References

  1. A. Abd Halim, A.F.A. Bakar, M.A.K.M. Hanafiah, H. Zakaria, Boron removal from aqueous solutions using curcumin-aided electrocoagulation, Middle East J. Sci. Res., 11 (2012) 583–588.
  2. E. Babiker, M.A. Al-Ghouti, N. Zouari, G. McKay, Removal of boron from water using adsorbents derived from waste tire rubber, J. Environ. Chem. Eng., 7 (2019) 102948, doi: 10.1016/j.jece.2019.102948.
  3. S. Alkhudhayri, O. Eljamal, I. Maamoun, R. Eljamal, Thermodynamic Effect on Boron Removal from Aqueous Solutions by MgAl Layered Double Hydrotalcite, Proceedings of International Exchange and Innovation Conference on Engineering & Sciences (IEICES), Kyushu University Institutional Repository, 2019, pp. 19–21.
  4. S. Bhagyaraj, M.A. Al-Ghouti, M. Khan, P. Kasak, I. Krupa, Modified os sepiae of Sepiella inermis as a low cost, sustainable, bio-based adsorbent for the effective remediation of boron from aqueous solution, Environ. Sci. Pollut. Res., 29 (2022) 71014–71032.
  5. Z.C. Çelik, B. Can, M.M. Kocakerim, Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid, J. Hazard. Mater., 152 (2008) 415–422.
  6. A.Y. Goren, Y.K. Recepoglu, A. Karagunduz, A. Khataee, Y. Yoon, A review of boron removal from aqueous solution using carbon-based materials: an assessment of health risks, Chemosphere, 293 (2022) 133587, doi: 10.1016/j.chemosphere.2022.133587.
  7. E. Loizou, P.N. Kanari, G. Kyriacou, M. Aletrari, Boron determination in a multi element national water monitoring program: the absence of legal limits, J. fur Verbraucherschutz Leb., 5 (2010) 459–463.
  8. K. Rahmawati, N. Ghaffour, C. Aubry, G.L. Amy, Boron removal efficiency from Red Sea water using different SWRO/BWRO membranes, J. Membr. Sci., 423 (2012) 522–529.
  9. H. Polat, A. Vengosh, I. Pankratov, M. Polat, A new methodology for removal of boron from water by coal and fly ash, Desalination, 164 (2004) 173–188.
  10. X. Liu, C. Xu, P. Chen, K. Li, Q. Zhou, M. Ye, L. Zhang, Y. Lu, Advances in technologies for boron removal from water: a comprehensive review, Int. J. Environ. Res. Public Health, 19 (2022) 10671, doi: 10.3390/ijerph191710671.
  11. Z. Guan, J. Lv, P. Bai, X. Guo, Boron removal from aqueous solutions by adsorption–a review, Desalination, 383 (2016) 29–37.
  12. A. Halim, M. Hanafiah, M. Asmi, Z. Daud, Boron removal from aqueous solution using coagulation-flocculation with curcumin: a response surface methodology, J. Environ. Biol., 42 (2021) 750–755.
  13. H.C. Man, W.H. Chin, M.R. Zadeh, M.R.M. Yusof, Adsorption potential of unmodified rice husk for boron removal, BioResources, 7 (2012) 3810–3822.
  14. S. Singh, K.L. Wasewar, S.K. Kansal, Chapter 10 – Lowcost Adsorbents for Removal of Inorganic Impurities From Wastewater, P. Devi, P. Singh, S.K. Kansal, Eds., Inorganic Pollutants in Water, Elsevier, 2020, pp. 173–203.
  15. N. Öztürk, D. Kavak, Adsorption of boron from aqueous solutions using fly ash: batch and column studies, J. Hazard. Mater., 127 (2005) 81–88.
  16. H. Çelebi, İ. Şimşek, T. Bahadir, Ş. Tulun, Use of banana peel for the removal of boron from aqueous solutions in the batch adsorption system, Int. J. Sci. Environ. Technol., 20 (2023) 161–176.
  17. D. Kara, Removal of boron from aqueous solution by 2,3-dihydroxybenzaldehyde modified silica gel, Water Air Soil Pollut., 226 (2015) 1–9.
  18. S. Karahan, M. Yurdakoç, Y. Seki, K. Yurdakoç, Removal of boron from aqueous solution by clays and modified clays, J. Colloid Interface Sci., 293 (2006) 36–42.
  19. C.K.N.A.C. Ku, M.H.S. Ismail, Optimization of boron removal from aqueous solution via adsorption using composite beads of mangrove bark, alginate and zeolite, J. Chem. Eng. Ind. Biotechnol., 3 (2018) 1–12.
  20. J. Kluczka, W. Pudło, K. Krukiewicz, Boron adsorption removal by commercial and modified activated carbons, Chem. Eng. Res. Des., 147 (2019) 30–42.
  21. D. Kavak, Removal of boron from aqueous solutions by batch adsorption on calcined alunite using experimental design, J. Hazard. Mater., 163 (2009) 308–314.
  22. J. Wolska, M. Bryjak, Methods for boron removal from aqueous solutions—a review, Desalination, 310 (2013) 18–24.
  23. R.-j. Xu, X.-r. Xing, Q.-f. Zhou, G.-b. Jiang, F.-s. Wei, Investigations on boron levels in drinking water sources in China, Environ. Monit. Assess., 165 (2010) 15–25.
  24. M. Fildza, R. Rohmatullaili, A. Oktasari, Utilization of jengkol peel (Pithecellobium jiringa) as an adsorbent of iron metal, Walisongo J. Chem., 5 (2022) 130–135.
  25. Z. Chaidir, R. Zein, Q. Hasanah, H. Nurdin, H. Aziz, Absorption of Cr(III) and Cr(VI) metals in aqueous solution using mangosteen rind (Pithecellobium jiringa (jack) prain.), J. Chem. Pharm. Res., 7 (2015) 948–956.
  26. M.Y. Lubis, R. Siburian, L. Marpaung, P. Simanjuntak, M.P. Nasution, Methyl gallate from jiringa (Archidendron jiringa) and antioxidant activity, Asian J. Pharm. Clin. Res., 11 (2018) 346–350.
  27. S.N. Hurairah, N.S.M. Fahimi, A.A. Halim, M.M. Hanafiah, N. Nordin, N.A. Ab Jalil, Z. Daud, Archidendron jiringa seed peel extract in the removal of lead from synthetic residual water using coagulation-flocculation process, Sci. Asia, 49 (2023) 94–100.
  28. S.N. Hurairah, N.M. Lajis, A.A. Halim, Methylene blue removal from aqueous solution by adsorption on Archidendron jiringa seed shells, J. Geosci. Environ. Prot., 8 (2020) 128–143.
  29. A. Muslim, S.D. Said, Cu(II) ion adsorption using activated carbon prepared from Pithecellobium jiringa (Jengkol) shells with ultrasonic assistance: isotherm, kinetic and thermodynamic studies, J. Eng. Technol. Sci., 49 (2017) 472–490.
  30. M.R. Mohd Ramli, N.F. Shoparwe, M.A. Ahmad, Methylene blue removal using activated carbon adsorbent from jengkol peel: kinetic and mass transfer studies, Arabian J. Sci. Eng., 48 (2023) 8585–8594.
  31. T.K. Sen, S. Afroze, H. Ang, Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pinecone biomass of Pinus radiata, Water Air Soil Pollut., 218 (2011) 499–515.
  32. M. Jalali, F. Rajabi, F. Ranjbar, The removal of boron from aqueous solutions using natural and chemically modified sorbents, Desal. Water Treat., 57 (2016) 8278–8288.
  33. A. Melliti, J. Kheriji, H. Bessaies, B. Hamrouni, Boron removal from water by adsorption onto activated carbon prepared from palm bark: kinetic, isotherms, optimisation and breakthrough curves modeling, Water Sci. Technol., 81 (2020) 321–332.
  34. N.U.M. Nizam, M.M. Hanafiah, E. Mahmoudi, A.A. Halim, A.W. Mohammad, The removal of anionic and cationic dyes from an aqueous solution using biomass-based activated carbon, Sci. Rep., 11 (2021) 1–17.
  35. T. Taşçı, G. Küçükyıldız, S. Hepyalçın, Z. Ciğeroğlu, S. Şahin, Y. Vasseghian, Boron removal from aqueous solutions by chitosan/functionalized-SWCNT-COOH: development of optimization study using response surface methodology and simulated annealing, Chemosphere, 288 (2022) 132554, doi: 0.1016/j.chemosphere.2021.132554.
  36. J. Kluczka, J. Trojanowska, M. Zołotajkin, Utilization of fly ash zeolite for boron removal from aqueous solution, Desal. Water Treat., 54 (2015) 1839–1849.
  37. A.O. Dada, J. Ojediran, A.A. Okunola, F. Dada, A. Lawal, A. Olalekan, O. Dada, Modeling of biosorption of Pb(II) and Zn(II) ions onto PaMRH: Langmuir, Freundlich, Temkin, Dubinin–Radushkevich, Jovanovic, Flory–Huggins, Fowler–Guggenheim and Kiselev comparative isotherm studies, Int. J. Mech. Eng. Technol., 10 (2019) 1048–1058.
  38. H.K. Afolabi, M.M. Nasef, N.A.H.M. Nordin, T.M. Ting, N.Y. Harun, A.A.H. Saeed, Isotherms, kinetics, and thermodynamics of boron adsorption on fibrous polymeric chelator containing glycidol moiety optimized with response surface method, Arabian J. Chem., 14 (2021) 103453, doi: 10.1016/j.arabjc.2021.103453.
  39. S. Vasudevan, J. Lakshmi, Electrochemical removal of boron from water: adsorption and thermodynamic studies, Can. J. Chem. Eng., 90 (2012) 1017–1026.
  40. S. Lata, P. Singh, S. Samadder, Regeneration of adsorbents and recovery of heavy metals: a review, Int. J. Sci. Environ. Technol., 12 (2015) 1461–1478.
  41. H. Patel, Review on solvent desorption study from exhausted adsorbent, J. Saudi Chem. Soc., 25 (2021) 101302, doi: 10.1016/j.jscs.2021.101302.
  42. J. Bayuo, M.A. Abukari, K.B. Pelig-Ba, Desorption of chromium(VI) and lead(II) ions and regeneration of the exhausted adsorbent, Appl. Water Sci., 10 (2020) 171.
  43. R. Ivan, C. Popescu, V. Antohe, S. Antohe, C. Negrila, C. Logofatu, A.P. Del Pino, E. György, Iron oxide/hydroxide–nitrogen doped graphene-like visible-light active photocatalytic layers for antibiotics removal from wastewater, Sci. Rep., 13 (2023) 2740, doi: 10.1038/s41598-023-29927-9.
  44. A.C. Heredia, M.M. de la Fuente García-Soto, A. Narros Sierra, S.M. Mendoza, J. Gómez Avila, M.E. Crivello, Boron removal from aqueous solutions by synthetic MgAlFe mixed oxides, Ind. Eng. Chem. Res., 58 (2019) 9931–9939.
  45. L. Sun, J. Huang, H. Liu, Y. Zhang, X. Ye, H. Zhang, A. Wu, Z. Wu, Adsorption of boron
    by CA@KH-550@EPH@NMDG (CKEN) with biomass carbonaceous aerogels as substrate, J. Hazard. Mater., 358 (2018) 10–19.
  46. A. Babkin, I. Burakova, A. Burakov, D. Kurnosov, E. Galunin, A. Tkachev, I. Ali, Adsorption of Cu2+, Zn2+ and Pb2+ ions on a novel graphene-containing nanocomposite: an isotherm study, IOP Conf. Ser.: Mater. Sci. Eng., 693 (2019) 012045, doi: 10.1088/1757-899X/693/1/012045.
  47. A. Chowdhury, S. Kumari, A.A. Khan, M.R. Chandra, S. Hussain, Activated carbon loaded with Ni-Co-S nanoparticle for superior adsorption capacity of antibiotics and dye from wastewater: kinetics and isotherms, Colloids Surf., A, 611 (2021) 125868, doi: 10.1016/j.colsurfa.2020.125868.
  48. O.S. Bello, K.A. Adegoke, O.O. Akinyunni, Preparation and characterization of a novel adsorbent from Moringa oleifera leaf, Appl. Water Sci., 7 (2017) 1295–1305.
  49. E. Weidner, F. Ciesielczyk, Removal of hazardous oxyanions from the environment using metal-oxide-based materials, Materials, 12 (2019) 927, doi: 10.3390/ma12060927.
  50. S. Tariq, M. Saeed, U. Zahid, M. Munir, A. Intisar, M. Asad Riaz, A. Riaz, M. Waqas, H.M.W. Abid, Green and eco-friendly adsorption of dyes with organoclay: isothermal, kinetic and thermodynamic studies, Toxin Rev., 41 (2022) 1105–1114.
  51. S. Subramani, N. Thinakaran, Isotherm, kinetic and thermodynamic studies on the adsorption behaviour of textile dyes onto chitosan, Process Saf. Environ. Prot., 106 (2017) 1–10.
  52. H. Al-Zoubi, M. Zubair, M.S. Manzar, A.A. Manda, N.I. Blaisi, A. Qureshi, A. Matani, Comparative adsorption of anionic dyes (Eriochrome black t and Congo red) onto jojoba residues: isotherm, kinetics and thermodynamic studies, Arabian J. Sci. Eng., 45 (2020) 7275–7287.
  53. S. Bhagyaraj, M.A. Al-Ghouti, P. Kasak, I. Krupa, An updated review on boron removal from water through adsorption processes, Emergent Mater., 4 (2021) 1167–1186.
  54. T.T.H. Nguyen, Study of New Exchangers for Boron Removal From Water Containing High Concentration of Boron, Université De Toulouse, Ph.D. Dissertation, 2017.
  55. G.A. Wardani, L. Nuramalia, W.T. Wulandari, E. Nofiyanti, Utilization of jengkol peel (Pithecellobium jiringa (Jack) Prain) as lead(II) ions bio-sorbent with column method, Jurnal Kimia Sains dan Aplikasi, 23 (2020) 160–166.
  56. P. Remy, H. Muhr, E. Plasari, I. Ouerdiane, Removal of boron from wastewater by precipitation of a sparingly soluble salt, Environ. Prog., 24 (2005) 105–110.
  57. B.A. Fil, Isotherm, kinetic, and thermodynamic studies on the adsorption behavior of malachite green dye onto montmorillonite clay, Part. Sci. Technol., 34 (2016) 118–126.
  58. Y. Cengeloglu, A. Tor, G. Arslan, M. Ersoz, S. Gezgin, Removal of boron from aqueous solution by using neutralized red mud, J. Hazard. Mater., 142 (2007) 412–417.
  59. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Colloid Interface Sci., 209 (2014) 172–184.
  60. E.H. Ezechi, M.H. Isa, S.R. Bin Mohamed Kutty, Z. Ahmed, Electrochemical removal of boron from produced water and recovery, J. Environ. Chem. Eng., 3 (2015) 1962–1973.
  61. B.F. Senkal, N. Bicak, Polymer supported iminodipropylene glycol functions for removal of boron, React. Funct. Polym., 55 (2003) 27–33.
  62. S.-Y. Bang, J.-H. Kim, Isotherm, kinetic, and thermodynamic studies on the adsorption behavior of 10-deacetylpaclitaxel onto sylopute, Biotechnol. Bioprocess Eng., 22 (2017) 620–630.
  63. M. Erhayem, F. Al-Tohami, R. Mohamed, K. Ahmida, Isotherm, kinetic and thermodynamic studies for the sorption of mercury(II) onto activated carbon from Rosmarinus officinalis leaves, Am. J. Anal. Chem., 6 (2015) 1–10.
  64. N. Öztürk, T.E. Köse, Boron removal from aqueous solutions by ion-exchange resin: batch studies, Desalination, 227 (2008) 233–240.
  65. D. Balarak, J. Jaafari, G. Hassani, Y. Mahdavi, I. Tyagi, S. Agarwal, V.K. Gupta, The use of low-cost adsorbent (Canola residues) for the adsorption of methylene blue from aqueous solution: isotherm, kinetic and thermodynamic studies, Colloid Interface Sci. Commun., 7 (2015) 16–19.
  66. A. Bera, T. Kumar, K. Ojha, A. Mandal, Adsorption of surfactants on sand surface in enhanced oil recovery: isotherms, kinetics and thermodynamic studies, Appl. Surf. Sci., 284 (2013) 87–99.
  67. H.N. Bhatti, A. Jabeen, M. Iqbal, S. Noreen, Z. Naseem, Adsorptive behavior of rice bran-based composites for malachite green dye: isotherm, kinetic and thermodynamic studies, J. Mol. Liq., 237 (2017) 322–333.
  68. A. Darwish, M. Rashad, H.A. AL-Aoh, Methyl orange adsorption comparison on nanoparticles: isotherm, kinetics, and thermodynamic studies, Dyes Pigm., 160 (2019) 563–571.
  69. P. Maneechakr, S. Karnjanakom, Adsorption behaviour of Fe(II) and Cr(VI) on activated carbon: surface chemistry, isotherm, kinetic and thermodynamic studies, J. Chem. Thermodyn., 106 (2017) 104–112.
  70. S. Mustapha, D. Shuaib, M. Ndamitso, M. Etsuyankpa, A. Sumaila, U. Mohammed, M. Nasirudeen, Adsorption isotherm, kinetic and thermodynamic studies for the removal of Pb(II), Cd(II), Zn(II) and Cu(II) ions from aqueous solutions using Albizia lebbeck pods, Appl. Water Sci., 9 (2019) 1–11.
  71. D.R. Rout, H.M. Jena, Removal of phenol from aqueous solution using reduced graphene oxide as adsorbent: isotherm, kinetic, and thermodynamic studies, Environ. Sci. Pollut. Res., 29 (2022) 32105–32119.
  72. T.A. Saleh, Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica-multiwall carbon nanotubes, Environ. Sci. Pollut. Res., 22 (2015) 16721–16731.
  73. M.F. Onen, N.E. Aydin, O. Eksik, P. Demircivi, G.N. Saygili, Synthesis of graphene oxide for boron removal: equilibrium, kinetic and thermodynamic studies, Res. Square, (2022) 1–20.
  74. A. Olgun, N. Atar, Equilibrium, thermodynamic and kinetic studies for the adsorption of lead(II) and nickel(II) onto clay mixture containing boron impurity, J. Ind. Eng. Chem., 18 (2012) 1751–1757.
  75. P.B. Vilela, C.A. Matias, A. Dalalibera, V.A. Becegato, A.T. Paulino, Polyacrylic acid-based and chitosan-based hydrogels for adsorption of cadmium: equilibrium isotherm, kinetic and thermodynamic studies, J. Environ. Chem. Eng., 7 (2019) 103327, doi: 10.1016/j.jece.2019.103327.
  76. C. Cheung, J. Porter, G. McKay, Sorption kinetics for the removal of copper and zinc from effluents using bone char, Sep. Purif. Technol., 19 (2000) 55–64.
  77. L. Largitte, R. Pasquier, A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon, Chem. Eng. Res. Des., 109 (2016) 495–504.
  78. J. Wang, X. Guo, Adsorption kinetic models: physical meanings, applications, and solving methods, J. Hazard. Mater., 390 (2020) 122156, doi: 10.1016/j.jhazmat.2020.122156.
  79. U.A. Edet, A.O. Ifelebuegu, Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste, Processes, 8 (2020) 665, doi: 10.3390/pr8060665.
  80. Y.-S. Lim, J.-H. Kim, Isotherm, kinetic and thermodynamic studies on the adsorption of 13-dehydroxybaccatin III from Taxus chinensis onto sylopute, J. Chem. Thermodyn., 115 (2017) 261–268.
  81. A. Inyinbor, F. Adekola, G.A. Olatunji, Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp, Water Resour. Ind., 15 (2016) 14–27.
  82. M. Sulyman, J. Kucinska-Lipka, M. Sienkiewicz, A. Gierak, Development, characterization and evaluation of composite adsorbent for the adsorption of crystal violet from aqueous solution: isotherm, kinetics, and thermodynamic studies, Arabian J. Chem., 14 (2021) 103115, doi: 10.1016/j.arabjc.2021.103115.
  83. T. Ngulube, Removal of Cationic and Anionic Dyes From Aqueous Solution Using a Clay-Based Nanocomposite, University of Venda, Ph.D. Thesis, 2019.