References
- M. Coha, G. Farinelli, A. Tiraferri, M. Minella, D. Vione,
Advanced oxidation processes in the removal of organic
substances from produced water: potential, configurations, and
research needs, Chem. Eng. J., 414 (2021) 128668, doi: 10.1016/j.cej.2021.128668.
- S. Esplugas, P.L. Yue, M.I. Pervez, Degradation of 4-chlorophenol
by photolytic oxidation, Water Res., 28 (1994) 1323–1328.
- I. Gasmi, O. Hamdaoui, H. Ferkous, A. Alghyamah,
Sonochemical advanced oxidation process for the degradation
of furosemide in water: effects of sonication’s conditions
and scavengers, Ultrason. Sonochem., 95 (2023) 106361,
doi: 10.1016/j.ultsonch.2023.106361.
- J. Peller, O. Wiest, P.V. Ka, Synergy of combining sonolysis
and photocatalysis in the degradation and mineralization
of chlorinated aromatic compounds, Environ. Sci. Technol.,
37 (2003) 1926–1932.
- Z.H. Diao, F.X. Dong, L. Yan, Z.L. Chen, W. Qian, L.J. Kong,
Z.W. Zhang, T. Zhang, X.Q. Tao, J.J. Du, D. Jiang, W. Chu,
Synergistic oxidation of Bisphenol A in a heterogeneous
ultrasound-enhanced sludge biochar catalyst/persulfate
process: reactivity and mechanism, J. Hazard. Mater., 384 (2020)
121385, doi: 10.1016/j.jhazmat.2019.121385.
- D.S. Ma, H. Yi, C. Lai, X.G. Liu, X.Q. Huo, Z.W. An, L. Li,
Y.K. Fu, B.S. Li, M.M. Zhang, L. Qin, S.Y. Liu, L. Yang, Critical
review of advanced oxidation processes in organic wastewater
treatment, Chemosphere, 275 (2021) 130104, doi: 10.1016/j.chemosphere.2021.130104.
- D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes,
U. Hübner, Evaluation of advanced oxidation processes for
water and wastewater treatment - a critical review, Water Res.,
139 (2018) 118–131.
- A.P. Bhat, P.R. Gogate, Degradation of nitrogen-containing
hazardous compounds using advanced oxidation processes:
a review on aliphatic and aromatic amines, dyes, and
pesticides, J. Hazard. Mater., 403 (2021) 123657, doi: 10.1016/j.jhazmat.2020.123657.
- H. Harada, Sonophotocatalytic decomposition of water using
TiO2 photocatalyst, Ultrason. Sonochem., 8 (2001) 55–58.
- H. Zhao, G.M. Zhang, Q.L. Zhang, MnO2/CeO2 for catalytic
ultrasonic degradation of methyl orange, Ultrason. Sonochem.,
21 (2014) 991–996.
- N. Ertugay, F.N. Acar, The degradation of Direct Blue 71 by
sono, photo and sonophotocatalytic oxidation in the presence
of ZnO nanocatalyst, Appl. Surf. Sci., 318 (2014) 121–126.
- Z.H. Zheng, B.L. Zhao, Y.P. Guo, Y.J. Guo, T. Pak, G.T. Li,
Preparation of mesoporous batatas biochar via soft-template
method for high efficiency removal of tetracycline, Sci. Total
Environ., 787 (2021) 147397, doi: 10.1016/j.scitotenv.2021.147397.
- W.S. Chen, B.L. Zhao, Y.P. Guo, Y.J. Guo, Z.H. Zheng, T. Pak,
G.T. Li, Effect of hydrothermal pretreatment on pyrolyzed
sludge biochars for tetracycline adsorption, J. Environ. Chem.
Eng., 9 (2021) 106557, doi: 10.1016/j.jece.2021.106557.
- M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan,
D. Mohan, M. Vithanage, S.S. Lee, Y.S. Ok, Biochar as a sorbent
for contaminant management in soil and water: a review,
Chemosphere, 99 (2014) 19–33.
- G.T. Li, X. Chen, L.Y. Xu, P.C. Lei, S. Zhang, C. Yang, Q.Y. Xiao,
W.G. Zhao, Sonocatalytic degradation of methylene blue
using biochars derived from sugarcane bagasse, Desal. Water
Treat., 88 (2017) 122–127.
- S. Nikolaou, J. Vakrosa, E. Diamadopoulos, D. Mantzavinos,
Sonochemical degradation of propylparaben in the presence of
agro-industrial biochar, J. Environ. Chem. Eng., 8 (2020) 104010,
doi: 10.1016/j.jece.2020.104010.
- J. Chu, J. Kang, S. Park, C. Lee, Enhanced sonocatalytic degradation
of bisphenol A with a magnetically recoverable biochar
composite using rice husk and rice bran as substrate, J. Environ.
Chem. Eng., 9 (2021) 105284, doi: 10.1016/j.jece.2021.105284.
- B. Jun, Y. Kim, Y. Yoon, Y. Yea, C.M. Park, Enhanced
sonocatalytic degradation of recalcitrant organic contaminants
using a magnetically recoverable Ag/Fe-loaded activated
biochar composite, Ceram. Int., 46 (2020) 22521–22531.
- D.P. Li, J.H. Qu, Research and technological development
trends on drinking water safety assurance: water purification
technologies based on interfacial interactions, Chin. J. Environ.
Eng., 4 (2010) 1921–1925 (in Chinese).
- N. Kishimoto, S. Hamamoto, Removal of linear alkylbenzene
sulfonate (LAS) by a cetyltrimethylammonium bromide
(CTAB)-aided coagulation-filtration process, Environ. Technol.,
43 (2020) 815–823.
- S. Ghosh, O. Falyouna, A. Malloum, A. Othmani, C. Bornman,
H. Bedair, H. Onyeak, Z.T. Al-Sharify, A.O. Jacob, T. Miri,
C. Osagie, S. Ahmadi, A general review on the use of advance
oxidation and adsorption processes for the removal of furfural
from industrial effluents, Microporous Mesoporous Mater.,
331 (2022) 111638, doi: 10.1016/j.micromeso.2021.111638.
- I.P. Meneses, S.D. Novaes, R.S. Dezotti, P.V. Oliveira, D.F.S. Petri,
CTAB-modified carboxymethyl cellulose/bagasse cryogels for
the efficient removal of bisphenol A, methylene blue and Cr(VI)
ions: batch and column adsorption studies, J. Hazard. Mater.,
421 (2022) 126804, doi: 10.1016/j.jhazmat.2021.126804.
- F. Wang, D. Liu, P.W. Zheng, X.F. Ma, Synthesis of rectorite/Fe3O4-CTAB composite for the removal of nitrate and phosphate
from water, J. Ind. Eng. Chem., 41 (2016) 165–174.
- G.E. Do Nascimento, R.A. de Freitas, J.M. Rodríguez-Díaz,
P.M. Da Silva, T.H. Napoleão, M.M.M.B. Duarte, Degradation
of the residual textile mixture cetyltrimethylammonium
bromide/remazol yellow gold RNL-150%/reactive blue BF-5G:
evaluation photo-peroxidation and photo-Fenton processes
in LED and UV-C photoreactors, Environ. Sci. Pollut. Res.,
28 (2021) 64630–64641.
- G.T. Li, H.Y. Li, X. Mi, W.G Zhao, Enhanced adsorption of
Orange II on bagasse-derived biochar by direct addition of
CTAB, Korean J. Chem. Eng., 36 (2019) 1274–1280.
- N.S. Al-Thabaiti, Q.A. AlSulami, Z. Khan, Role of ionic
surfactants on the activation of K2S2O8 for the advanced
oxidation processes, J. Mol. Liq., 369 (2023) 120837,
doi: 10.1016/j.molliq.2022.120837.
- G.T. Li, W.Y. Zhu, L.F. Zhu, X.Q. Chai, Effect of pyrolytic
temperature on the adsorptive removal of
p-benzoquinone,
tetracycline, and polyvinyl alcohol by the biochars from
sugarcane bagasse, Korean J. Chem. Eng., 33 (2016) 215–221.
- J. Bandara, J.A. Mielczarski, J. Kiwi, Molecular mechanism of
surface recognition. Azo dyes degradation on Fe, Ti, and Al
oxides through metal sulfonate complexes, Langmuir, 15 (1999)
7670–7679.
- Y. Jiang, C. Petrier, T.D. Waite, Kinetics and mechanisms of
ultrasonic degradation of volatile chlorinated aromatics in
aqueous solutions, Ultrason. Sonochem., 9 (2002) 317–323.
- N.N. Mahamuni, A.B. Pandit, Effect of additives on ultrasonic
degradation of phenol, Ultrason. Sonochem., 13 (2006) 165–174.
- I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic
degradation of azo dyes in aqueous solution: kinetic and
mechanistic investigations A review, Appl. Catal., B, 49 (2004)
1–14.
- Y. Sun, J.J. Pignatello, Evidence for a surface dual hole-radical
mechanism in the titanium dioxide photocatalytic oxidation of
2,4-D, Environ. Sci. Technol., 29 (1995) 2065–2072.
- G.T. Li, K.H. Wong, X.W. Zhang, C. Hu, J.C. Yu, R.C.Y. Chan,
P.K. Wong, Degradation of AO7 using magnetic AgBr under
visible light: the roles of oxidizing species, Chemosphere,
76 (2009) 1185–1191.
- G.T. Li, W.G. Zhao, B.B. Wang, Q.Y. Gu, X.W. Zhang, Synergetic
degradation of Acid Orange 7 by fly ash under ultrasonic
irradiation, Desal. Water Treat., 57 (2016) 2167–2174.
- M. Stylidi, D.I. Kondarides, X.E. Verykios, Pathways of solar
light-induced photocatalytic degradation of azo dyes in
aqueous TiO2 suspensions, Appl. Catal., B, 40 (2003) 271–286.
- E. Manousaki, E. Psillakis, N. Kalogerakis, D. Mantzavinos,
Degradation of sodium dodecylbenzene sulfonate in water by
ultrasonic irradiation, Water Res., 38 (2014) 3751–3759.
- D.G. Wayment, D.J. Casadonte Jr., Frequency effect on the
sonochemical remediation of alachlor, Ultrason, Sonochem.,
9 (2002) 251–257.
- A.D. Gupta, H. Singh, S. Varjani, M.K. Awasthi, B.S. Giri,
A. Pandey, A critical review on biochar-based catalysts for
the abatement of toxic pollutants from water via advanced
oxidation processes (AOPs), Sci. Total Environ., 849 (2022)
157831, doi: 10.1016/j.scitotenv.2022.157831.
- X.D. Zhu, Y.C. Liu, C. Zhou, G. Luo, S.C. Zhang, J.M. Chen,
A novel porous carbon derived from hydrothermal carbon for
efficient adsorption of tetracycline, Carbon, 77 (2014) 627–636.
- W.T. Liu, D.J. Ren, J. Wu, Z.B. Wang, S.Q. Zhang, X.Q. Zhang,
X.Y. Gong, Adsorption behavior of 2,4-DCP by rice straw biochar
modified with CTAB, Environ. Technol., 42 (2021) 3797–3806.
- S. Chatterjee, M.W. Lee, S.H. Woo, Influence of impregnation
of chitosan beads with cetyltrimethyl ammonium bromide
on their structure and adsorption of Congo red from aqueous
solutions, Chem, Eng. J., 155 (2009) 254–259.
- Z.X. Hua, Y.P. Pan, Q.K. Hong, Adsorption of Congo red dye in
water by orange peel biochar modified with CTAB, RSC Adv.,
13 (2023) 12502–12508.