References
- Y. Pi, L. Xiyi, X. Qibin, W. Junliang, L. Yingwei, X. Jing, L. Zhong,
Adsorptive and photocatalytic removal of persistent organic
pollutants (POPs) in water by metal–organic frameworks
(MOFs), Chem. Eng. J., 337 (2018) 351–371.
- P. Kumar, B. Vasudha, K. Ki-Hyun, E.K. Eilhann, Metal–organic
frameworks (MOFs) as futuristic options for wastewater
treatment, J. Ind. Eng. Chem., 62 (2018) 130–145.
- V. Sharma, K. Virender, F. Mingbao, Water depollution using
metal–organic frameworks-catalyzed advanced oxidation
processes: a review, J. Hazard. Mater., 372 (2019) 3–16.
- S. Hashemi, A. Nezamzadeh-Ejhieh, A novel chromium selective
electrode based on surfactant-modified Iranian clinoptilolite
nanoparticles, Desal. Water Treat., 57 (2016) 3304–3314.
- Z. Abbasi, C. Levente, Z. Xiwang, P.L. Bradley, W. Huanting,
Metal–Organic Frameworks (MOFs) and
MOF-Derived Porous
Carbon Materials for Sustainable Adsorptive Wastewater Treatment,
G. Szekely, A. Livingston, Eds., Sustainable Nanoscale
Engineering: From Materials Design to Chemical Processing,
Elsevier, Amsterdam, The Netherlands, 2020, pp.163–194.
- K. Paździor, L. Bilińska, S. Ledakowicz, A review of the existing
and emerging technologies in the combination of AOPs and
biological processes in industrial textile wastewater treatment,
Chem. Eng. J., 376 (2019) 120597, doi: 10.1016/j.cej.2018.12.057.
- S. Mousavi-Mortazavi, A. Nezamzadeh-Ejhieh, Supported iron
oxide onto an Iranian clinoptilolite as a heterogeneous catalyst
for photodegradation of furfural in a wastewater sample,
Desal. Water Treat., 57 (2016) 10802–10814.
- Z.A. Mirian, A. Nezamzadeh-Ejhieh, Removal of phenol
content of an industrial wastewater via a heterogeneous
photodegradation process using supported FeO onto
nanoparticles of Iranian clinoptilolite, Desal. Water Treat.,
57 (2016) 16483–16494.
- A. Lajevardi, M.T. Yaraki, A. Masjedi, A. Nouri, M.H. Sadr,
Green synthesis of MOF@Ag nanocomposites for catalytic
reduction of methylene blue, J. Mol. Liq., 276 (2019) 371–378.
- N.T. Tran, K. Daekeun, S.Y. Kye, K. Jinsoo, Synthesis of Cudoped
MOF-235 for the degradation of methylene blue under
visible light irradiation, Bull. Korean Chem. Soc., 40 (2019)
112–117.
- Y. Ren, L. Ting, Z. Weiming, W. Shu, S. Mengqi, S. Chao,
Z. Wenbin, MIL-PVDF blend ultrafiltration membranes
with ultrahigh MOF loading for simultaneous adsorption
and catalytic oxidation of methylene blue, J. Hazard. Mater.,
365 (2019) 312–321.
- Y. Tan, S. Zhongqiao, M. Hao, H. Yide, W. Junbiao, X. Junli,
X. Yan, Z. Xia, A new MOFs/polymer hybrid membrane: MIL-68 (Al)/PVDF, fabrication and application in high-efficient
removal of p-nitrophenol and methylene blue, Sep. Purif.
Technol., 215 (2019) 217–226.
- J. Panda, K.S. Jitendra, K.P. Prasanna, N.S. Satya, S. Mahalaxmi,
K.P. Subrat, S. Rojalin, Adsorptive behavior of zeolitic
imidazolate framework-8 towards anionic dye in aqueous
media: combined experimental and molecular docking study,
J. Mol. Liq., 278 (2019) 536–545.
- N. Tu, T. Thi, V.T. Tran, D.D. Pham, T.T.C Vo, X. M Tran,
Q.K. Dinh, Adsorptive removal of Congo red from aqueous
solution using zeolitic imidazolate framework–67, J. Environ.
Chem. Eng., 6 (2018) 2269–2280.
- W.L. Wang, C. Yi-Zhong, H. Hong-Ying, C. Jian, W. Jing, X. Gang,
W. Qian-Yuan, Advanced treatment of bio-treated dyeing and
finishing wastewater using ozone-biological activated carbon:
a study on the synergistic effects, Chem. Eng. J., 359 (2019)
168–175.
- Z. Kiayi, T. Bagherilotfabad, A. Heidarinasab, F. Shahcheraghi,
Microbial degradation of azo dye carmoisine in aqueous
medium using Saccharomyces cerevisiae ATCC 9763, J. Hazard.
Mater., 373 (2019) 608–619.
- R. Pešoutová, P. Hlavínek, J. Matysíková, Use of advanced
oxidation processes for textile wastewater treatment – a review,
Food Environ. Saf. J., 10 (2017) 59–65.
- M. Gągol, P. Andrzej, B. Grzegorz, Wastewater treatment by
means of advanced oxidation processes based on cavitation – a
review, Chem. Eng. J., 338 (2018) 599–627.
- M. Asgharian, M. Mehdipourghazi, B. Khoshandam,
N. Keramati, Photocatalytic degradation of methylene blue
with synthesized rGO/ZnO/Cu, Chem. Phys. Lett., 719 (2019)
1–7.
- A.G. Akerdi, S. Hajir Bahrami, Application of heterogeneous
nano-semiconductors for photocatalytic advanced oxidation
of organic compounds: a review, J. Environ. Chem. Eng.,
7 (2019) 103283, doi: 10.1016/j.jece.2019.103283.
- D.V. Miklos, R. Christian, J. Martin, G.L. Karl, E.D. Jörg, H. Uwe,
Evaluation of advanced oxidation processes for water and
wastewater treatment – a critical review, Water Res., 139 (2018)
118–131.
- D. Jiang, X. Piao, W. Han, Z. Guangming, H. Danlian, C. Ming,
L. Cui, Z. Chen, J. Wan, X. Wenjing, Strategies to improve
metal organic frameworks photocatalyst’s performance
for degradation of organic pollutants, Coord. Chem. Rev.,
376 (2018) 449–466.
- J. Qiu, Z. Xingguang, F. Yi, Z. Xiongfei, W. Huanting, Y. Jianfeng,
Modified metal-organic frameworks as photocatalysts,
Appl. Catal., B, 231 (2018) 317–342.
- M. Hossein Zadeh, N. Keramati, M. Mehdipour Ghazi,
Ultrasonic-assisted synthesis of new photocatalyst based on
Fe–benzenetricarboxylic (Fe–BTC) metal organic framework:
characterization and photocatalytic properties, J. Iran. Chem.
Soc., 16 (2019) 401–409.
- X. Deng, H. Mingming, L. Zhaohui, Engineering metal–organic
frameworks (MOFs) for efficient photocatalysis, Curr. Org.
Chem., 22 (2018) 1825–1835.
- A. Kirchon, F. Liang, F.D. Hannah, A.J. Elizabeth, H.-C. Zhou,
From fundamentals to applications: a toolbox for robust and
multifunctional MOF materials, Chem. Soc. Rev., 47 (2018)
8611–8638.
- H. Derikvandi, A. Nezamzadeh-Ejhieh, Increased photocatalytic
activity of NiO and ZnO in photodegradation of a model drug
aqueous solution: effect of coupling, supporting, particles size
and calcination temperature, J. Hazard. Mater., 321 (2017)
629–638.
- J. Esmaili-Hafshejani, A. Nezamzadeh-Ejhieh, Increased
photocatalytic activity of Zn(II)/Cu(II) oxides and sulfides
by coupling and supporting them onto clinoptilolite nanoparticles
in the degradation of benzophenone aqueous
solution, J. Hazard. Mater., 316 (2016) 194–203.
- B. Seoane, M.Z. Juan, T. Carlos, C. Joaquin, Sonocrystallization
of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and
ZIF-20), Cryst. Eng. Commun., 14 (2012) 3103–3107.
- K.S. Park, N. Zheng, P.C. Adrien, Y.C. Jae, H. Rudan,
J.U-R. Fernando, K.C. Hee, O. Michael, M.Y. Omar, Exceptional
chemical and thermal stability of zeolitic imidazolate
frameworks, Proc. Natl. Acad. Sci. U.S.A., 103 (2006) 10186–10191.
- B. Reif, F. Florian, H. Maximilian, H. Martin, S. Wilhelm,
Synthesis of ZIF-11 – effect of water residues in the solvent
onto the phase transition from ZIF-11 to ZIF-7-III, Microporous
Mesoporous Mater., 243 (2017) 65–68.
- B. Reif, P. Carolin, F. Florian, H. Martin, K. Malte, S. Wilhelm,
Synthesis of ZIF-11 – influence of the synthesis parameters on
the phase purity, Microporous Mesoporous Mater., 275 (2019)
102–110.
- S.S. Han, C. Seung-Hoon, A.G. William, Zeolitic imidazolate
frameworks as H2 adsorbents: Ab initio based grand canonical
monte carlo simulation, J. Phys. Chem. C, 114 (2010) 12039–12047.
- W. Wongsinlatam, T. Remsungnen, Molecular dynamics
simulations of CO2 molecules in ZIF-11 using refined AMBER
force field, J. Chem., 2013 (2013) 415027, doi: 10.1155/2013/415027.
- R. Chen, Y. Jianfeng, G. Qinfen, S. Stef, B. Christian, G. Haoxue,
Z. Dunru, M. William, O.M. Yaghi, W. Huanting, A two-dimensional
zeolitic imidazolate framework with a cushionshaped
cavity for CO2 adsorption, Chem. Commun., 49 (2013)
9500–9502.
- A. Phan, J.D. Christian, J.U.R. Fernando, B.K. Carolyn,
O. Michael, M.O. Yaghi, Synthesis, structure, and carbon
dioxide capture properties of zeolitic imidazolate frameworks,
Acc. Chem. Res., 43 (2010) 58–67.
- H. Hu, L. Shengquan, C. Chunyan, W. Jianping, Z. Ying,
L. Lihua, Y. Shouzhuo, Two novel zeolitic imidazolate frameworks
(ZIFs) as sorbents for solid-phase extraction (SPE) of
polycyclic aromatic hydrocarbons (PAHs) in environmental
water samples, Analyst, 139 (2014) 5818–5826.
- A.W. Thornton, D. David, S.L. Ming, P.L. Bradley, J.H. Anita,
R.H. Matthew, Feasibility of zeolitic imidazolate framework
membranes for clean energy applications, Energy Environ. Sci.,
5 (2012) 7637–7646.
- M.S. Boroglu, B.Y. Ahenk, Gas separation performance of
6FDA-DAM-ZIF-11 mixed-matrix membranes
for H2/CH4 and
CO2/CH4 separation, Sep. Purif. Technol., 173 (2017) 269–279.
- A. Ehsani, M. Pakizeh, Synthesis, characterization and gas
permeation study of ZIF-11/Pebax® 2533 mixed matrix
membranes, J. Taiwan Inst. Chem. Eng., 66 (2016) 414–423.
- L. Li, Y. Jianfeng, W. Xiaojing, C. Yi‐Bing, W. Huanting, ZIF-11/
polybenzimidazole composite membrane with improved
hydrogen separation performance, J. Appl. Polym. Sci.,
131 (2014), doi: 10.1002/app.41056.
- E.M. Forman, B. Amineh, F. Lei, J.Z. Kirk, Z. Erkang, Z. Fengyi,
P.L. Ryan, V. Sergey, Ethylene diffusion in crystals of zeolitic
imidazole framework-11 embedded in polymers to form
mixed-matrix membranes, Microporous Mesoporous Mater.,
274 (2019) 163–170.
- Jing, P. Huan, W. Chong-Chen, Z. Yi-Wen, W. Peng, L. Ran,
Photocatalytic degradation of methylene blue in ZIF-8, RSC
Adv., 4 (2014) 54454–54462.
- K.-Y.A. Lin, C. Hsuan-Ang, Zeolitic imidazole framework-67
(ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate
for degradation of Rhodamine B in water,
J. Taiwan Inst. Chem. Eng., 53 (2015) 40–45.
- N.M. Mahmoodi, J. Abdi, Nanoporous metal-organic
framework (MOF-199): synthesis, characterization and
photocatalytic degradation of Basic Blue 41, Microchem. J.,
144 (2019) 436–442.
- N M. Mahmoodi, J. Abdi, M. Oveisi, M. Alinia Asli, M. Vossoughi,
Metal-organic framework (MIL-100 (Fe)): synthesis, detailed
photocatalytic dye degradation ability in colored textile
wastewater and recycling, Mater. Res. Bull., 100 (2018) 357–366.
- R. Liang, J. Fenfen, S. Lijuan, Q. Na, W. Ling, MIL-53 (Fe) as
a highly efficient bifunctional photocatalyst for the simultaneous
reduction of Cr(VI) and oxidation of dyes, J. Hazard.
Mater., 287 (2015) 364–372.
- S. Ghattavi, A. Nezamzadeh-Ejhieh, GC-MASS detection of
methyl orange degradation intermediates by AgBr/g-C3N4:
experimental design, bandgap study, and characterization of
the catalyst, Int. J. Hydrogen Energy, 45 (2020) 24636–24656.
- M. He, Y. Jianfeng, L. Qi, Z. Zhaoxiang, W. Huanting,
Toluene-assisted synthesis of RHO-type zeolitic imidazolate
frameworks: synthesis and formation mechanism of ZIF-11
and ZIF-12, J. Chem. Soc. Dalton Trans., 42 (2013) 16608–16613.
- K.K. Gangu, M. Suresh, S. Babu Mukkamala, S.B. Jonnalagadda,
A review on contemporary metal–organic framework
materials, Inorg. Chim. Acta, 446 (2016) 61–74.
- S. Senobari, A. Nezamzadeh-Ejhieh, A comprehensive study on
the photocatalytic activity of coupled copper oxide-cadmium
sulfide nanoparticles, Spectrochim. Acta, Part A, 196 (2018)
334–343.
- S. Mosleh, M.R. Rahimi, M. Ghaedi, K. Dashtian,
Sonophotocatalytic degradation of trypan blue and vesuvine
dyes in the presence of blue light active photocatalyst of
Ag3PO4/Bi2S3-HKUST-1-MOF: central composite optimization
and synergistic effect study, Ultrason. Sonochem., 32 (2016)
387–397.
- A. Noruozi, A. Nezamzadeh-Ejhieh, Preparation,
characterization, and investigation of the catalytic property
of α-Fe2O3-ZnO nanoparticles in the photodegradation and
mineralization of methylene blue, Chem. Phys. Lett., 752 (2020)
137587, doi: 10.1016/j.cplett.2020.137587.
- R. Sharma, D.P. Bisen, S Usha, B.G. Sharma, X-ray diffraction:
a powerful method of characterizing nanomaterials, Recent
Res. Sci. Technol., 4 (2012) 77–79.
- J. Cheng, M. Dan, L. Shaoxiang, Q. Wenjuan, W. Dong,
Preparation of zeolitic imidazolate frameworks and their
application as flame retardant and smoke suppression agent for
rigid polyurethane foams, Polymers, 12 (2020) 347, doi: 10.3390/polym12020347.
- S. Jafari, A. Nezamzadeh-Ejhieh, Supporting of coupled silver
halides onto clinoptilolite nanoparticles as simple method
for increasing their photocatalytic activity in heterogeneous
photodegradation of mixture of 4-methoxy aniline and 4-chloro-3-nitro aniline, J. Colloid Interface Sci., 490 (2017) 478–487.
- Y.H. Si, L. Ya-yun, X. Yu, S. Shao-ke, X. Xin-bo, Z. Xie-rong, Z. Ji,
Fabrication of novel ZIF-8@BiVO4 composite with enhanced
photocatalytic performance, Crystals, 8 (2018) 432, doi: 10.3390/cryst8110432.
- D. Hou, G. Ronn, W. Xiaoping, W. Penghua, L. Teik-Thye,
Preparation of carbon-sensitized and Fe–Er co-doped TiO2 with
response surface methodology for Bisphenol A photocatalytic
degradation under visible-light irradiation, Appl. Catal., B,
126 (2012) 121–133.
- T. Olmez-Hanci, I. Arslan-Alaton, B. Gulcan, Multivariate
analysis of anionic, cationic and nonionic textile surfactant
degradation with the H2O2/UV-C process by using the
capabilities of response surface methodology, J. Hazard. Mater.,
185 (2011) 193–203.
- F. Jing, L. Ruowen, X. Jinhua, C. Rui, Z. Shiying, L. Yanhua,
W. Ling, MIL-68 (Fe) as an efficient visible-light-driven
photocatalyst for the treatment of a simulated wastewater
contain Cr(VI) and malachite green, Appl. Catal., B, 206 (2017)
9–15.
- A.F. Rawle, Characterization of Nanomaterials, Metrology and
Standardization of Nanotechnology: Protocols and Industrial
Innovations, Wiley, USA, 2017, pp. 129–150.
- K. Min, H.H. Tae, K. Joohoon, J. Jiyoung, J. Cheolsoo, M.H. Soon,
M.K. Koo, A facile route to fabricate stable reduced graphene
oxide dispersions in various media and their transparent
conductive thin films, J. Colloid Interface Sci., 383 (2012) 36–42.
- G. Boczkaj, A. Fernandes, Wastewater treatment by means of
advanced oxidation processes at basic pH conditions: a review,
Chem. Eng. J., 320 (2017) 608–633.
- S. Zhang, G. Huihui, X. Xuetao, C. Ruya, Y. Hongcen, X. Xijin,
L. Jiaxing, MOF-derived CoN/NC@SiO2 yolk-shell nanoreactor
with dual active sites for highly efficient catalytic advanced
oxidation processes, Chem. Eng. J., 381 (2020) 122670,
doi: 10.1016/j.cej.2019.122670.
- F. Saadati, N. Keramati, M. Mehdipour Ghazi, Influence of
parameters on the photocatalytic degradation of tetracycline
in wastewater: a review, Crit. Rev. Env. Sci. Technol., 46 (2016)
757–782.
- G. Fan, Z. Xiaomei, L. Jing, P. Huiping, L. Hui, B. Minchen,
H. Liang, Z. Jinjin, Rapid synthesis of Ag/AgCl@ZIF-8 as a
highly efficient photocatalyst for degradation of acetaminophen
under visible light, Chem. Eng. J., 351 (2018) 782–790.
- Y. Boyjoo, A. Ming, P. Vishnu, Photocatalytic treatment of
shower water using a pilot scale reactor, Int. J. Photoenergy,
2012 (2012) 578916, doi: 10.1155/2012/578916.
- T.E. Agustina, H.M. Ang, V.K. Pareek, Treatment of winery
wastewater using a photocatalytic/photolytic reactor, Chem.
Eng. J., 135 (2008) 151–156.
- E.E. Sann, P. Yong, G. Zhongfeng, Z. Shenshan, X. Fan, Highly
hydrophobic ZIF-8 particles and application for oil-water
separation, Sep. Purif. Technol., 206 (2018) 186–191.
- S. Jalali, M.R. Rahimi, K. Dashtian, M. Ghaedi, S. Mosleh,
One step integration of plasmonic Ag2CrO4/Ag/AgCl into
HKUST-1-MOF as novel visible-light driven photocatalyst
for highly efficient degradation of mixture dyes pollutants:
its photocatalytic mechanism and modeling, Polyhedron,
166 (2019) 217–225.
- S. Payra, C. Swapn, B. Yamini, C. Chanchal, G. Balaram,
R. Sounak, Probing the photo-and electro-catalytic degradation
mechanism of methylene blue dye over ZIF-derived ZnO,
J. Hazard. Mater., 373 (2019) 377–388.
- C.H. Wu, C. Jia-Ming, Kinetics of photocatalytic decomposition
of methylene blue, Ind. Eng. Chem. Res., 45 (2006) 6450–6457.
- N. Serpone, M.A. Yurii, K.R. Vladimir, V.E. Alexei, H. Satoshi,
Light-driven advanced oxidation processes in the disposal of
emerging pharmaceutical contaminants in aqueous media:
a brief review, Curr. Opin. Green Sustainable Chem., 6 (2017)
18–33.
- A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Comparison
of photocatalytic efficiency of supported CuO onto micro and
nano particles of zeolite X in photodecolorization of methylene
blue and methyl orange aqueous mixture, Appl. Catal., A,
477 (2014) 83–92.