References

  1. M. Coha, G. Farinelli, A. Tiraferri, M. Minella, D. Vione, Advanced oxidation processes in the removal of organic substances from produced water: potential, configurations, and research needs, Chem. Eng. J., 414 (2021) 128668, doi: 10.1016/j.cej.2021.128668.
  2. S. Esplugas, P.L. Yue, M.I. Pervez, Degradation of 4-chlorophenol by photolytic oxidation, Water Res., 28 (1994) 1323–1328.
  3. I. Gasmi, O. Hamdaoui, H. Ferkous, A. Alghyamah, Sonochemical advanced oxidation process for the degradation of furosemide in water: effects of sonication’s conditions and scavengers, Ultrason. Sonochem., 95 (2023) 106361, doi: 10.1016/j.ultsonch.2023.106361.
  4. J. Peller, O. Wiest, P.V. Ka, Synergy of combining sonolysis and photocatalysis in the degradation and mineralization of chlorinated aromatic compounds, Environ. Sci. Technol., 37 (2003) 1926–1932.
  5. Z.H. Diao, F.X. Dong, L. Yan, Z.L. Chen, W. Qian, L.J. Kong, Z.W. Zhang, T. Zhang, X.Q. Tao, J.J. Du, D. Jiang, W. Chu, Synergistic oxidation of Bisphenol A in a heterogeneous ultrasound-enhanced sludge biochar catalyst/persulfate process: reactivity and mechanism, J. Hazard. Mater., 384 (2020) 121385, doi: 10.1016/j.jhazmat.2019.121385.
  6. D.S. Ma, H. Yi, C. Lai, X.G. Liu, X.Q. Huo, Z.W. An, L. Li, Y.K. Fu, B.S. Li, M.M. Zhang, L. Qin, S.Y. Liu, L. Yang, Critical review of advanced oxidation processes in organic wastewater treatment, Chemosphere, 275 (2021) 130104, doi: 10.1016/j.chemosphere.2021.130104.
  7. D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner, Evaluation of advanced oxidation processes for water and wastewater treatment - a critical review, Water Res., 139 (2018) 118–131.
  8. A.P. Bhat, P.R. Gogate, Degradation of nitrogen-containing hazardous compounds using advanced oxidation processes: a review on aliphatic and aromatic amines, dyes, and pesticides, J. Hazard. Mater., 403 (2021) 123657, doi: 10.1016/j.jhazmat.2020.123657.
  9. H. Harada, Sonophotocatalytic decomposition of water using TiO2 photocatalyst, Ultrason. Sonochem., 8 (2001) 55–58.
  10. H. Zhao, G.M. Zhang, Q.L. Zhang, MnO2/CeO2 for catalytic ultrasonic degradation of methyl orange, Ultrason. Sonochem., 21 (2014) 991–996.
  11. N. Ertugay, F.N. Acar, The degradation of Direct Blue 71 by sono, photo and sonophotocatalytic oxidation in the presence of ZnO nanocatalyst, Appl. Surf. Sci., 318 (2014) 121–126.
  12. Z.H. Zheng, B.L. Zhao, Y.P. Guo, Y.J. Guo, T. Pak, G.T. Li, Preparation of mesoporous batatas biochar via soft-template method for high efficiency removal of tetracycline, Sci. Total Environ., 787 (2021) 147397, doi: 10.1016/j.scitotenv.2021.147397.
  13. W.S. Chen, B.L. Zhao, Y.P. Guo, Y.J. Guo, Z.H. Zheng, T. Pak, G.T. Li, Effect of hydrothermal pretreatment on pyrolyzed sludge biochars for tetracycline adsorption, J. Environ. Chem. Eng., 9 (2021) 106557, doi: 10.1016/j.jece.2021.106557.
  14. M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S.S. Lee, Y.S. Ok, Biochar as a sorbent for contaminant management in soil and water: a review, Chemosphere, 99 (2014) 19–33.
  15. G.T. Li, X. Chen, L.Y. Xu, P.C. Lei, S. Zhang, C. Yang, Q.Y. Xiao, W.G. Zhao, Sonocatalytic degradation of methylene blue using biochars derived from sugarcane bagasse, Desal. Water Treat., 88 (2017) 122–127.
  16. S. Nikolaou, J. Vakrosa, E. Diamadopoulos, D. Mantzavinos, Sonochemical degradation of propylparaben in the presence of agro-industrial biochar, J. Environ. Chem. Eng., 8 (2020) 104010, doi: 10.1016/j.jece.2020.104010.
  17. J. Chu, J. Kang, S. Park, C. Lee, Enhanced sonocatalytic degradation of bisphenol A with a magnetically recoverable biochar composite using rice husk and rice bran as substrate, J. Environ. Chem. Eng., 9 (2021) 105284, doi: 10.1016/j.jece.2021.105284.
  18. B. Jun, Y. Kim, Y. Yoon, Y. Yea, C.M. Park, Enhanced sonocatalytic degradation of recalcitrant organic contaminants using a magnetically recoverable Ag/Fe-loaded activated biochar composite, Ceram. Int., 46 (2020) 22521–22531.
  19. D.P. Li, J.H. Qu, Research and technological development trends on drinking water safety assurance: water purification technologies based on interfacial interactions, Chin. J. Environ. Eng., 4 (2010) 1921–1925 (in Chinese).
  20. N. Kishimoto, S. Hamamoto, Removal of linear alkylbenzene sulfonate (LAS) by a cetyltrimethylammonium bromide (CTAB)-aided coagulation-filtration process, Environ. Technol., 43 (2020) 815–823.
  21. S. Ghosh, O. Falyouna, A. Malloum, A. Othmani, C. Bornman, H. Bedair, H. Onyeak, Z.T. Al-Sharify, A.O. Jacob, T. Miri, C. Osagie, S. Ahmadi, A general review on the use of advance oxidation and adsorption processes for the removal of furfural from industrial effluents, Microporous Mesoporous Mater., 331 (2022) 111638, doi: 10.1016/j.micromeso.2021.111638.
  22. I.P. Meneses, S.D. Novaes, R.S. Dezotti, P.V. Oliveira, D.F.S. Petri, CTAB-modified carboxymethyl cellulose/bagasse cryogels for the efficient removal of bisphenol A, methylene blue and Cr(VI) ions: batch and column adsorption studies, J. Hazard. Mater., 421 (2022) 126804, doi: 10.1016/j.jhazmat.2021.126804.
  23. F. Wang, D. Liu, P.W. Zheng, X.F. Ma, Synthesis of rectorite/Fe3O4-CTAB composite for the removal of nitrate and phosphate from water, J. Ind. Eng. Chem., 41 (2016) 165–174.
  24. G.E. Do Nascimento, R.A. de Freitas, J.M. Rodríguez-Díaz, P.M. Da Silva, T.H. Napoleão, M.M.M.B. Duarte, Degradation of the residual textile mixture cetyltrimethylammonium bromide/remazol yellow gold RNL-150%/reactive blue BF-5G: evaluation photo-peroxidation and photo-Fenton processes in LED and UV-C photoreactors, Environ. Sci. Pollut. Res., 28 (2021) 64630–64641.
  25. G.T. Li, H.Y. Li, X. Mi, W.G Zhao, Enhanced adsorption of Orange II on bagasse-derived biochar by direct addition of CTAB, Korean J. Chem. Eng., 36 (2019) 1274–1280.
  26. N.S. Al-Thabaiti, Q.A. AlSulami, Z. Khan, Role of ionic surfactants on the activation of K2S2O8 for the advanced oxidation processes, J. Mol. Liq., 369 (2023) 120837, doi: 10.1016/j.molliq.2022.120837.
  27. G.T. Li, W.Y. Zhu, L.F. Zhu, X.Q. Chai, Effect of pyrolytic temperature on the adsorptive removal of
    p-benzoquinone, tetracycline, and polyvinyl alcohol by the biochars from sugarcane bagasse, Korean J. Chem. Eng., 33 (2016) 215–221.
  28. J. Bandara, J.A. Mielczarski, J. Kiwi, Molecular mechanism of surface recognition. Azo dyes degradation on Fe, Ti, and Al oxides through metal sulfonate complexes, Langmuir, 15 (1999) 7670–7679.
  29. Y. Jiang, C. Petrier, T.D. Waite, Kinetics and mechanisms of ultrasonic degradation of volatile chlorinated aromatics in aqueous solutions, Ultrason. Sonochem., 9 (2002) 317–323.
  30. N.N. Mahamuni, A.B. Pandit, Effect of additives on ultrasonic degradation of phenol, Ultrason. Sonochem., 13 (2006) 165–174.
  31. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review, Appl. Catal., B, 49 (2004) 1–14.
  32. Y. Sun, J.J. Pignatello, Evidence for a surface dual hole-radical mechanism in the titanium dioxide photocatalytic oxidation of 2,4-D, Environ. Sci. Technol., 29 (1995) 2065–2072.
  33. G.T. Li, K.H. Wong, X.W. Zhang, C. Hu, J.C. Yu, R.C.Y. Chan, P.K. Wong, Degradation of AO7 using magnetic AgBr under visible light: the roles of oxidizing species, Chemosphere, 76 (2009) 1185–1191.
  34. G.T. Li, W.G. Zhao, B.B. Wang, Q.Y. Gu, X.W. Zhang, Synergetic degradation of Acid Orange 7 by fly ash under ultrasonic irradiation, Desal. Water Treat., 57 (2016) 2167–2174.
  35. M. Stylidi, D.I. Kondarides, X.E. Verykios, Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions, Appl. Catal., B, 40 (2003) 271–286.
  36. E. Manousaki, E. Psillakis, N. Kalogerakis, D. Mantzavinos, Degradation of sodium dodecylbenzene sulfonate in water by ultrasonic irradiation, Water Res., 38 (2014) 3751–3759.
  37. D.G. Wayment, D.J. Casadonte Jr., Frequency effect on the sonochemical remediation of alachlor, Ultrason, Sonochem., 9 (2002) 251–257.
  38. A.D. Gupta, H. Singh, S. Varjani, M.K. Awasthi, B.S. Giri, A. Pandey, A critical review on biochar-based catalysts for the abatement of toxic pollutants from water via advanced oxidation processes (AOPs), Sci. Total Environ., 849 (2022) 157831, doi: 10.1016/j.scitotenv.2022.157831.
  39. X.D. Zhu, Y.C. Liu, C. Zhou, G. Luo, S.C. Zhang, J.M. Chen, A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline, Carbon, 77 (2014) 627–636.
  40. W.T. Liu, D.J. Ren, J. Wu, Z.B. Wang, S.Q. Zhang, X.Q. Zhang, X.Y. Gong, Adsorption behavior of 2,4-DCP by rice straw biochar modified with CTAB, Environ. Technol., 42 (2021) 3797–3806.
  41. S. Chatterjee, M.W. Lee, S.H. Woo, Influence of impregnation of chitosan beads with cetyltrimethyl ammonium bromide on their structure and adsorption of Congo red from aqueous solutions, Chem, Eng. J., 155 (2009) 254–259.
  42. Z.X. Hua, Y.P. Pan, Q.K. Hong, Adsorption of Congo red dye in water by orange peel biochar modified with CTAB, RSC Adv., 13 (2023) 12502–12508.