References

  1. S. Luque, D. Gómez, J.R. Álvarez, Industrial applications of porous ceramic membranes (pressure-driven processes), Membr. Sci. Technol., 13 (2008) 177–216.
  2. L. Palacio, Y. Bouzerdi, M. Ouammou, A. Albizane, J. Bennazha, A. Hernández, J.I. Calvo, Ceramic membranes from Moroccan natural clay and phosphate for industrial water treatment, Desalination, 245 (2009) 501–507.
  3. F. Bouzerara, A. Harabi, S. Achour, A. Larbot, Porous ceramic supports for membranes prepared from kaolin and doloma mixtures, J. Eur. Ceram. Soc., 26 (2006) 1663–1671.
  4. S. Masmoudi, R. Ben Amar, A. Larbot, H. El Feki, A. Ben Salah, L. Cot, Elaboration of inorganic microfiltration membranes with hydroxyapatite applied to the treatment of wastewater from sea product industry, J. Membr. Sci., 247 (2005) 1–9.
  5. A. Harabi, A. Guechi, S. Condom, Production of supports and filtration membranes from Algerian kaolin and limestone, Procedia Eng., 33 (2012) 220–224.
  6. A. Majouli, S. Alami Younssi, S. Tahiri, A. Albizane, H. Loukili, M. Belhaj, Characterization of flat membrane support elaborated from local Moroccan perlite, Desalination, 277 (2011) 61–66.
  7. A. Boulkrinat, F. Bouzerara, A. Harabi, K. Harrouche, S. Stelitano, F. Russo, F. Galiano, A. Figoli, Synthesis and characterization of ultrafiltration ceramic membranes used in the separation of macromolecular proteins, J. Eur. Ceram. Soc., 40 (2020) 5967–5973.
  8. A. Majouli, S. Alami Younssi, S. Tahiri, A. Albizane, H. Loukili, M. Belhaj, Characterization of flat membrane support elaborated from local Moroccan perlite, Desalination, 277 (2011) 61–66.
  9. F. Bouzerara, A. Harabi, B. Ghouil, N. Medjemem, B. Boudaira, S. Condom, Elaboration and properties of zirconia microfiltration membranes, Procedia Eng., 33 (2012) 278–284.
  10. A. Harabi, B. Boudaira, F. Bouzerara, L. Foughali, F. Zenikheri, A. Guechi, B. Ghouil, S. Condom, Porous Ceramic Supports for Membranes Prepared from Kaolin (DD3) and Calcite Mixtures, Proceedings of the 4th International Congress APMAS2014, April 24–27, Fethiye, Turkey, 2014, doi: 10.12693/APhysPolA.127.1164.
  11. B. Boudaira, A. Harabia, F. Bouzerara, S. Condom, Preparation and characterization of microfiltration membranes and their supports using kaolin (DD2) and CaCO3, Desal. Water Treat., 9 (2009) 142–148.
  12. A. Bouazizi, M. Breida, A. Karim, B. Achiou, M. Ouammou, J.I. Calvo, A. Aaddane, K. Khiat, S. Alami Younssi, Development of a new TiO2 ultrafiltration membrane on flat ceramic support made from natural bentonite and micronized phosphate and applied for dye removal, Ceram. Int., 43 (2017) 1479–1487.
  13. S. Saja, A. Bouazizi, B. Achiou, M. Ouammou, A. Albizane, J. Bennazha, S. Alami Younssi, Elaboration and characterization of low-cost ceramic membrane made from natural Moroccan perlite for treatment of industrial wastewater, J. Environ. Chem. Eng., 6 (2018) 451–458.
  14. J. Fang, G. Qin, W. Wei, X. Zhao, Preparation and characterization of tubular supported ceramic microfiltration membranes from fly ash, Sep. Purif. Technol., 80 (2011) 585–591.
  15. R. Chihi, I. Blidi, M. Trabelsi-Ayadi, F. Ayari, Elaboration and characterization of a low-cost porous ceramic support from natural Tunisian bentonite clay, C.R. Chim., 22 (2019) 188–197.
  16. A.A. Tireli, I. do Rosário Guimarães, J.C. de Souza Terra, R.R. da Silva, M.C. Guerreiro, Fenton-like processes and adsorption using iron oxide-pillared clay with magnetic properties for organic compound mitigation, Environ. Sci. Pollut. Res. Int., 22 (2015) 870–881.
  17. U. Schwertmann, R.M. Cornell, Iron Oxides in the Laboratory, Preparation and Characterization, Wiley-VCH, New York, USA, 2008, p. 188.
  18. L.C.A. Oliveira, T.C. Ramalho, E.F. Souza, M. Gonçalves, D.Q.L. Oliveira, M.C. Pereira, J.D. Fabris, Catalytic properties of goethite prepared in the presence of Nb on oxidation reactions in water: computational and experimental studies, Appl. Catal., B, 83 (2008) 169–176.
  19. N. Sankararamakrishnan, A. Gupta, S.R. Vidyarthi, Enhanced arsenic removal at neutral pH using functionalized multiwalled carbon nanotubes, J. Environ. Chem. Eng., 2 (2014) 802–810.
  20. R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, VCH, Weinheim, Germany, 2003, pp. 158–164.
  21. N. Frini, M. Crespin, M. Trabelsi, D. Messad, H. Van Damme, F. Bergaya, Preliminary results on the properties of pillared clays by mixed Al-Cu solutions, Appl. Clay Sci., 12 (1997) 281–292.
  22. A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. McIntyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds, Surf. Interface Anal., 36 (2004) 1564–1574.
  23. D. Bikiaris, S. Daniilia, S. Sotiropoulou, O. Katsimbiri, E. Pavlidou, A.P. Moutsatsou, Y. Chryssoulakis, Ochredifferentiation through micro-Raman and micro-FTIR spectroscopies: application on wall paintings at Meteora and Mount Athos, Greece, Spectrochim. Acta, Part A, 56 (2000) 3–18.
  24. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem., 54 (1985) 603–619.
  25. Y.H. Chen, Thermal properties of nanocrystalline goethite, magnetite, and maghemite, J. Alloys Compd., 553 (2013) 194–198.
  26. R.Z.A. Rashid, H.M. Salleh, M.H. Ani, N.A. Yunus, T. Akiyama, H. Purwanto, Reduction of low grade iron ore pellet using palm kernel shell, Renewable Energy, 63 (2014) 617–623.
  27. K. Mondal, H. Lorethova, E. Hippo, T. Wiltowski, S.B. Lalvani, Reduction of iron oxide in carbon monoxide atmosphere — reaction controlled kinetics, Fuel Process. Technol., 86 (2004) 33–47.
  28. A.A. Liabastre, C. Orr, An evaluation of pore structure by mercury penetration, J. Colloid Interface Sci., 64 (1978) 1–18.
  29. S. Lowell, J.E. Shields, Powder Surface Area and Porosity, B. Scarlett, Ed., Powder Technology Series, Wiley, New York, 1984, pp. 119–197.
  30. E. Honold, E.L. Skau, Application of mercury-intrusion method for determination of pore-size distribution to membrane filters, Science, 120 (1954) 805–806.
  31. T. Gumi, M. Valiente, K.C. Khulbe, C. Palet, T. Matsuura, Characterization of activated composite membranes by solute transport, contact angle measurement, AFM and ESR, J. Membr. Sci., 212 (2003) 123–134.
  32. A. Marmur, Equilibrium contact angles: theory and measurement, Colloids Surf., A, 116 (1996) 55–61.
  33. M. Mulder, Basic Principles of Membrane Technology, 2nd ed, Kluwer Academic Publisher, Netherlands, 1996, pp. 168–167.
  34. P. Shao, R.Y.M. Huang, X. Feng, W. Anderson, Gas-liquid displacement method for estimating membrane pore-size distributions, AlChE J., 50 (2004) 557–565.
  35. M.A. Rahman, M.A. Mutalib, K. Li, M.H.D. Othman, Chapter 10 – Pore Size Measurements and Distribution for Ceramic Membranes, N. Hilal, A.F. Ismail, T. Matsuura, D. Oatley-Radcliffe, Eds., Membrane Characterization, Elsevier, 2017, pp. 183–189.
  36. S. Lagdali, Y. Miyah, M. El-Habacha, G. Mahmoudy, M. Benjelloun, S. Iaich, M. Zerbet, M. Chiban, F. Sinan, Performance assessment of a phengite clay-based flat membrane for microfiltration of real-wastewater from clothes washing: characterization, cost estimation, and regeneration, Case Stud. Chem. Environ. Eng., 8 (2023) 100388, doi: 10.1016/j.cscee.2023.100388.