References

  1. K.-F. Cao, Z. Chen, Y.-H. Wu, Y. Mao, Q. Shi, X.-W. Chen, Y. Bai, K.X. Li, H.-Y. Hu, The noteworthy chloride ions in reclaimed water: harmful effects, concentration levels and control strategies, Water Res., 215 (2022) 118271, doi: 10.1016/j.watres.2022.118271.
  2. J.H. Leng, Y. Frank Cheng, K.X. Liao, Y.J. Huang, F.L. Zhou, S. Zhao, X. Liu, Q. Zou, Synergistic effect of O2-Cl on localized corrosion failure of L245N pipeline in CO2-O2-Cl environment, Eng. Fail. Anal., 138 (2022) 106332, doi: 10.1016/j.engfailanal.2022.106332.
  3. D.Q. Sun, Z. Zhou, Q. Ming, J.M. Guo, X.F. Ye, Y. Yuan, M.N. Zhang, X.D. Zhao, L.-m. Jiang, Q. Xia, Improving settleability and dewaterability of Friedel’s salt for chloride removal from saline wastewater, Desalination, 509 (2021) 115070, doi: 10.1016/j.desal.2021.115070.
  4. E. Briz, M.V. Biezma, D.M. Bastidas, Stress corrosion cracking of new 2001 lean–duplex stainless-steel reinforcements in chloride contained concrete pore solution: an electrochemical study, Constr. Build. Mater., 192 (2018) 1–8.
  5. E.G. Stets, C.J. Lee, D.A. Lytle, M.R. Schock, Increasing chloride in rivers of the conterminous U.S. and linkages to potential corrosivity and lead action level exceedances in drinking water, Sci. Total Environ., 613–614 (2018) 1498–1509.
  6. C.Y. Yang, Pollution and prevention of chloride in surface water, Environ. Sustainable Dev., 1 (2004) 25–26.
  7. M.-H. Hong, S.-I. Pyun, Corrosive wear behaviour of 304-L stainless steel in 1 N H2SO4 solution part 2. Effect of chloride ion concentration, Wear, 147 (1991) 69–78.
  8. Q.-q. Wen, M.-c. Chen, Study on the nonlinear performance degradation of reinforced concrete beam under chloride ion corrosion, Eng. Fail. Anal., 124 (2021) 105310, doi: 10.1016/j.engfailanal.2021.105310.
  9. Z.W. Cui, G.R. Liu, C.H. Lu, H.J. Wang, Chloride ion erosion and durability life prediction of marine concrete beams under combined action of dry-wet cycle and flexural cracks, Bull. Chin. Ceram. Soc., 39 (2020) 344–351.
  10. X.-m. Zhang, Z.-y. Chen, H.-f. Luo, T. Zhou, Y.-l. Zhao, Z.-c. Ling, Corrosion resistances of metallic materials in environments containing chloride ions: a review, Trans. Nonferrous Met. Soc. China, 32 (2022) 377–410.
  11. Y.M. Li, Z.Z. Yang, K.H. Yang, J.J. Wei, Z.H. Li, C. Ma, X. Yang, T.T. Wang, G.M. Zeng, G.L. Yu, Z.G. Yu, C. Zhang, Removal of chloride from water and wastewater: removal mechanisms and recent trends, Sci. Total Environ., 821 (2022) 153174, doi: 10.1016/j.scitotenv.2022.153174.
  12. J.M. Guo, Z. Zhou, Q. Ming, Z.J. Huang, J. Zhu, S. Zhang, J. Xu, J.F. Xi, Q.Q. Zhao, X.D. Zhao, Recovering precipitates from dechlorination process of saline wastewater as poly aluminum chloride, Chem. Eng. J., 427 (2022) 131612, doi: 10.1016/j.cej.2021.131612.
  13. X.F. Ye, X.D. Zhao, Q. Ming, J. Zhu, J.M. Guo, D.Q. Sun, S. Zhang, J. Xu, Z. Zhou, Process optimization to enhance utilization efficiency of precipitants for chloride removal from flue gas desulfurization wastewater via Friedel’s salt precipitation, J. Environ. Manage., 299 (2021) 113682, doi: 10.1016/j.jenvman.2021.113682.
  14. D.Q. Sun, Z. Zhou, Q. Ming, J.M. Guo, X.F. Ye, Y. Yuan, M.N. Zhang, X.D. Zhao, L.M. Jiang, Q. Xia, Improving settleability and dewaterability of Friedel’s salt for chloride removal from saline wastewater, Desalination, 509 (2021) 115070, doi: 10.1016/j.desal.2021.115070.
  15. X. Wang, S.Y. Lu, Z.L. Chen, Q.J. Mao, Study on the removal of chloride ion from the washing solution of municipal solid waste incineration fly ash, Acta Sci. Circ., 37 (2017) 2218–2222.
  16. P. Szczepański, H.P. Guo, K. Dzieszkowski, Z. Rafiński, A. Wolan, K. Fatyeyeva, J. Kujawa, W. Kujawski, New reactive ionic liquids as carriers in polymer inclusion membranes for transport and separation of Cd(II), Cu(II), Pb(II), and Zn(II) ions from chloride aqueous solutions, J. Membr. Sci., 638 (2021) 119674, doi: 10.1016/j.memsci.2021.119674.
  17. H. Chen, L.X. Zhan, L.Y. Gu, Q.Y. Feng, N. Zhao, Y.X. Feng, H. Wu, L.J. Yang, Chloride release characteristics of desulfurization wastewater droplet during evaporation process using the single droplet drying method, Fuel, 30 (2021) 121551, doi: 10.1016/j.fuel.2021.121551.
  18. R. Cherif, A. El Amine Hamami, A. Aït-Mokhtar, Global quantitative monitoring of the ion exchange balance in a chloride migration test on cementitious materials with mineral additions, Cem. Concr. Res., 138 (2020) 106240, doi: 10.1016/j.cemconres.2020.106240.
  19. L. Yang, L. Lv, S.J. Zhang, B.C. Pan, W.M. Zhang, Catalytic dechlorination of monochlorobenzene by Pd/Fe nanoparticles immobilized within a polymeric anion exchanger, Chem. Eng. J., 178 (2011) 161–167.
  20. W.Z. Liu, L. Lü, Y. Lu, X.W. Hu, B. Liang, Removal of chloride from simulated acidic wastewater in the zinc production, Chin. J. Chem. Eng., 27 (2019) 1037–1043.
  21. R. Hamidi, D. Kahforoushan, E. Fatehifar, The simultaneous removal of calcium, magnesium and chloride ions from industrial waste-water using magnesium-aluminum oxide, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 48 (2013) 1225–1230.
  22. J. Dron, A. Dodi, Comparison of adsorption equilibrium models for the study of Cl, NO3 and SO42− removal from aqueous solutions by an anion exchange resin, J. Hazard. Mater., 190 (2011) 300–307.
  23. L. Lv, P. Sun, Z. Gu, H. Du, X. Pang, X. Tao, R. Xu, L. Xu, Journal of hazardous materials, removal of chloride ion from aqueous solution by ZnAl-NO3 layered double hydroxides as anion-exchanger, J. Hazard. Mater., 161 (2009) 1444–1449.
  24. A. Abdel-Wahab, B. Batchelor, Chloride removal from recycled cooling water using ultra-high lime with aluminum process, Water Environ. Res., 74 (2002) 256–263.
  25. A. Abdel-Wahab, B. Batchelor, Effects of pH, temperature, and water quality on chloride removal with ultra-high lime with aluminum process, Water Environ. Res., 78 (2006) 930–937.
  26. Y. Xin, Z. Zhou, Q. Ming, D.Q. Sun, J. Han, X.F. Ye, S.F. Dai, L.M. Jiang, X.D. Zhao, Y. An, A two-stage desalination process for zero liquid discharge of flue gas desulfurization wastewater by chloride precipitation, J. Hazard. Mater., 397 (2020) 122744, doi: 10.1016/j.jhazmat.2020.122744.
  27. J.J. Zhang, H. Zhao, H.B. Cao, H.P. Li, Z.B. Li, Removal of Cd2+ from water by Friedel’s salt
    (FS: 3CaO·A12O3·CaCl2·10H2O): sorption characteristics and mechanisms, J. Environ. Sci., 25 (2013) 1719–1725.
  28. Y.C. Dai, G.R. Qian, Y.L. Cao, Y. Chi, Y.F. Xu, J.Z. Zhou, Q. Liu, Z.P. Xu, S.Z. Qiao, Effective removal and fixation of Cr(VI) from aqueous solution with Friedel’s salt, J. Hazard. Mater., 170 (2019) 1086–1092.
  29. D. Li, X.Y. Guo, Q.H. Tian, Z.P. Xu, R.Z. Xu, L. Zhang, Synthesis and application of Friedel’s salt in arsenic removal from caustic solution, Chem. Eng. J., 323 (2017) 304–311.
  30. Q.D. Yao, Analysis of the factors influencing the removal of chloride ion in leather wastewater by Friedel’s salt method, Leather Chem., 38 (2021) 7–11.
  31. Z.L. Cheng, B.J. Yang, H.W. Tang, L.P. Hou, Experimental research on chloride removal from water by ultra-high lime with aluminum process, Ind. Water Treat., 35 (2015) 38–41.
  32. D.N. Zhang, Y.F. Jia, J.Y. Ma, Z.B. Li, Removal of arsenic from water by Friedel’s salt
    (FS: 3CaO·Al2O3·CaCl2·10H2O), J. Hazard. Mater., 195 (2011) 398–404.
  33. C. Abate, B.E. Scheetz, Aqueous phase equilibria in the system CaO-Al2O3-CaCl2-H2O: the significance and stability of Friedel’s salt, J. Am. Ceram. Soc., 78 (1995) 939–944.
  34. V.R.L. Constantino, T.J. Pinnavaia, Basic properties of Mg2+1–xAl3+x layered double hydroxides intercalated by carbonate, hydroxide, chloride, and sulfate anions, Inorg. Chem., 26 (1995) 883–892.
  35. S.Y. Sui, M. Wu, Z.Q. Yang, F.J. Wang, Z.Y. Liu, J.Y. Jiang, An investigation on the formation of Friedel’s salt in tricalcium silicate combined with metakaolin and limestone systems, Constr. Build. Mater., 284 (2021) 122855, doi: 10.1016/j.conbuildmat.2021.122855.
  36. L.J. Zhang, P. Lv, Y. He, S.W. Li, J.H. Peng, L.B. Zhang, K.H. Chen, S.H. Yin, Ultrasound-assisted cleaning chloride from wastewater using Friedel’s salt precipitation, J. Hazard. Mater., 403 (2021) 123545, doi: 10.1016/j.jhazmat.2020.123545.
  37. Y. Shao, M. Zhou, W.X. Wang, H.B. Hou, Identification of chromate binding mechanisms in Friedel’s salt, Constr. Build Mater., 48 (2013) 942–947.
  38. U.A. Birnin-Yauri, F.P. Glasser, Friedel’s salt, Ca2Al(OH)6(Cl,OH)·2H2O: its solid solutions and their role in chloride binding, Cem. Concr. Res., 28 (1998) 1713–1723.
  39. M.Y.A. Mollah, M. Kesmez, D.L. Cocke, An X-ray diffraction (XRD) and Fourier-transform infrared spectroscopic (FTIR) investigation of the long-term effect on the solidification/ stabilization (S/S) of arsenic (V) in Portland cement, Sci. Total Environ., 325 (2004) 255–262.
  40. A.K. Suryavanshia, J.D. Scantleburyb, S.B. Lyonb, Mechanism of Friedel’s salt formation in cements rich in tri-calcium aluminate, Cem. Concr. Res., 26 (1996) 717–727.