References
- Y. Anjaneyulu, N. Sreedhara Chary, D. Samuel Suman Raj,
Decolourization of industrial effluents–available methods
and emerging technologies–a review, Rev. Environ. Sci. Bio/Technol., 4 (2005) 245–273.
- E. Rafiee, E. Noori, A.A. Zinatizadeh, H. Zangeneh, Surfactant
effect on photocatalytic activity of Ag-TiO2/PW nanocomposite
in DR16 degradation: characterization of nanocomposite and
RSM process optimization, Mater. Sci. Semicond. Process.,
83 (2018) 115–124.
- R. Al-Tohamy, S.S. Ali, F. Li, K.M. Okasha, Y.A.-G. Mahmoud,
T. Elsamahy, H. Jiao, Y. Fu, J. Sun, A critical review on the
treatment of dye-containing wastewater: ecotoxicological
and health concerns of textile dyes and possible remediation
approaches for environmental safety, Ecotoxicol. Environ. Saf.,
231 (2022) 113160, doi: 10.1016/j.ecoenv.2021.113160.
- S. Velusamy, A. Roy, S. Sundaram, T. Kumar Mallick, A review
on heavy metal ions and containing dyes removal through
graphene oxide-based adsorption strategies for textile
wastewater treatment, Chem. Rec., 21 (2021) 1570–1610.
- L.A. Kafshgari, M. Ghorbani, A. Azizi, S. Agarwal, V.K. Gupta,
Modeling and optimization of Direct Red 16 adsorption from
aqueous solutions using nanocomposite of MnFe2O4/MWCNTs:
RSM-CCRD model, J. Mol. Liq., 233 (2017) 370–377.
- Y. Shi, Z. Yang, L. Xing, X. Zhang, X. Li, D. Zhang, Recent
advances in the biodegradation of azo dyes, World J. Microbiol.
Biotechnol., 37 (2021) 1–18.
- P.J. Quinlan, A. Tanvir, K.C. Tam, Application of the central
composite design to study the flocculation of an anionic azo
dye using quaternized cellulose nanofibrils, Carbohydr. Polym.,
133 (2015) 80–89.
- K. Jankowska, Z. Su, J. Zdarta, T. Jesionowski, M. Pinelo,
Synergistic action of laccase treatment and membrane filtration
during removal of azo dyes in an enzymatic membrane
reactor upgraded with electrospun fibers, J. Hazard. Mater.,
435 (2022) 129071, doi: 10.1016/j.jhazmat.2022.129071.
- B. Bhanvase, T. Shende, S. Sonawane, A review on graphene–TiO2 and doped graphene–TiO2 nanocomposite photocatalyst
for water and wastewater treatment, Environ. Technol. Rev.,
6 (2017) 1–14.
- M. Cheng, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, Y. Liu,
Hydroxyl radicals based advanced oxidation processes (AOPs)
for remediation of soils contaminated with organic compounds:
a review, Chem. Eng. J., 284 (2016) 582–598.
- M.P. Rayaroth, G. Boczkaj, O. Aubry, U.K. Aravind,
C.T. Aravindakumar, Advanced oxidation processes for
degradation of water pollutants—ambivalent impact of
carbonate species: a review, Water, 15 (2023) 1615, doi: 10.3390/w15081615.
- A.V. Mohod, M. Momotko, N.S. Shah, M. Marchel, M. Imran,
L. Kong, G. Boczkaj, Degradation of rhodamine dyes by
advanced oxidation processes (AOPs)–focus on cavitation and
photocatalysis-a critical review, Water Resour. Ind., 30 (2023)
100220, doi: 10.1016/j.wri.2023.100220.
- P. Braeutigam, M. Franke, R.J. Schneider, A. Lehmann,
A. Stolle, B. Ondruschka, Degradation of carbamazepine
in environmentally relevant concentrations in water by
hydrodynamic-acoustic-cavitation (HAC), Water Res., 46 (2012)
2469–2477.
- L. Wang, D. Luo, O. Hamdaoui, Y. Vasseghian, M. Momotko,
G. Boczkaj, G.Z. Kyzas, C. Wang, Bibliometric analysis and
literature review of ultrasound-assisted degradation of
organic pollutants, Sci. Total Environ., 876 (2023) 162551,
doi: 10.1016/j.scitotenv.2023.162551.
- V.K. Saharan, A.B. Pandit, P.S. Satish Kumar, S. Anandan,
Hydrodynamic cavitation as an advanced oxidation technique
for the degradation of Acid Red 88 dye, Ind. Eng. Chem. Res.,
51 (2012) 1981–1989.
- P.R. Gogate, A.B. Pandit, A review and assessment of
hydrodynamic cavitation as a technology for the future,
Ultrason. Sonochem., 12 (2005) 21–27.
- L.P. Amin, P.R. Gogate, A.E. Burgess, D.H. Bremner,
Optimization of a hydrodynamic cavitation reactor using
salicylic acid dosimetry, Chem. Eng. J., 156 (2010) 165–169.
- P.B. Patil, A.D. Goswami, N.L. Jadhav, A.J. Sayyed, C.R. Holkar,
D.V. Pinjari, Pilot Scale Advance Oxidation Process for
Industrial Effluent Treatment, in: Novel Approaches Towards
Wastewater Treatment and Resource Recovery Technologies,
Elsevier, 2022, pp. 471–496.
- L.V. Malade, U.B. Deshannavar, Decolorisation of Reactive
Red 120 by hydrodynamic cavitation, Mater. Today Proc.,
5 (2018) 18400–18409.
- V.K. Saharan, M.P. Badve, A.B. Pandit, Degradation of Reactive
Red 120 dye using hydrodynamic cavitation, Chem. Eng. J.,
178 (2011) 100–107.
- M.S. Kumar, S. Sonawane, B. Bhanvase, B. Bethi, Treatment
of ternary dye wastewater by hydrodynamic cavitation
combined with other advanced oxidation processes (AOP’s),
J. Water Process Eng., 23 (2018) 250–256.
- J.P.M. Andia, A.E.T. Cayte, J.M.I. Rodriguez, L.L. Belón,
M.A.C. Málaga, L.A.C. Teixeira, Combined treatment based
on synergism between hydrodynamic cavitation and H2O2 for
degradation of cyanide in effluents, Miner. Eng., 171 (2021)
107119, doi: 10.1016/j.mineng.2021.107119.
- J. Wang, H. Chen, R. Yuan, F. Wang, F. Ma, B. Zhou, Intensified
degradation of textile wastewater using a novel treatment
of hydrodynamic cavitation with the combination of ozone,
J. Environ. Chem. Eng., 8 (2020) 103959, doi: 10.1016/j.jece.2020.103959.
- X. Wang, J. Jia, Y. Wang, Combination of photocatalysis with
hydrodynamic cavitation for degradation of tetracycline,
Chem. Eng. J., 315 (2017) 274–282.
- P. Thanekar, M. Panda, P.R. Gogate, Degradation of
carbamazepine using hydrodynamic cavitation combined
with advanced oxidation processes, Ultrason. Sonochem.,
40 (2018) 567–576.
- C.-M. Hung, C.-P. Huang, C.-W. Chen, C.-D. Dong,
Hydrodynamic cavitation activation of persulfate for the
degradation of polycyclic aromatic hydrocarbons in marine
sediments, Environ. Pollut., 286 (2021) 117245, doi: 10.1016/j.envpol.2021.117245.
- M.P. Badve, M.N. Bhagat, A.B. Pandit, Microbial disinfection of
seawater using hydrodynamic cavitation, Sep. Purif. Technol.,
151 (2015) 31–38.
- K. Fedorov, M.P. Rayaroth, N.S. Shah, G. Boczkaj, Activated
sodium percarbonate-ozone (SPC/O3) hybrid hydrodynamic
cavitation system for advanced oxidation processes (AOPs)
of 1,4-dioxane in water, Chem. Eng. J., 456 (2023) 141027,
doi: 10.1016/j.cej.2022.141027.
- K. Fedorov, K. Dinesh, X. Sun, R.D.C. Soltani, Z. Wang,
S. Sonawane, G. Boczkaj, Synergistic effects of hybrid advanced
oxidation processes (AOPs) based on hydrodynamic cavitation
phenomenon–a review, Chem. Eng. J., 432 (2022) 134191,
doi: 10.1016/j.cej.2021.134191.
- L. Yi, J. Qin, H. Sun, Y. Ruan, D. Fang, J. Wang, Construction
of Z-scheme (TiO2/Er3+:YAlO3)/NiFe2O4 photocatalyst composite
for intensifying hydrodynamic cavitation degradation of
oxytetracycline in aqueous solution, Sep. Purif. Technol.,
293 (2022) 121138, doi: 10.1016/j.seppur.2022.121138.
- S. Wang, L. Zhao, Y. Ruan, J. Qin, L. Yi, Z. Zhang, J. Wang,
D. Fang, Investigation on series-wound orifice plate
hydrodynamic cavitation (HC) degradation of Rhodamine B
(RhB) assisted by several by-pass line orifice plates, J. Water
Process Eng., 51 (2023) 103404, doi: 10.1016/j.jwpe.2022.103404.
- X. Feng, R. Jin, Y. Qiao, Z. He, J. Liu, Z. Sun, Y. Zhang,
M. Jia, J. Gao, A. Wang, A novel process for landfill leachate
pretreatment using hydrodynamic cavitation combined with
potassium ferrate oxidation, J. Chem. Technol. Biotechnol.,
97 (2022) 2537–2546.
- Z. Askarniya, S. Baradaran, S.H. Sonawane, G. Boczkaj,
A comparative study on the decolorization of Tartrazine, Ponceau
4R, and Coomassie Brilliant Blue using persulfate and hydrogen
peroxide based advanced oxidation processes combined
with hydrodynamic cavitation, Chem. Eng. Process. Process
Intensif., 181 (2022) 109160, doi: 10.1016/j.cep.2022.109160.
- M. Bagal, B. Ramos, S. Mahajan, A. Sonawane, P.H. Palharim,
A. Mohod, Parametric optimization of a hybrid cavitationbased
Fenton process for the degradation of methyl violet 2B in
a packed bed reactor, Chem. Eng. Res. Des., 189 (2023) 440–451.
- M. Khajeh, E. Taheri, M.M. Amin, A. Fatehizadeh, J. Bedia,
Combination of hydrodynamic cavitation with oxidants for
efficient treatment of synthetic and real textile wastewater,
J. Water Process Eng., 49 (2022) 103143, doi: 10.1016/j.jwpe.2022.103143.
- R. Shokoohi, A. Rahmani, G. Asgari, M. Ashrafi, E. Ghahramani,
Removal of algae using hydrodynamic cavitation, ozonation
and oxygen peroxide: Taguchi optimization (case study:
raw water of Sanandaj Water Treatment Plant), Process Saf.
Environ. Prot., 169 (2023) 896–908.
- K. Roy, V.S. Moholkar, Sulfadiazine degradation by combination
of hydrodynamic cavitation and Fenton–persulfate: parametric
optimization and deduction of chemical mechanism,
Environ. Sci. Pollut. Res., 30 (2022) 25569–25581.
- G. Mancuso, M. Langone, M. Laezza, G. Andreottola,
Decolourization of Rhodamine B: a swirling jet-induced
cavitation combined with NaOCl, Ultrason. Sonochem.,
32 (2016) 18–30.
- T.A. Bashir, A.G. Soni, A.V. Mahulkar, A.B. Pandit, The CFD
driven optimisation of a modified venturi for cavitational
activity, Can. J. Chem. Eng., 89 (2011) 1366–1375.
- J. Huang, X. Li, M. Ma, D. Li, Removal of di-(2-ethylhexyl)
phthalate from aqueous solution by UV/peroxymonosulfate:
influencing factors and reaction pathways, Chem. Eng. J.,
314 (2017) 182–191.
- E. Noori, S. Eris, F. Omidi, A. Asadi, Hybrid approaches based
on hydrodynamic cavitation, peroxymonosulfate and UVC
irradiation for treatment of organic pollutants: fractal like
kinetics, modeling and process optimization, Environ. Sci.
Pollut. Res., 30 (2023) 85835–85849.
- M. Khajeh, M.M. Amin, E. Taheri, A. Fatehizadeh, G. McKay,
Influence of co-existing cations and anions on removal of
Direct Red 89 dye from synthetic wastewater by hydrodynamic
cavitation process: an empirical modeling, Ultrason. Sonochem.,
67 (2020) 105133, doi: 10.1016/j.ultsonch.2020.105133.
- T.J. Tiong, G.J. Price, Ultrasound promoted reaction of
Rhodamine B with sodium hypochlorite using sonochemical
and dental ultrasonic instruments, Ultrason. Sonochem.,
19 (2012) 358–364.
- Q.-F. Zeng, J. Fu, Y.-T. Shi, H.-L. Zhu, Degradation of CI
Disperse Blue 56 by ultraviolet radiation/sodium hypochlorite,
Ozone: Sci. Eng., 31 (2009) 37–44.
- A. Siregar, M. Kleber, R. Mikutta, R. Jahn, Sodium hypochlorite
oxidation reduces soil organic matter concentrations without
affecting inorganic soil constituents, Eur. J. Soil Sci., 56 (2005)
481–490.
- N.P. Vichare, P.R. Gogate, A.B. Pandit, Optimization of
hydrodynamic cavitation using a model reaction, Chem. Eng.
Technol., 23 (2000) 683–690.
- B. Wang, T. Wang, H. Su, A dye-methylene blue (MB)-degraded
by hydrodynamic cavitation (HC) and combined with other
oxidants, J. Environ. Chem. Eng., 10 (2022) 107877, doi: 10.1016/j.
jece.2022.107877.
- N. Lakshmi, C. Agarkoti, P.R. Gogate, A.B. Pandit, Acoustic
and hydrodynamic cavitation-based combined treatment
techniques for the treatment of industrial real effluent
containing mainly pharmaceutical compounds, J. Environ.
Chem. Eng., 10 (2022) 108349, doi: 10.1016/j.jece.2022.108349.
- B. Wang, H. Jiao, H. Su, T. Wang, Degradation of
pefloxacin by hybrid hydrodynamic cavitation with H2O2
and O3, Chemosphere, 303 (2022) 135299, doi: 10.1016/j.chemosphere.2022.135299.
- J. Wang, J. Wang, R. Yuan, J. Liu, Z. Yin, T. He, M. Wang, F. Ma,
B. Zhou, H. Chen, Degradation of Acid Red 73 wastewater
by hydrodynamic cavitation combined with ozone and its
mechanism, Environ. Res., 210 (2022) 112954, doi: 10.1016/j.envres.2022.112954.
- M.A. Tariq, M. Faisal, M. Saquib, M. Muneer, Heterogeneous
photocatalytic degradation of an anthraquinone and a
triphenylmethane dye derivative in aqueous suspensions of
semiconductor, Dyes Pigm., 76 (2008) 358–365.
- S. Li, X. Ao, C. Li, Z. Lu, W. Cao, F. Wu, S. Liu, W. Sun, Insight
into PPCP degradation by UV/NH2Cl and comparison with
UV/NaClO: kinetics, reaction mechanism, and DBP formation,
Water Res., 182 (2020) 115967, doi: 10.1016/j.watres.2020.115967.
- N. Rastkari, A. Eslami, S. Nasseri, E. Piroti, A. Asadi, Optimizing
parameters on nanophotocatalytic degradation of ibuprofen
using UVC/ZnO processes by response surface methodology,
Pol. J. Environ. Stud., 26 (2017) 785–794.
- X. Wang, J. Wang, P. Guo, W. Guo, C. Wang, Degradation
of Rhodamine B in aqueous solution by using swirling jetinduced
cavitation combined with H2O2, J. Hazard. Mater.,
169 (2009) 486–491.
- E. Cako, K.D. Gunasekaran, R.D.C. Soltani, G. Boczkaj, Ultrafast
degradation of brilliant cresyl blue under hydrodynamic
cavitation based advanced oxidation processes (AOPs), Water
Resour. Ind., 24 (2020) 100134, doi: 10.1016/j.wri.2020.100134.
- Y. Çalışkan, H.C. Yatmaz, N. Bektaş, Photocatalytic oxidation
of high concentrated dye solutions enhanced by hydrodynamic
cavitation in a pilot reactor, Process Saf. Environ. Prot.,
111 (2017) 428–438.
- E. Rafiee, E. Noori, A.A. Zinatizadeh, H. Zanganeh, A new
visible driven nanocomposite including Ti-substituted
polyoxometalate/TiO2: synthesis, characterization, photodegradation
of azo dye process optimization by RSM and
specific removal rate calculations, J. Mater. Sci.: Mater. Electron.,
29 (2018) 20668–20679.
- S. Boumaza, F. Kaouah, D. Hamane, M. Trari, S. Omeiri,
Z. Bendjama, Visible light assisted decolorization of azo dyes:
Direct Red 16 and Direct Blue 71 in aqueous solution on the
p-CuFeO2/n-ZnO system, J. Mol. Catal. A: Chem., 393 (2014)
156–165.
- E. Rafiee, E. Noori, A. Zinatizadeh, H. Zanganeh,
([n-C4H9)4N]3PMo2W9(Sn4+·xH2O)O39/TiO2): a new visible photocatalyst
for photodegradation of DR16 characterization and
optimization process by RSM, J. Iran. Chem. Soc., 18 (2021)
1761–1772.