References

  1. Y. Pi, L. Xiyi, X. Qibin, W. Junliang, L. Yingwei, X. Jing, L. Zhong, Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal–organic frameworks (MOFs), Chem. Eng. J., 337 (2018) 351–371.
  2. P. Kumar, B. Vasudha, K. Ki-Hyun, E.K. Eilhann, Metal–organic frameworks (MOFs) as futuristic options for wastewater treatment, J. Ind. Eng. Chem., 62 (2018) 130–145.
  3. V. Sharma, K. Virender, F. Mingbao, Water depollution using metal–organic frameworks-catalyzed advanced oxidation processes: a review, J. Hazard. Mater., 372 (2019) 3–16.
  4. S. Hashemi, A. Nezamzadeh-Ejhieh, A novel chromium selective electrode based on surfactant-modified Iranian clinoptilolite nanoparticles, Desal. Water Treat., 57 (2016) 3304–3314.
  5. Z. Abbasi, C. Levente, Z. Xiwang, P.L. Bradley, W. Huanting, Metal–Organic Frameworks (MOFs) and
    MOF-Derived Porous Carbon Materials for Sustainable Adsorptive Wastewater Treatment, G. Szekely, A. Livingston, Eds., Sustainable Nanoscale Engineering: From Materials Design to Chemical Processing, Elsevier, Amsterdam, The Netherlands, 2020, pp.163–194.
  6. K. Paździor, L. Bilińska, S. Ledakowicz, A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment, Chem. Eng. J., 376 (2019) 120597, doi: 10.1016/j.cej.2018.12.057.
  7. S. Mousavi-Mortazavi, A. Nezamzadeh-Ejhieh, Supported iron oxide onto an Iranian clinoptilolite as a heterogeneous catalyst for photodegradation of furfural in a wastewater sample, Desal. Water Treat., 57 (2016) 10802–10814.
  8. Z.A. Mirian, A. Nezamzadeh-Ejhieh, Removal of phenol content of an industrial wastewater via a heterogeneous photodegradation process using supported FeO onto nanoparticles of Iranian clinoptilolite, Desal. Water Treat., 57 (2016) 16483–16494.
  9. A. Lajevardi, M.T. Yaraki, A. Masjedi, A. Nouri, M.H. Sadr, Green synthesis of MOF@Ag nanocomposites for catalytic reduction of methylene blue, J. Mol. Liq., 276 (2019) 371–378.
  10. N.T. Tran, K. Daekeun, S.Y. Kye, K. Jinsoo, Synthesis of Cudoped MOF-235 for the degradation of methylene blue under visible light irradiation, Bull. Korean Chem. Soc., 40 (2019) 112–117.
  11. Y. Ren, L. Ting, Z. Weiming, W. Shu, S. Mengqi, S. Chao, Z. Wenbin, MIL-PVDF blend ultrafiltration membranes with ultrahigh MOF loading for simultaneous adsorption and catalytic oxidation of methylene blue, J. Hazard. Mater., 365 (2019) 312–321.
  12. Y. Tan, S. Zhongqiao, M. Hao, H. Yide, W. Junbiao, X. Junli, X. Yan, Z. Xia, A new MOFs/polymer hybrid membrane: MIL-68 (Al)/PVDF, fabrication and application in high-efficient removal of p-nitrophenol and methylene blue, Sep. Purif. Technol., 215 (2019) 217–226.
  13. J. Panda, K.S. Jitendra, K.P. Prasanna, N.S. Satya, S. Mahalaxmi, K.P. Subrat, S. Rojalin, Adsorptive behavior of zeolitic imidazolate framework-8 towards anionic dye in aqueous media: combined experimental and molecular docking study, J. Mol. Liq., 278 (2019) 536–545.
  14. N. Tu, T. Thi, V.T. Tran, D.D. Pham, T.T.C Vo, X. M Tran, Q.K. Dinh, Adsorptive removal of Congo red from aqueous solution using zeolitic imidazolate framework–67, J. Environ. Chem. Eng., 6 (2018) 2269–2280.
  15. W.L. Wang, C. Yi-Zhong, H. Hong-Ying, C. Jian, W. Jing, X. Gang, W. Qian-Yuan, Advanced treatment of bio-treated dyeing and finishing wastewater using ozone-biological activated carbon: a study on the synergistic effects, Chem. Eng. J., 359 (2019) 168–175.
  16. Z. Kiayi, T. Bagherilotfabad, A. Heidarinasab, F. Shahcheraghi, Microbial degradation of azo dye carmoisine in aqueous medium using Saccharomyces cerevisiae ATCC 9763, J. Hazard. Mater., 373 (2019) 608–619.
  17. R. Pešoutová, P. Hlavínek, J. Matysíková, Use of advanced oxidation processes for textile wastewater treatment – a review, Food Environ. Saf. J., 10 (2017) 59–65.
  18. M. Gągol, P. Andrzej, B. Grzegorz, Wastewater treatment by means of advanced oxidation processes based on cavitation – a review, Chem. Eng. J., 338 (2018) 599–627.
  19. M. Asgharian, M. Mehdipourghazi, B. Khoshandam, N. Keramati, Photocatalytic degradation of methylene blue with synthesized rGO/ZnO/Cu, Chem. Phys. Lett., 719 (2019) 1–7.
  20. A.G. Akerdi, S. Hajir Bahrami, Application of heterogeneous nano-semiconductors for photocatalytic advanced oxidation of organic compounds: a review, J. Environ. Chem. Eng., 7 (2019) 103283, doi: 10.1016/j.jece.2019.103283.
  21. D.V. Miklos, R. Christian, J. Martin, G.L. Karl, E.D. Jörg, H. Uwe, Evaluation of advanced oxidation processes for water and wastewater treatment – a critical review, Water Res., 139 (2018) 118–131.
  22. D. Jiang, X. Piao, W. Han, Z. Guangming, H. Danlian, C. Ming, L. Cui, Z. Chen, J. Wan, X. Wenjing, Strategies to improve metal organic frameworks photocatalyst’s performance for degradation of organic pollutants, Coord. Chem. Rev., 376 (2018) 449–466.
  23. J. Qiu, Z. Xingguang, F. Yi, Z. Xiongfei, W. Huanting, Y. Jianfeng, Modified metal-organic frameworks as photocatalysts, Appl. Catal., B, 231 (2018) 317–342.
  24. M. Hossein Zadeh, N. Keramati, M. Mehdipour Ghazi, Ultrasonic-assisted synthesis of new photocatalyst based on Fe–benzenetricarboxylic (Fe–BTC) metal organic framework: characterization and photocatalytic properties, J. Iran. Chem. Soc., 16 (2019) 401–409.
  25. X. Deng, H. Mingming, L. Zhaohui, Engineering metal–organic frameworks (MOFs) for efficient photocatalysis, Curr. Org. Chem., 22 (2018) 1825–1835.
  26. A. Kirchon, F. Liang, F.D. Hannah, A.J. Elizabeth, H.-C. Zhou, From fundamentals to applications: a toolbox for robust and multifunctional MOF materials, Chem. Soc. Rev., 47 (2018) 8611–8638.
  27. H. Derikvandi, A. Nezamzadeh-Ejhieh, Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: effect of coupling, supporting, particles size and calcination temperature, J. Hazard. Mater., 321 (2017) 629–638.
  28. J. Esmaili-Hafshejani, A. Nezamzadeh-Ejhieh, Increased photocatalytic activity of Zn(II)/Cu(II) oxides and sulfides by coupling and supporting them onto clinoptilolite nanoparticles in the degradation of benzophenone aqueous solution, J. Hazard. Mater., 316 (2016) 194–203.
  29. B. Seoane, M.Z. Juan, T. Carlos, C. Joaquin, Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20), Cryst. Eng. Commun., 14 (2012) 3103–3107.
  30. K.S. Park, N. Zheng, P.C. Adrien, Y.C. Jae, H. Rudan, J.U-R. Fernando, K.C. Hee, O. Michael, M.Y. Omar, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. U.S.A., 103 (2006) 10186–10191.
  31. B. Reif, F. Florian, H. Maximilian, H. Martin, S. Wilhelm, Synthesis of ZIF-11 – effect of water residues in the solvent onto the phase transition from ZIF-11 to ZIF-7-III, Microporous Mesoporous Mater., 243 (2017) 65–68.
  32. B. Reif, P. Carolin, F. Florian, H. Martin, K. Malte, S. Wilhelm, Synthesis of ZIF-11 – influence of the synthesis parameters on the phase purity, Microporous Mesoporous Mater., 275 (2019) 102–110.
  33. S.S. Han, C. Seung-Hoon, A.G. William, Zeolitic imidazolate frameworks as H2 adsorbents: Ab initio based grand canonical monte carlo simulation, J. Phys. Chem. C, 114 (2010) 12039–12047.
  34. W. Wongsinlatam, T. Remsungnen, Molecular dynamics simulations of CO2 molecules in ZIF-11 using refined AMBER force field, J. Chem., 2013 (2013) 415027, doi: 10.1155/2013/415027.
  35. R. Chen, Y. Jianfeng, G. Qinfen, S. Stef, B. Christian, G. Haoxue, Z. Dunru, M. William, O.M. Yaghi, W. Huanting, A two-dimensional zeolitic imidazolate framework with a cushionshaped cavity for CO2 adsorption, Chem. Commun., 49 (2013) 9500–9502.
  36. A. Phan, J.D. Christian, J.U.R. Fernando, B.K. Carolyn, O. Michael, M.O. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks, Acc. Chem. Res., 43 (2010) 58–67.
  37. H. Hu, L. Shengquan, C. Chunyan, W. Jianping, Z. Ying, L. Lihua, Y. Shouzhuo, Two novel zeolitic imidazolate frameworks (ZIFs) as sorbents for solid-phase extraction (SPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples, Analyst, 139 (2014) 5818–5826.
  38. A.W. Thornton, D. David, S.L. Ming, P.L. Bradley, J.H. Anita, R.H. Matthew, Feasibility of zeolitic imidazolate framework membranes for clean energy applications, Energy Environ. Sci., 5 (2012) 7637–7646.
  39. M.S. Boroglu, B.Y. Ahenk, Gas separation performance of 6FDA-DAM-ZIF-11 mixed-matrix membranes
    for H2/CH4 and CO2/CH4 separation, Sep. Purif. Technol., 173 (2017) 269–279.
  40. A. Ehsani, M. Pakizeh, Synthesis, characterization and gas permeation study of ZIF-11/Pebax® 2533 mixed matrix membranes, J. Taiwan Inst. Chem. Eng., 66 (2016) 414–423.
  41. L. Li, Y. Jianfeng, W. Xiaojing, C. Yi‐Bing, W. Huanting, ZIF-11/ polybenzimidazole composite membrane with improved hydrogen separation performance, J. Appl. Polym. Sci., 131 (2014), doi: 10.1002/app.41056.
  42. E.M. Forman, B. Amineh, F. Lei, J.Z. Kirk, Z. Erkang, Z. Fengyi, P.L. Ryan, V. Sergey, Ethylene diffusion in crystals of zeolitic imidazole framework-11 embedded in polymers to form mixed-matrix membranes, Microporous Mesoporous Mater., 274 (2019) 163–170.
  43. Jing, P. Huan, W. Chong-Chen, Z. Yi-Wen, W. Peng, L. Ran, Photocatalytic degradation of methylene blue in ZIF-8, RSC Adv., 4 (2014) 54454–54462.
  44. K.-Y.A. Lin, C. Hsuan-Ang, Zeolitic imidazole framework-67 (ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water, J. Taiwan Inst. Chem. Eng., 53 (2015) 40–45.
  45. N.M. Mahmoodi, J. Abdi, Nanoporous metal-organic framework (MOF-199): synthesis, characterization and photocatalytic degradation of Basic Blue 41, Microchem. J., 144 (2019) 436–442.
  46. N M. Mahmoodi, J. Abdi, M. Oveisi, M. Alinia Asli, M. Vossoughi, Metal-organic framework (MIL-100 (Fe)): synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling, Mater. Res. Bull., 100 (2018) 357–366.
  47. R. Liang, J. Fenfen, S. Lijuan, Q. Na, W. Ling, MIL-53 (Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes, J. Hazard. Mater., 287 (2015) 364–372.
  48. S. Ghattavi, A. Nezamzadeh-Ejhieh, GC-MASS detection of methyl orange degradation intermediates by AgBr/g-C3N4: experimental design, bandgap study, and characterization of the catalyst, Int. J. Hydrogen Energy, 45 (2020) 24636–24656.
  49. M. He, Y. Jianfeng, L. Qi, Z. Zhaoxiang, W. Huanting, Toluene-assisted synthesis of RHO-type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12, J. Chem. Soc. Dalton Trans., 42 (2013) 16608–16613.
  50. K.K. Gangu, M. Suresh, S. Babu Mukkamala, S.B. Jonnalagadda, A review on contemporary metal–organic framework materials, Inorg. Chim. Acta, 446 (2016) 61–74.
  51. S. Senobari, A. Nezamzadeh-Ejhieh, A comprehensive study on the photocatalytic activity of coupled copper oxide-cadmium sulfide nanoparticles, Spectrochim. Acta, Part A, 196 (2018) 334–343.
  52. S. Mosleh, M.R. Rahimi, M. Ghaedi, K. Dashtian, Sonophotocatalytic degradation of trypan blue and vesuvine dyes in the presence of blue light active photocatalyst of Ag3PO4/Bi2S3-HKUST-1-MOF: central composite optimization and synergistic effect study, Ultrason. Sonochem., 32 (2016) 387–397.
  53. A. Noruozi, A. Nezamzadeh-Ejhieh, Preparation, characterization, and investigation of the catalytic property of α-Fe2O3-ZnO nanoparticles in the photodegradation and mineralization of methylene blue, Chem. Phys. Lett., 752 (2020) 137587, doi: 10.1016/j.cplett.2020.137587.
  54. R. Sharma, D.P. Bisen, S Usha, B.G. Sharma, X-ray diffraction: a powerful method of characterizing nanomaterials, Recent Res. Sci. Technol., 4 (2012) 77–79.
  55. J. Cheng, M. Dan, L. Shaoxiang, Q. Wenjuan, W. Dong, Preparation of zeolitic imidazolate frameworks and their application as flame retardant and smoke suppression agent for rigid polyurethane foams, Polymers, 12 (2020) 347, doi: 10.3390/polym12020347.
  56. S. Jafari, A. Nezamzadeh-Ejhieh, Supporting of coupled silver halides onto clinoptilolite nanoparticles as simple method for increasing their photocatalytic activity in heterogeneous photodegradation of mixture of 4-methoxy aniline and 4-chloro-3-nitro aniline, J. Colloid Interface Sci., 490 (2017) 478–487.
  57. Y.H. Si, L. Ya-yun, X. Yu, S. Shao-ke, X. Xin-bo, Z. Xie-rong, Z. Ji, Fabrication of novel ZIF-8@BiVO4 composite with enhanced photocatalytic performance, Crystals, 8 (2018) 432, doi: 10.3390/cryst8110432.
  58. D. Hou, G. Ronn, W. Xiaoping, W. Penghua, L. Teik-Thye, Preparation of carbon-sensitized and Fe–Er co-doped TiO2 with response surface methodology for Bisphenol A photocatalytic degradation under visible-light irradiation, Appl. Catal., B, 126 (2012) 121–133.
  59. T. Olmez-Hanci, I. Arslan-Alaton, B. Gulcan, Multivariate analysis of anionic, cationic and nonionic textile surfactant degradation with the H2O2/UV-C process by using the capabilities of response surface methodology, J. Hazard. Mater., 185 (2011) 193–203.
  60. F. Jing, L. Ruowen, X. Jinhua, C. Rui, Z. Shiying, L. Yanhua, W. Ling, MIL-68 (Fe) as an efficient visible-light-driven photocatalyst for the treatment of a simulated wastewater contain Cr(VI) and malachite green, Appl. Catal., B, 206 (2017) 9–15.
  61. A.F. Rawle, Characterization of Nanomaterials, Metrology and Standardization of Nanotechnology: Protocols and Industrial Innovations, Wiley, USA, 2017, pp. 129–150.
  62. K. Min, H.H. Tae, K. Joohoon, J. Jiyoung, J. Cheolsoo, M.H. Soon, M.K. Koo, A facile route to fabricate stable reduced graphene oxide dispersions in various media and their transparent conductive thin films, J. Colloid Interface Sci., 383 (2012) 36–42.
  63. G. Boczkaj, A. Fernandes, Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review, Chem. Eng. J., 320 (2017) 608–633.
  64. S. Zhang, G. Huihui, X. Xuetao, C. Ruya, Y. Hongcen, X. Xijin, L. Jiaxing, MOF-derived CoN/NC@SiO2 yolk-shell nanoreactor with dual active sites for highly efficient catalytic advanced oxidation processes, Chem. Eng. J., 381 (2020) 122670, doi: 10.1016/j.cej.2019.122670.
  65. F. Saadati, N. Keramati, M. Mehdipour Ghazi, Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: a review, Crit. Rev. Env. Sci. Technol., 46 (2016) 757–782.
  66. G. Fan, Z. Xiaomei, L. Jing, P. Huiping, L. Hui, B. Minchen, H. Liang, Z. Jinjin, Rapid synthesis of Ag/AgCl@ZIF-8 as a highly efficient photocatalyst for degradation of acetaminophen under visible light, Chem. Eng. J., 351 (2018) 782–790.
  67. Y. Boyjoo, A. Ming, P. Vishnu, Photocatalytic treatment of shower water using a pilot scale reactor, Int. J. Photoenergy, 2012 (2012) 578916, doi: 10.1155/2012/578916.
  68. T.E. Agustina, H.M. Ang, V.K. Pareek, Treatment of winery wastewater using a photocatalytic/photolytic reactor, Chem. Eng. J., 135 (2008) 151–156.
  69. E.E. Sann, P. Yong, G. Zhongfeng, Z. Shenshan, X. Fan, Highly hydrophobic ZIF-8 particles and application for oil-water separation, Sep. Purif. Technol., 206 (2018) 186–191.
  70. S. Jalali, M.R. Rahimi, K. Dashtian, M. Ghaedi, S. Mosleh, One step integration of plasmonic Ag2CrO4/Ag/AgCl into HKUST-1-MOF as novel visible-light driven photocatalyst for highly efficient degradation of mixture dyes pollutants: its photocatalytic mechanism and modeling, Polyhedron, 166 (2019) 217–225.
  71. S. Payra, C. Swapn, B. Yamini, C. Chanchal, G. Balaram, R. Sounak, Probing the photo-and electro-catalytic degradation mechanism of methylene blue dye over ZIF-derived ZnO, J. Hazard. Mater., 373 (2019) 377–388.
  72. C.H. Wu, C. Jia-Ming, Kinetics of photocatalytic decomposition of methylene blue, Ind. Eng. Chem. Res., 45 (2006) 6450–6457.
  73. N. Serpone, M.A. Yurii, K.R. Vladimir, V.E. Alexei, H. Satoshi, Light-driven advanced oxidation processes in the disposal of emerging pharmaceutical contaminants in aqueous media: a brief review, Curr. Opin. Green Sustainable Chem., 6 (2017) 18–33.
  74. A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Comparison of photocatalytic efficiency of supported CuO onto micro and nano particles of zeolite X in photodecolorization of methylene blue and methyl orange aqueous mixture, Appl. Catal., A, 477 (2014) 83–92.