References
- N. Itankar, Y. Patil, Assessing physicochemical technologies
for removing hexavalent chromium from contaminated
waters—an overview and future research directions, Water Air
Soil Pollut., 233 (2022) 355, doi: 10.1007/s11270-022-05745-z.
- M.A. Hamdan, E.T. Sublaban, J.J. Al-Asfar, M.A. Banisaid,
Wastewater treatment using activated carbon produced from
oil shale, J. Ecol. Eng., 24 (2023) 131–139.
- I. Loulidi, M. Jabri, A. Amar, A. Kali, A. Alrashdi, C. Hadey,
M. Ouchabi, P.S. Abdullah, H. Lgaz, Y. Cho, F. Boukhlifi,
Comparative study on adsorption of crystal violet and
chromium(VI) by activated carbon derived from spent coffee
grounds, Appl. Sci., 13 (2023) 985, doi: 10.3390/app13020985.
- J. Sharma, M. Sharma, S. Nigam, M. Joshi, Environmentalfriendly
algal-mediated magnetic activated carbon for
adsorptive removal of contaminants from water, Chem. Phys.
Impact, 6 (2023) 100169, doi: 10.1016/j.chphi.2023.100169.
- L. Qiu, Y. Wang, R. Sui, C. Zhu, Y. Weiwei, Y. Yu, J. Li, Preparation
of a novel metal-free polypyrrole-red phosphorus adsorbent
for efficient removal of Cr(VI) from aqueous solution, Environ.
Res., 224 (2023) 115458, doi: 10.1016/j.envres.2023.115458.
- H. Zuo, Y. Xia, H. Liu, Z. Liu, Y. Huang, Preparation of activated
carbon with high nitrogen content from agro-industrial waste
for efficient treatment of chromium(VI) in water, Ind. Crops
Prod., 194 (2023) 116403, doi: 10.1016/j.indcrop.2023.116403.
- N. Shabelskaya, M. Egorova, A. Radjabov, M. Burachevskaya,
I. Lobzenko, I.T. Minkina, S. Sushkova, Formation of biochar
nanocomposite materials based on CoFe2O4 for purification
of aqueous solutions from chromium compounds(VI), Water,
15 (2023) 93, doi: 10.3390/w15010093.
- N. Redwan, D. Tsegaye, B. Abebe, Synthesis of iron-magnetite
nanocomposites for hexavalent chromium sorption, Res.
Chem., 5 (2023) 100797, doi: 10.1016/j.rechem.2023.100797.
- P. Semalti, J. Saroha, J.S. Tawale, S.N. Sharma, Visible-light
driven noble metal (Au, Ag) permeated multicomponent
Cu2ZnSnS4 nanocrystals: a potential low-cost photocatalyst
for textile effluents and heavy metal removal, Environ. Res.,
217 (2023) 114875, doi: 10.1016/j.envres.2022.114875.
- F. Liu, S. Wang, B. Hu, Electrostatic self-assembly of nanoscale
FeS onto MXenes with enhanced reductive immobilization
capability for U(VI) and Cr(VI), Chem. Eng. J., 456 (2023)
141100, doi: 10.1016/j.cej.2022.141100.
- A. Bukhari, I. Ijaz, H. Zain, U. Mehmood, M. Mudassir Iqbal,
E. Gilani, A. Nazir, Introduction of CdO nanoparticles into
graphene and graphene oxide nanosheets for increasing
adsorption capacity of Cr from wastewater collected from
petroleum refinery, Arabian J. Chem., 16 (2023) 104445,
doi: 10.1016/j.arabjc.2022.104445.
- M. Arif, Extraction of iron(III) ions by core-shell microgel
for in situ formation of iron nanoparticles to reduce harmful
pollutants from water, J. Environ. Chem. Eng., 11 (2023) 109270,
doi: 10.1016/j.jece.2023.109270.
- F. Liu, Y. Lou, F. Xia, B. Hu, B. Immobilizing nZVI particles
on MBenes to enhance the removal of U(VI) and Cr(VI)
by adsorption-reduction synergistic effect, Chem. Eng. J.,
454 (2023) 140318, doi: 10.1016/j.cej.2022.140318.
- Z. Sheerazi, S.A., Khan, S.A. Chaudhry, T.A. Khan, Non-linear
modelling of adsorption isotherm and kinetics of chromium(VI)
and celestine blue attenuation using a novel poly(curcumincitric
acid)/MnFe2O4 nanocomposite, Model. Earth Syst.
Environ., 9 (2023) 881–899.
- X. Liu, Y. Zhang, Y. Liu, T. Zhang, Magnetic red mud/chitosan
based bionanocomposites for adsorption of Cr(VI) from
aqueous solutions: synthesis, characterization and adsorption
kinetics, Polym. Bull., 80 (2023) 2099–2118.
- T.S. Ngo, C.T. Tracey, A.G. Navrotskaya, A.V. Bukhtiyarov,
P.V. Krivoshapkin, E.F. Krivoshapkina, Reusable carbon dot/chitin nanocrystal hybrid sorbent for the selective detection
and removal of Cr(VI) and Co(II) ions from wastewater,
Carbohydr. Polym., 304 (2023) 120471, doi: 10.1016/j.carbpol.2022.120471.
- A. Kalsoom, R. Batool, N. Jamil, Bacterial journey of microand
nano-adsorption mechanisms for chromate elimination: a
prospective study, Res. J. Chem. Environ., 26 (2022) 131–142.
- U.F.C. Sayago, V. Ballesteros Ballesteros, Development of a
treatment for water contaminated with Cr(VI) using cellulose
xanthogenate from E. crassipes on a pilot scale, Sci. Rep.,
13 (2023) 1970, doi: 10.1038/s41598-023-28292-x.
- S.S. Varnamkhasti, M.R. Samani, D. Toghraie, D. Removal of
chromium(VI) from aqueous environments using composites
of polyaniline-cherry leaves, J. Environ. Manage., 332 (2023)
117359, doi: 10.1016/j.jenvman.2023.117359.
- X. Zhang, K. Ma, H. Peng, Y. Gong, Y. Huang, Imidazolium
functionalized polysulfone/DTPA-chitosan composite beads
for simultaneous removal of Cr(VI) and Cu(II) from aqueous
solutions, Sep. Purif. Technol., 310 (2023) 123145, doi: 10.1016/j.seppur.2023.123145.
- M.R. Shahab, H.M. Yaseen, Q. Manzoor, A. Saleem, A. Sajid,
Q.M. Malik, S. Ahmed, Adsorption of methyl orange and
chromium(VI) using Momordica charantia L. leaves: a dual
functional material for environmental remediation, J. Iran.
Chem. Soc., 20 (2023) 577–590.
- H. Uthayakumar, P. Radhakrishnan, K. Shanmugam,
O.S. Kushwaha, Growth of MWCNTs from Azadirachta indica oil for optimization of chromium(VI) removal efficiency using
machine learning approach, Environ. Sci. Pollut. Res., 29 (2022)
34841–34860.
- J.F. Amaku, S.A. Ogundare, K.G. Akpomie, C.M. Ngwu,
J. Conradie, Enhanced chromium(VI) removal by Anacardium
occidentale stem bark extract-coated multi-walled carbon
nanotubes, Int. J. Environ. Sci. Technol., 19 (2022) 4421–4434.
- I. Gözeten, M. Tunç, Palladium nanoparticles supported on
multi-walled carbon nanotube (MWCNT) for the catalytic
hexavalent chromium reduction, Mater. Chem. Phys.,
278 (2022) 125628, doi: 10.1016/j.matchemphys.2021.125628.
- J.F. Amaku, S.A. Ogundare, K.G. Akpomie, J. Conradie,
Pentaclethra macrophylla stem bark extract anchored on functionalized
MWCNT-spent molecular sieve nanocomposite for
the biosorption of hexavalent chromium, Int. J. Phytorem.,
24 (2022) 301–310.
- E. Dziwinski, J. Szymanowski, Composition of CYANEX 923,
CYANEX 925, CYANEX 921 and TOPO, Solvent Extr. Ion Exch.,
16 (1998) 1515–1525.
- F.J. Alguacil, F.A. Lopez, The extraction of mineral acids by
the phosphine oxide Cyanex 923, Hydrometallurgy, 42 (1996)
245–255.
- J. Lu, Z. Wei, D. Li, G. Ma, Z. Jiang, Recovery of Ce(IV) and
Th(IV) from rare earths(III) with Cyanex 923, Hydrometallurgy,
50 (1998) 77–87.
- W. Liao, G. Yu, D. Li, Solvent extraction of cerium(IV) and
fluorine(I) from sulphuric acid leaching of bastnasite by
Cyanex 923, Solvent Extr. Ion Exch., 19 (2001) 243–259.
- F.J. Alguacil, M. Alonso, F. Lopez, A. Lopez-Delgado, Uphill
permeation of Cr(VI) using Hostarex A327 as ionophore by
membrane-solvent extraction processing, Chemosphere,
72 (2008) 684–689.
- A. Agrawal, C. Pal, K.K. Sahu, Extractive removal of
chromium(VI) from industrial waste solution, J. Hazard. Mater.,
159 (2008) 458–464.
- A. Ahmad, A. Khatoon, S.-H. Mohd-Setapar, R. Kumar,
M. Rafatullah, Chemically oxidized pineapple fruit peel for
the biosorption of heavy metals from aqueous solutions,
Desal. Water Treat., 57 (2016) 6432–6442.
- S. Zhou, W. Li, W. Liu, J. Zhai, Removal of metal ions from
cyanide gold extraction wastewater by alkaline ion-exchange
fibers, Hydrometallurgy, 215 (2023) 105992, doi: 10.1016/j.hydromet.2022.105992.
- A. Yar, Ş. Parlayici, Carbon nanotubes/polyacrylonitrile
composite nanofiber mats for highly efficient dye adsorption,
Colloids Surf., A, 651 (2022) 129703, doi: 10.1016/j.colsurfa.2022.129703.
- F.J. Alguacil, J.I. Robla, Transport of chromium(VI) across a
supported liquid membrane containing Cyanex 921 or Cyanex
923 dissolved in Solvesso 100 as carrier phase: estimation of
diffusional parameters, Membranes, 13 (2023) 177, doi: 10.3390/membranes13020177.
- F.J. Alguacil, M. Alonso, Chromium(VI) removal through
facilitated transport using CYANEX 923 as carrier and reducing
stripping with hydrazine sulfate, Environ. Sci. Technol.,
37 (2003) 1043–1047.