.109270.
  13. F. Liu, Y. Lou, F. Xia, B. Hu, B. Immobilizing nZVI particles on MBenes to enhance the removal of U(VI) and Cr(VI) by adsorption-reduction synergistic effect, Chem. Eng. J., 454 (2023) 140318, doi: 10.1016/j.cej.2022.140318.
  14. Z. Sheerazi, S.A., Khan, S.A. Chaudhry, T.A. Khan, Non-linear modelling of adsorption isotherm and kinetics of chromium(VI) and celestine blue attenuation using a novel poly(curcumincitric acid)/MnFe2O4 nanocomposite, Model. Earth Syst. Environ., 9 (2023) 881–899.
  15. X. Liu, Y. Zhang, Y. Liu, T. Zhang, Magnetic red mud/chitosan based bionanocomposites for adsorption of Cr(VI) from aqueous solutions: synthesis, characterization and adsorption kinetics, Polym. Bull., 80 (2023) 2099–2118.
  16. T.S. Ngo, C.T. Tracey, A.G. Navrotskaya, A.V. Bukhtiyarov, P.V. Krivoshapkin, E.F. Krivoshapkina, Reusable carbon dot/chitin nanocrystal hybrid sorbent for the selective detection and removal of Cr(VI) and Co(II) ions from wastewater, Carbohydr. Polym., 304 (2023) 120471, doi: 10.1016/j.carbpol.2022.120471.
  17. A. Kalsoom, R. Batool, N. Jamil, Bacterial journey of microand nano-adsorption mechanisms for chromate elimination: a prospective study, Res. J. Chem. Environ., 26 (2022) 131–142.
  18. U.F.C. Sayago, V. Ballesteros Ballesteros, Development of a treatment for water contaminated with Cr(VI) using cellulose xanthogenate from E. crassipes on a pilot scale, Sci. Rep., 13 (2023) 1970, doi: 10.1038/s41598-023-28292-x.
  19. S.S. Varnamkhasti, M.R. Samani, D. Toghraie, D. Removal of chromium(VI) from aqueous environments using composites of polyaniline-cherry leaves, J. Environ. Manage., 332 (2023) 117359, doi: 10.1016/j.jenvman.2023.117359.
  20. X. Zhang, K. Ma, H. Peng, Y. Gong, Y. Huang, Imidazolium functionalized polysulfone/DTPA-chitosan composite beads for simultaneous removal of Cr(VI) and Cu(II) from aqueous solutions, Sep. Purif. Technol., 310 (2023) 123145, doi: 10.1016/j.seppur.2023.123145.
  21. M.R. Shahab, H.M. Yaseen, Q. Manzoor, A. Saleem, A. Sajid, Q.M. Malik, S. Ahmed, Adsorption of methyl orange and chromium(VI) using Momordica charantia L. leaves: a dual functional material for environmental remediation, J. Iran. Chem. Soc., 20 (2023) 577–590.
  22. H. Uthayakumar, P. Radhakrishnan, K. Shanmugam, O.S. Kushwaha, Growth of MWCNTs from Azadirachta indica oil for optimization of chromium(VI) removal efficiency using machine learning approach, Environ. Sci. Pollut. Res., 29 (2022) 34841–34860.
  23. J.F. Amaku, S.A. Ogundare, K.G. Akpomie, C.M. Ngwu, J. Conradie, Enhanced chromium(VI) removal by Anacardium occidentale stem bark extract-coated multi-walled carbon nanotubes, Int. J. Environ. Sci. Technol., 19 (2022) 4421–4434.
  24. I. Gözeten, M. Tunç, Palladium nanoparticles supported on multi-walled carbon nanotube (MWCNT) for the catalytic hexavalent chromium reduction, Mater. Chem. Phys., 278 (2022) 125628, doi: 10.1016/j.matchemphys.2021.125628.
  25. J.F. Amaku, S.A. Ogundare, K.G. Akpomie, J. Conradie, Pentaclethra macrophylla stem bark extract anchored on functionalized MWCNT-spent molecular sieve nanocomposite for the biosorption of hexavalent chromium, Int. J. Phytorem., 24 (2022) 301–310.
  26. E. Dziwinski, J. Szymanowski, Composition of CYANEX 923, CYANEX 925, CYANEX 921 and TOPO, Solvent Extr. Ion Exch., 16 (1998) 1515–1525.
  27. F.J. Alguacil, F.A. Lopez, The extraction of mineral acids by the phosphine oxide Cyanex 923, Hydrometallurgy, 42 (1996) 245–255.
  28. J. Lu, Z. Wei, D. Li, G. Ma, Z. Jiang, Recovery of Ce(IV) and Th(IV) from rare earths(III) with Cyanex 923, Hydrometallurgy, 50 (1998) 77–87.
  29. W. Liao, G. Yu, D. Li, Solvent extraction of cerium(IV) and fluorine(I) from sulphuric acid leaching of bastnasite by Cyanex 923, Solvent Extr. Ion Exch., 19 (2001) 243–259.
  30. F.J. Alguacil, M. Alonso, F. Lopez, A. Lopez-Delgado, Uphill permeation of Cr(VI) using Hostarex A327 as ionophore by membrane-solvent extraction processing, Chemosphere, 72 (2008) 684–689.
  31. A. Agrawal, C. Pal, K.K. Sahu, Extractive removal of chromium(VI) from industrial waste solution, J. Hazard. Mater., 159 (2008) 458–464.
  32. A. Ahmad, A. Khatoon, S.-H. Mohd-Setapar, R. Kumar, M. Rafatullah, Chemically oxidized pineapple fruit peel for the biosorption of heavy metals from aqueous solutions, Desal. Water Treat., 57 (2016) 6432–6442.
  33. S. Zhou, W. Li, W. Liu, J. Zhai, Removal of metal ions from cyanide gold extraction wastewater by alkaline ion-exchange fibers, Hydrometallurgy, 215 (2023) 105992, doi: 10.1016/j.hydromet.2022.105992.
  34. A. Yar, Ş. Parlayici, Carbon nanotubes/polyacrylonitrile composite nanofiber mats for highly efficient dye adsorption, Colloids Surf., A, 651 (2022) 129703, doi: 10.1016/j.colsurfa.2022.129703.
  35. F.J. Alguacil, J.I. Robla, Transport of chromium(VI) across a supported liquid membrane containing Cyanex 921 or Cyanex 923 dissolved in Solvesso 100 as carrier phase: estimation of diffusional parameters, Membranes, 13 (2023) 177, doi: 10.3390/membranes13020177.
  36. F.J. Alguacil, M. Alonso, Chromium(VI) removal through facilitated transport using CYANEX 923 as carrier and reducing stripping with hydrazine sulfate, Environ. Sci. Technol., 37 (2003) 1043–1047.