References

  1. B. Feier, A. Florea, C. Cristea, R. Sandulescu, Electrochemical detection and removal of pharmaceuticals in waste waters, Curr. Opin. Electrochem., 11 (2018) 1–11.
  2. M. Esmaelian, F.N. Chianeh, A. Asghari, Degradation of ciprofloxacin using electrochemical oxidation by Ti/nano SnO2-MWCNT electrode: optimization and modelling through central composite design, J. Ind. Eng. Chem., 78 (2019) 97–105.
  3. S. Farzin, F.N. Chianeh, M.V. Anaraki, F. Mahmoudian, Introducing a framework for modeling of drug electrochemical removal from wastewater based on data mining algorithms, scatter interpolation method, and multi criteria decision analysis (DID), J. Cleaner Prod., 266 (2020) 122075, doi: 10.1016/j.jclepro.2020.122075.
  4. J. Fan, G. Zhao, H. Zhao, S. Chai, T. Cao, Fabrication and application of mesoporous Sb-doped SnO2 electrode with high specific surface in electrochemical degradation of ketoprofen, Electrochim. Acta, 94 (2013) 21–29.
  5. X. Fu, Y. Han, H. Xu, Z. Su, L. Liu, Electrochemical study of a novel high-efficiency PbO2 anode based on a cerium-graphene oxide co-doping strategy: electrodeposition mechanism, parameter optimization, and degradation pathways, J. Hazard. Mater., 422 (2021) 126890, doi: 10.1016/j.jhazmat.2021.126890.
  6. W. Han, C. Zhong, L. Liang, S. Yunlong, Y. Guan, L. Wang, X. Sun, J. Li, Electrochemical degradation of triazole fungicides in aqueous solution using TiO2-NTs/SnO2-Sb/PbO2 anode: experimental and DFT studies, Electrochim. Acta, 130 (2014) 179–186.
  7. F. Mahmoudian, F.N. Chianeh, S.M. Sajjadi, Simultaneous electrochemical decolorization of Acid Red 33, Reactive Orange 7, Acid Yellow 3 and Malachite Green dyes by electrophoretically prepared Ti/nano ZnO-MWCNTs anode: experimental design, J. Electroanal. Chem., 884 (2021) 115066, doi: 10.1016/j.jelechem.2021.115066.
  8. H. Saerkkae, A. Bhatnagar, M. Sillanpää, Recent developments of electro-oxidation in water treatment — a review, J. Electroanal. Chem., 754 (2015) 46–56.
  9. F. Mirzaei Abdoulyousefi, F. Nabizadeh Chianeh, A. Asghari, Application of a novel Ti/nano SnO2-α-Fe2O3 anode for the electro-catalytic degradation of dye pollutant: optimization of operational parameters by central composite design, J. Electrochem. Soc., 167 (2020) 103507, doi: 10.1149/1945-7111/ab9d63.
  10. C. Shao, F. Zhang, X. Li, J. Zhang, Y. Jiang, H. Cheng, K. Zhu, Influence of Cr doping on the oxygen evolution potential of SnO2/Ti and Sb-SnO2/Ti electrodes, J. Electroanal. Chem., 832 (2019) 436–443.
  11. P. Lorimer, T.J. Mason, M. Plattes, S.S. Phull, D.J. Walton, Degradation of dye effluent, Pure Appl. Chem., 73 (2001) 1957–1968.
  12. A.R. Rahmani, D. Nematollahi, A. Poormohammadi, G. Azarian, F. Zamani, Electrodisinfection of bacteria-laden in surface water using modified Ti electrode by antimony-and nickel-doped tin oxide composite, Chemosphere, 263 (2021) 127761, doi: 10.1016/j.chemosphere.2020.127761.
  13. Y. Chen, L. Hong, H. Xue, W. Han, L. Wang, X. Sun, J. Li, Preparation and characterization of TiO2-NTs/SnO2-Sb electrodes by electrodeposition, J. Electroanal. Chem., 648 (2010) 119–127.
  14. N. Daneshvar, A. Khataee, N. Djafarzadeh, The use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing C. I. Basic Yellow 28 by electrocoagulation process, J. Hazard. Mater., 137 (2006) 1788–1795.
  15. R. Raj, A.C. Tripathi, S. Das, M.M. Ghangrekar, Removal of caffeine from wastewater using electrochemical advanced oxidation process: a mini review, Case Stud. Chem. Environ. Eng., 4 (2021) 100129, doi: 10.1016/j.cscee.2021.100129.
  16. S. Cho, C. Kim, I. Hwang, Electrochemical degradation of ibuprofen using an activated-carbon-based continuous-flow three-dimensional electrode reactor (3DER), Chemosphere, 259 (2020) 127382, doi: 10.1016/j.chemosphere.2020.127382.
  17. R.S. Kumar, K. Govindan, S. Ramakrishnan, A.R. Kim, J.-S. Kim, D.J. Yoo, Fe3O4 nanorods decorated on polypyrrole/reduced graphene oxide for electrochemical detection of dopamine and photocatalytic degradation of acetaminophen, Appl. Surf. Sci., 556 (2021) 149765, doi: 10.1016/j.apsusc.2021.149765.
  18. D.Ž. Mijin, M.L.A. Ivić, A. Onjia, B.N. Grgur, Decolorization of textile dye CI Basic Yellow 28 with electrochemically generated active chlorine, Chem. Eng. J., 204 (2012) 151–157.
  19. B.K. Körbahti, K.M. Turan, Electrochemical decolorization of Reactive Violet 5 textile dye using Pt/Ir electrodes, J. Turk. Chem. Soc. Sect. A Chem., 3 (2016) 229–246.
  20. R.A. Torres, W.R. Torres, P.A. Peringer, C.O. Pulgarin, Electrochemical degradation of p-substituted phenols of industrial interest on Pt electrodes. Attempt of a structure-reactivity relationship assessment, Chemosphere, 50 (2003) 97–104.
  21. C. Flox, J.A. Garrido, R.M. Rodríguez, F. Centellas, P.L. Cabot, C. Arias, E. Brillas, Degradation of
    4,6-dinitro-o-cresol from water by anodic oxidation with a boron-doped diamond electrode, Electrochim. Acta, 50 (2005) 3685–3692.
  22. Q. Dai, H. Shen, Y. Xia, F. Chen, J. Wang, J. Chen, The application of a novel Ti/SnO2–Sb2O3/PTFE-La-Ce-β-PbO2 anode on the degradation of cationic gold yellow X-GL in sono-electrochemical oxidation system, Sep. Purif. Technol., 104 (2013) 9–16.
  23. A. Baddouh, G.G. Bessegato, M. Rguiti, B.E. Ibrahimi, L. Bazzi, M. Hilali, M.V.B. Zanoni, Electrochemical decolorization of Rhodamine B dye: influence of anode material, chloride concentration and current density, J. Environ. Chem. Eng., 6 (2018) 2041–2047.
  24. A. Baddouh, E. Amaterz, B.E. Ibrahimi, M.M. Rguitti, M. Errami, V. Tkach, L. Bazzi, Enhanced electrochemical degradation of a basic dye with Ti/Ru0.3Ti0.7O2 anode using flow-cell, Desal. Water Treat., 139 (2019) 352–359.
  25. E. Amaterz, A. Tara, A. Bouddouch, A. Taoufyq, B. Bakiz, F.S. Lazar, M. Gilliot, A. Benlhachemi, L. Bazzi, O. Jbara, Hierarchical flower-like SrHPO4 electrodes for the photoelectrochemical degradation of Rhodamine B, J. Appl. Electrochem., 50 (2020) 569–581.
  26. P. Kariyajjanavar, N. Jogttappa, Y.A. Nayaka, Studies on degradation of reactive textile dyes solution by electrochemical method, J. Hazard. Mater., 190 (2011) 952–961.
  27. F.L. Souza, J.M. Aquino, K. Irikura, D.W. Miwa, M.A. Rodrigo, A.J. Motheo, Electrochemical degradation of the dimethyl phthalate ester on a fluoride-doped Ti/β-PbO2 anode, Chemosphere, 109 (2014) 187–194.
  28. H.A. Hamad, D. Bassyouni, E.-S.Z. El-Ashtoukhy, N. Amin, M.M. Abd El-Latif, Electrocatalytic degradation and minimization of specific energy consumption of synthetic azo dye from wastewater by anodic oxidation process with an emphasis on enhancing economic efficiency and reaction mechanism, Ecotoxicol. Environ. Saf., 148 (2018) 501–512.
  29. C. Cheng, G. Kelsall, Models of hypochlorite production in electrochemical reactors with plate and porous anodes, J. Appl. Electrochem., 37 (2007) 1203–1217.
  30. J.M. Aquino, K.N. Parra, D.W. Miwa, A.J. Motheo, Removal of phthalic acid from aqueous solution using a photo-assisted electrochemical method, J. Environ. Chem. Eng., 3 (2015) 429–435.
  31. Y. Lauzurique, S. Miralles-Cuevas, M. Godoy, P. Sepúlveda, S. Bollo, A. Cabrera-Reina, C. Huiliñir, S. Malato, I. Oller, R. Salazar-González, Elimination of sulfamethoxazole by anodic oxidation using mixed metal oxide anodes, J. Water Process Eng., 54 (2023) 103922, doi: 10.1016/j.jwpe.2023.103922.