References

  1. Y. Anjaneyulu, N. Sreedhara Chary, D. Samuel Suman Raj, Decolourization of industrial effluents–available methods and emerging technologies–a review, Rev. Environ. Sci. Bio/Technol., 4 (2005) 245–273.
  2. E. Rafiee, E. Noori, A.A. Zinatizadeh, H. Zangeneh, Surfactant effect on photocatalytic activity of Ag-TiO2/PW nanocomposite in DR16 degradation: characterization of nanocomposite and RSM process optimization, Mater. Sci. Semicond. Process., 83 (2018) 115–124.
  3. R. Al-Tohamy, S.S. Ali, F. Li, K.M. Okasha, Y.A.-G. Mahmoud, T. Elsamahy, H. Jiao, Y. Fu, J. Sun, A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety, Ecotoxicol. Environ. Saf., 231 (2022) 113160, doi: 10.1016/j.ecoenv.2021.113160.
  4. S. Velusamy, A. Roy, S. Sundaram, T. Kumar Mallick, A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment, Chem. Rec., 21 (2021) 1570–1610.
  5. L.A. Kafshgari, M. Ghorbani, A. Azizi, S. Agarwal, V.K. Gupta, Modeling and optimization of Direct Red 16 adsorption from aqueous solutions using nanocomposite of MnFe2O4/MWCNTs: RSM-CCRD model, J. Mol. Liq., 233 (2017) 370–377.
  6. Y. Shi, Z. Yang, L. Xing, X. Zhang, X. Li, D. Zhang, Recent advances in the biodegradation of azo dyes, World J. Microbiol. Biotechnol., 37 (2021) 1–18.
  7. P.J. Quinlan, A. Tanvir, K.C. Tam, Application of the central composite design to study the flocculation of an anionic azo dye using quaternized cellulose nanofibrils, Carbohydr. Polym., 133 (2015) 80–89.
  8. K. Jankowska, Z. Su, J. Zdarta, T. Jesionowski, M. Pinelo, Synergistic action of laccase treatment and membrane filtration during removal of azo dyes in an enzymatic membrane reactor upgraded with electrospun fibers, J. Hazard. Mater., 435 (2022) 129071, doi: 10.1016/j.jhazmat.2022.129071.
  9. B. Bhanvase, T. Shende, S. Sonawane, A review on graphene–TiO2 and doped graphene–TiO2 nanocomposite photocatalyst for water and wastewater treatment, Environ. Technol. Rev., 6 (2017) 1–14.
  10. M. Cheng, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, Y. Liu, Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review, Chem. Eng. J., 284 (2016) 582–598.
  11. M.P. Rayaroth, G. Boczkaj, O. Aubry, U.K. Aravind, C.T. Aravindakumar, Advanced oxidation processes for degradation of water pollutants—ambivalent impact of carbonate species: a review, Water, 15 (2023) 1615, doi: 10.3390/w15081615.
  12. A.V. Mohod, M. Momotko, N.S. Shah, M. Marchel, M. Imran, L. Kong, G. Boczkaj, Degradation of rhodamine dyes by advanced oxidation processes (AOPs)–focus on cavitation and photocatalysis-a critical review, Water Resour. Ind., 30 (2023) 100220, doi: 10.1016/j.wri.2023.100220.
  13. P. Braeutigam, M. Franke, R.J. Schneider, A. Lehmann, A. Stolle, B. Ondruschka, Degradation of carbamazepine in environmentally relevant concentrations in water by hydrodynamic-acoustic-cavitation (HAC), Water Res., 46 (2012) 2469–2477.
  14. L. Wang, D. Luo, O. Hamdaoui, Y. Vasseghian, M. Momotko, G. Boczkaj, G.Z. Kyzas, C. Wang, Bibliometric analysis and literature review of ultrasound-assisted degradation of organic pollutants, Sci. Total Environ., 876 (2023) 162551, doi: 10.1016/j.scitotenv.2023.162551.
  15. V.K. Saharan, A.B. Pandit, P.S. Satish Kumar, S. Anandan, Hydrodynamic cavitation as an advanced oxidation technique for the degradation of Acid Red 88 dye, Ind. Eng. Chem. Res., 51 (2012) 1981–1989.
  16. P.R. Gogate, A.B. Pandit, A review and assessment of hydrodynamic cavitation as a technology for the future, Ultrason. Sonochem., 12 (2005) 21–27.
  17. L.P. Amin, P.R. Gogate, A.E. Burgess, D.H. Bremner, Optimization of a hydrodynamic cavitation reactor using salicylic acid dosimetry, Chem. Eng. J., 156 (2010) 165–169.
  18. P.B. Patil, A.D. Goswami, N.L. Jadhav, A.J. Sayyed, C.R. Holkar, D.V. Pinjari, Pilot Scale Advance Oxidation Process for Industrial Effluent Treatment, in: Novel Approaches Towards Wastewater Treatment and Resource Recovery Technologies, Elsevier, 2022, pp. 471–496.
  19. L.V. Malade, U.B. Deshannavar, Decolorisation of Reactive Red 120 by hydrodynamic cavitation, Mater. Today Proc., 5 (2018) 18400–18409.
  20. V.K. Saharan, M.P. Badve, A.B. Pandit, Degradation of Reactive Red 120 dye using hydrodynamic cavitation, Chem. Eng. J., 178 (2011) 100–107.
  21. M.S. Kumar, S. Sonawane, B. Bhanvase, B. Bethi, Treatment of ternary dye wastewater by hydrodynamic cavitation combined with other advanced oxidation processes (AOP’s), J. Water Process Eng., 23 (2018) 250–256.
  22. J.P.M. Andia, A.E.T. Cayte, J.M.I. Rodriguez, L.L. Belón, M.A.C. Málaga, L.A.C. Teixeira, Combined treatment based on synergism between hydrodynamic cavitation and H2O2 for degradation of cyanide in effluents, Miner. Eng., 171 (2021) 107119, doi: 10.1016/j.mineng.2021.107119.
  23. J. Wang, H. Chen, R. Yuan, F. Wang, F. Ma, B. Zhou, Intensified degradation of textile wastewater using a novel treatment of hydrodynamic cavitation with the combination of ozone, J. Environ. Chem. Eng., 8 (2020) 103959, doi: 10.1016/j.jece.2020.103959.
  24. X. Wang, J. Jia, Y. Wang, Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline, Chem. Eng. J., 315 (2017) 274–282.
  25. P. Thanekar, M. Panda, P.R. Gogate, Degradation of carbamazepine using hydrodynamic cavitation combined with advanced oxidation processes, Ultrason. Sonochem., 40 (2018) 567–576.
  26. C.-M. Hung, C.-P. Huang, C.-W. Chen, C.-D. Dong, Hydrodynamic cavitation activation of persulfate for the degradation of polycyclic aromatic hydrocarbons in marine sediments, Environ. Pollut., 286 (2021) 117245, doi: 10.1016/j.envpol.2021.117245.
  27. M.P. Badve, M.N. Bhagat, A.B. Pandit, Microbial disinfection of seawater using hydrodynamic cavitation, Sep. Purif. Technol., 151 (2015) 31–38.
  28. K. Fedorov, M.P. Rayaroth, N.S. Shah, G. Boczkaj, Activated sodium percarbonate-ozone (SPC/O3) hybrid hydrodynamic cavitation system for advanced oxidation processes (AOPs) of 1,4-dioxane in water, Chem. Eng. J., 456 (2023) 141027, doi: 10.1016/j.cej.2022.141027.
  29. K. Fedorov, K. Dinesh, X. Sun, R.D.C. Soltani, Z. Wang, S. Sonawane, G. Boczkaj, Synergistic effects of hybrid advanced oxidation processes (AOPs) based on hydrodynamic cavitation phenomenon–a review, Chem. Eng. J., 432 (2022) 134191, doi: 10.1016/j.cej.2021.134191.
  30. L. Yi, J. Qin, H. Sun, Y. Ruan, D. Fang, J. Wang, Construction of Z-scheme (TiO2/Er3+:YAlO3)/NiFe2O4 photocatalyst composite for intensifying hydrodynamic cavitation degradation of oxytetracycline in aqueous solution, Sep. Purif. Technol., 293 (2022) 121138, doi: 10.1016/j.seppur.2022.121138.
  31. S. Wang, L. Zhao, Y. Ruan, J. Qin, L. Yi, Z. Zhang, J. Wang, D. Fang, Investigation on series-wound orifice plate hydrodynamic cavitation (HC) degradation of Rhodamine B (RhB) assisted by several by-pass line orifice plates, J. Water Process Eng., 51 (2023) 103404, doi: 10.1016/j.jwpe.2022.103404.
  32. X. Feng, R. Jin, Y. Qiao, Z. He, J. Liu, Z. Sun, Y. Zhang, M. Jia, J. Gao, A. Wang, A novel process for landfill leachate pretreatment using hydrodynamic cavitation combined with potassium ferrate oxidation, J. Chem. Technol. Biotechnol., 97 (2022) 2537–2546.
  33. Z. Askarniya, S. Baradaran, S.H. Sonawane, G. Boczkaj, A comparative study on the decolorization of Tartrazine, Ponceau 4R, and Coomassie Brilliant Blue using persulfate and hydrogen peroxide based advanced oxidation processes combined with hydrodynamic cavitation, Chem. Eng. Process. Process Intensif., 181 (2022) 109160, doi: 10.1016/j.cep.2022.109160.
  34. M. Bagal, B. Ramos, S. Mahajan, A. Sonawane, P.H. Palharim, A. Mohod, Parametric optimization of a hybrid cavitationbased Fenton process for the degradation of methyl violet 2B in a packed bed reactor, Chem. Eng. Res. Des., 189 (2023) 440–451.
  35. M. Khajeh, E. Taheri, M.M. Amin, A. Fatehizadeh, J. Bedia, Combination of hydrodynamic cavitation with oxidants for efficient treatment of synthetic and real textile wastewater, J. Water Process Eng., 49 (2022) 103143, doi: 10.1016/j.jwpe.2022.103143.
  36. R. Shokoohi, A. Rahmani, G. Asgari, M. Ashrafi, E. Ghahramani, Removal of algae using hydrodynamic cavitation, ozonation and oxygen peroxide: Taguchi optimization (case study: raw water of Sanandaj Water Treatment Plant), Process Saf. Environ. Prot., 169 (2023) 896–908.
  37. K. Roy, V.S. Moholkar, Sulfadiazine degradation by combination of hydrodynamic cavitation and Fenton–persulfate: parametric optimization and deduction of chemical mechanism, Environ. Sci. Pollut. Res., 30 (2022) 25569–25581.
  38. G. Mancuso, M. Langone, M. Laezza, G. Andreottola, Decolourization of Rhodamine B: a swirling jet-induced cavitation combined with NaOCl, Ultrason. Sonochem., 32 (2016) 18–30.
  39. T.A. Bashir, A.G. Soni, A.V. Mahulkar, A.B. Pandit, The CFD driven optimisation of a modified venturi for cavitational activity, Can. J. Chem. Eng., 89 (2011) 1366–1375.
  40. J. Huang, X. Li, M. Ma, D. Li, Removal of di-(2-ethylhexyl) phthalate from aqueous solution by UV/peroxymonosulfate: influencing factors and reaction pathways, Chem. Eng. J., 314 (2017) 182–191.
  41. E. Noori, S. Eris, F. Omidi, A. Asadi, Hybrid approaches based on hydrodynamic cavitation, peroxymonosulfate and UVC irradiation for treatment of organic pollutants: fractal like kinetics, modeling and process optimization, Environ. Sci. Pollut. Res., 30 (2023) 85835–85849.
  42. M. Khajeh, M.M. Amin, E. Taheri, A. Fatehizadeh, G. McKay, Influence of co-existing cations and anions on removal of Direct Red 89 dye from synthetic wastewater by hydrodynamic cavitation process: an empirical modeling, Ultrason. Sonochem., 67 (2020) 105133, doi: 10.1016/j.ultsonch.2020.105133.
  43. T.J. Tiong, G.J. Price, Ultrasound promoted reaction of Rhodamine B with sodium hypochlorite using sonochemical and dental ultrasonic instruments, Ultrason. Sonochem., 19 (2012) 358–364.
  44. Q.-F. Zeng, J. Fu, Y.-T. Shi, H.-L. Zhu, Degradation of CI Disperse Blue 56 by ultraviolet radiation/sodium hypochlorite, Ozone: Sci. Eng., 31 (2009) 37–44.
  45. A. Siregar, M. Kleber, R. Mikutta, R. Jahn, Sodium hypochlorite oxidation reduces soil organic matter concentrations without affecting inorganic soil constituents, Eur. J. Soil Sci., 56 (2005) 481–490.
  46. N.P. Vichare, P.R. Gogate, A.B. Pandit, Optimization of hydrodynamic cavitation using a model reaction, Chem. Eng. Technol., 23 (2000) 683–690.
  47. B. Wang, T. Wang, H. Su, A dye-methylene blue (MB)-degraded by hydrodynamic cavitation (HC) and combined with other oxidants, J. Environ. Chem. Eng., 10 (2022) 107877, doi: 10.1016/j. jece.2022.107877.
  48. N. Lakshmi, C. Agarkoti, P.R. Gogate, A.B. Pandit, Acoustic and hydrodynamic cavitation-based combined treatment techniques for the treatment of industrial real effluent containing mainly pharmaceutical compounds, J. Environ. Chem. Eng., 10 (2022) 108349, doi: 10.1016/j.jece.2022.108349.
  49. B. Wang, H. Jiao, H. Su, T. Wang, Degradation of pefloxacin by hybrid hydrodynamic cavitation with H2O2 and O3, Chemosphere, 303 (2022) 135299, doi: 10.1016/j.chemosphere.2022.135299.
  50. J. Wang, J. Wang, R. Yuan, J. Liu, Z. Yin, T. He, M. Wang, F. Ma, B. Zhou, H. Chen, Degradation of Acid Red 73 wastewater by hydrodynamic cavitation combined with ozone and its mechanism, Environ. Res., 210 (2022) 112954, doi: 10.1016/j.envres.2022.112954.
  51. M.A. Tariq, M. Faisal, M. Saquib, M. Muneer, Heterogeneous photocatalytic degradation of an anthraquinone and a triphenylmethane dye derivative in aqueous suspensions of semiconductor, Dyes Pigm., 76 (2008) 358–365.
  52. S. Li, X. Ao, C. Li, Z. Lu, W. Cao, F. Wu, S. Liu, W. Sun, Insight into PPCP degradation by UV/NH2Cl and comparison with UV/NaClO: kinetics, reaction mechanism, and DBP formation, Water Res., 182 (2020) 115967, doi: 10.1016/j.watres.2020.115967.
  53. N. Rastkari, A. Eslami, S. Nasseri, E. Piroti, A. Asadi, Optimizing parameters on nanophotocatalytic degradation of ibuprofen using UVC/ZnO processes by response surface methodology, Pol. J. Environ. Stud., 26 (2017) 785–794.
  54. X. Wang, J. Wang, P. Guo, W. Guo, C. Wang, Degradation of Rhodamine B in aqueous solution by using swirling jetinduced cavitation combined with H2O2, J. Hazard. Mater., 169 (2009) 486–491.
  55. E. Cako, K.D. Gunasekaran, R.D.C. Soltani, G. Boczkaj, Ultrafast degradation of brilliant cresyl blue under hydrodynamic cavitation based advanced oxidation processes (AOPs), Water Resour. Ind., 24 (2020) 100134, doi: 10.1016/j.wri.2020.100134.
  56. Y. Çalışkan, H.C. Yatmaz, N. Bektaş, Photocatalytic oxidation of high concentrated dye solutions enhanced by hydrodynamic cavitation in a pilot reactor, Process Saf. Environ. Prot., 111 (2017) 428–438.
  57. E. Rafiee, E. Noori, A.A. Zinatizadeh, H. Zanganeh, A new visible driven nanocomposite including Ti-substituted polyoxometalate/TiO2: synthesis, characterization, photodegradation of azo dye process optimization by RSM and specific removal rate calculations, J. Mater. Sci.: Mater. Electron., 29 (2018) 20668–20679.
  58. S. Boumaza, F. Kaouah, D. Hamane, M. Trari, S. Omeiri, Z. Bendjama, Visible light assisted decolorization of azo dyes: Direct Red 16 and Direct Blue 71 in aqueous solution on the p-CuFeO2/n-ZnO system, J. Mol. Catal. A: Chem., 393 (2014) 156–165.
  59. E. Rafiee, E. Noori, A. Zinatizadeh, H. Zanganeh, ([n-C4H9)4N]3PMo2W9(Sn4+·xH2O)O39/TiO2): a new visible photocatalyst for photodegradation of DR16 characterization and optimization process by RSM, J. Iran. Chem. Soc., 18 (2021) 1761–1772.