References

  1. T.L.S. Silva, S. Morales-Torres, S. Castro-Silva, J.L. Figueiredo, A.M.T. Silva, An overview on exploration and environmental impact of unconventional gas sources and treatment options for produced water, J. Environ. Manage., 200 (2017) 511–529.
  2. Y. Li, D. Zhou, W. Wang, T. Jiang, Z. Xue, Development of unconventional gas and technologies adopted in China, Energy Geosci., 1 (2020) 55–68.
  3. X. Tao, M. Gan, Z. Yao, J. Bai, M. Yang, G. Su, L. Zheng, Enhancing the production of tight sandstone gas well through fuzzy-ball fluid temporary plugging with diverting fractures and water cutting after refracturing in one operation, J. Pet. Sci. Eng., 217 (2022) 110883, doi: 10.1016/j.petrol.2022.110883.
  4. X. Tan, C. Jia, J. Liu, G. Liu, R. Zheng, S. Wang, Q. Liu, Gas and water distribution in the tight gas sands of the northwestern daniudi gas field, ordos basin, China: impact of the shale barrier, Fuel, 317 (2022) 122782, doi: 10.1016/j.fuel.2021.122782.
  5. L. Torres, O.P. Yadav, E. Khan, A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production, Sci. Total Environ., 539 (2016) 478–493.
  6. C. Guo, H. Chang, B. Liu, Q. He, B. Xiong, M. Kumar, A.L. Zydney, A combined ultrafiltration-reverse osmosis process for external reuse of Weiyuan shale gas flowback and produced water, Environ. Sci. Water Res. Technol., 4 (2018) 942–955.
  7. J. Rosenblum, A.W. Nelson, B. Ruyle, M.K. Schultz, J.N. Ryan, K.G. Linden, Temporal characterization of flowback and produced water quality from a hydraulically fractured oil and gas well, Sci. Total Environ., 596–597 (2017) 369–377.
  8. Y. Lu, Y. Zhang, C. Zhong, J.W. Martin, D.S. Alessi, G.G. Goss, Y. Ren, Y. He, Suspended solids-associated toxicity of hydraulic fracturing flowback and produced water on early life stages of zebrafish (Danio rerio), Environ. Pollut., 287 (2021) 117614, doi: 10.1016/j.envpol.2021.117614.
  9. B. Alley, A. Beebe, J. Rodgers, J.W. Castle, Chemical and physical characterization of produced waters from conventional and unconventional fossil fuel resources, Chemosphere, 85 (2011) 74–82.
  10. Y. Li, Y. Wang, Q. Wang, Z. Liu, L. Tang, L. Liang, C. Zhang, Q. Li, N. Xu, J. Sun, W. Shi, Achieving the super
    gas-wetting alteration by functionalized nano-silica for improving fluid flowing capacity in gas condensate reservoirs, ACS Appl. Mater. Interfaces, 13 (2021) 10996–11006.
  11. M. Riaz, G.M. Kontogeorgis, E.H. Stenby, W. Yan, T. Haugum, K.O. Christensen, T.V. Lokken, E. Solbraa, Measurement of liquid–liquid equilibria for condensate plus glycol and condensate plus glycol plus water systems, J. Chem. Eng. Data, 56 (2011) 4342–4351.
  12. H. Esmaeili, F. Esmaeilzadeh, D. Mowla, Effect of surfactant on stability and size distribution of gas condensate droplets in water, J. Chem. Eng. Data, 59 (2014) 1461–1467.
  13. C. Wang, Y. Lv, C. Song, D. Zhang, F. Rong, L. He, Separation of emulsified crude oil from produced water by gas flotation: a review, Sci. Total Environ., 845 (2022) 157304, doi: 10.1016/j.scitotenv.2022.157304.
  14. A. Butkovskyi, H. Bruning, S. Kools, H. Rijnaarts, A.P. Van Wezel, Organic pollutants in shale gas flowback and produced waters: identification, potential ecological impact, and implications for treatment strategies, Environ. Sci. Technol., 51 (2017) 4740–4754.
  15. G. Shu, K. Bu, B. Zhao, S. Zheng, Evaluation of newly developed reverse demulsifiers and cationic polyacrylamide flocculants for efficient treatment of oily produced water, Colloids Surf., A, 610 (2021) 125646, doi: 10.1016/j.colsurfa.2020.125646.
  16. C. Shi, L. Zhang, L. Xie, X. Lu, Q. Liu, C.A. Mantilla, F.G.A. van den Berg, H. Zeng, Interaction mechanism of oil-in-water emulsions with asphaltenes determined using droplet probe AFM, Langmuir, 32 (2016) 2302–2310.
  17. H. Sun, Q. Wang, X. Li, X. He, Novel polyether-polyquaternium copolymer as an effective reverse demulsifier for O/W emulsions: demulsification performance and mechanism, Fuel, 263 (2020) 116770, doi: 10.1016/j.fuel.2019.116770.
  18. D. Wang, D. Yang, C. Huang, Y. Huang, D. Yang, H. Zhang, Q. Liu, T. Tang, M. Gamal El-Din, T. Kemppi, B. Perdicakis, H. Zeng, Stabilization mechanism and chemical demulsification of water-in-oil and oil-in-water emulsions in petroleum industry: a review, Fuel, 286 (2021) 119390, doi: 10.1016/j.fuel.2020.119390.
  19. J. Kuang, Y. Mi, Z. Zhang, F. Ye, H. Yuan, W. Liu, X. Jiang, Y. Luo, A hyperbranched poly(amido amine) demulsifier with trimethyl citrate as initial cores and its demulsification performance at ambient temperature, J. Water Process Eng., 38 (2020) 101542, doi: 10.1016/j.jwpe.2020.101542.
  20. J. Zhang, B. Jing, S. Fang, M. Duan, Y. Ma, Synthesis and performances for treating oily wastewater produced from polymer flooding of new demulsifiers based on polyoxyalkylated N,N-dimethylethanolamine, Polym. Adv. Technol., 26 (2015) 190–197.
  21. J. Li, C. Wang, Q. Tang, M. Zhai, Q. Wang, M. Shi, X. Li, Preparation and application of supported demulsifier PPA@SiO2 for oil removal of oil-in-water emulsion, Sep. Sci. Technol., 55 (2020) 2538–2549.
  22. M. Duan, J. He, D. Li, X. Wang, B. Jing, Y. Xiong, S. Fang, Synthesis of a novel copolymer of block polyether macromonomer and diallyldimethylammonium chloride and its reverse demulsification performance, J. Pet. Sci. Eng., 175 (2019) 317–323.
  23. J. Ma, J. Shi, L. Ding, H. Zhang, S. Zhou, Q. Wang, X. Fu, L. Jiang, K. Fu, Removal of emulsified oil from water using hydrophobic modified cationic polyacrylamide flocculants synthesized from low-pressure UV initiation, Sep. Purif. Technol., 197 (2018) 407–417.
  24. J. Zhai, Z.J. Huang, M.H. Rahaman, Y. Li, L.Y. Mei, H.P. Ma, X.B. Hu, H.W. Xiao, Z.Y. Luo, K.P. Wang, Comparison of coagulation pretreatment of produced water from natural gas well by polyaluminium chloride and polyferric sulphate coagulants, Environ. Technol., 38 (2017) 1200–1210.
  25. Y. Sun, C. Zhu, H. Zheng, W. Sun, Y. Xu, X. Xiao, Z. You, C. Liu, Characterization and coagulation behavior of polymeric aluminum ferric silicate for high-concentration oily wastewater treatment, Chem. Eng. Res. Des., 119 (2017) 23–32.
  26. O.S. Amuda, I.A. Amoo, Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment, J. Hazard. Mater., 141 (2007) 778–783.
  27. J.Y. Yang, L. Yan, S.P. Li, X.R. Xu, Treatment of aging oily wastewater by demulsification/flocculation, J. Environ. Sci. Health., Part A Environ. Sci. Eng. Toxic Hazard. Subst. Control, 51 (2016) 798–804.
  28. H. Chang, B. Liu, B. Yang, X. Yang, C. Guo, Q. He, S. Liang, S. Chen, P. Yang, An integrated coagulation-ultrafiltrationnanofiltration process for internal reuse of shale gas flowback and produced water, Sep. Purif. Technol., 211 (2019) 310–321.
  29. M.M. Abdulredha, S.A. Hussain, L.C. Abdullah, Optimization of the demulsification of water in oil emulsion via non-ionic surfactant by the response surface methods, J. Pet. Sci. Eng., 184 (2020) 106463, doi: 10.1016/j.petrol.2019.106463.
  30. K.B. Gregory, R.D. Vidic, D.A. Dzombak, Water management challenges associated with the production of shale gas by hydraulic fracturing, Elements, 7 (2011) 181–186.
  31. X. Zheng, H. Zheng, Y. Zhou, Y. Sun, R. Zhao, Y. Liu, S. Zhang, Enhanced adsorption of Orange G from aqueous solutions by quaternary ammonium group-rich magnetic nanoparticles, Colloids Surf., A, 580 (2019) 123746, doi: 10.1016/j.colsurfa.2019.123746.
  32. Z. Kong, J. Wei, Y. Li, N. Liu, H. Zhang, Y. Zhang, L. Cui, Rapid removal of Cr(VI) ions using quaternary ammonium fibers functioned by 2-(dimethylamino)ethyl methacrylate and modified with 1-bromoalkanes, Chem. Eng. J., 254 (2014) 365–373.
  33. J. Zhuang, N. Rong, X. Wang, C. Chen, Z. Xu, Adsorption of small size microplastics based on cellulose nanofiber aerogel modified by quaternary ammonium salt in water, Sep. Purif. Technol., 293 (2022) 121133, doi: 10.1016/j.seppur.2022.121133.
  34. X. Chen, H. Li, L. Lai, Y. Zhang, Y. Chen, X. Li, B. Liu, H. Wang, Peroxymonosulfate activation using MnFe2O4 modified biochar for organic pollutants degradation: performance and mechanisms, Sep. Purif. Technol., 308 (2023) 122886, doi: 10.1016/j.seppur.2022.122886.
  35. H. Yuan, F. Ye, G. Ai, G. Zeng, L. Chen, L. Shen, Y. Yang, X. Feng, Z. Zhang, Y. Mi, Preparation of an environmentally friendly demulsifier using waste rice husk as raw materials for oil–water emulsion separation, J. Mol. Liq., 367 (2022) 120497, doi: 10.1016/j.molliq.2022.120497.
  36. A.S. El-Tabei, A.E. El-Tabey, E.A. El-Sharaky, Novel synthesized polymeric surfactants additives based on phenethylamine as an emulsion breaker for water droplet coalescence in naturally Egyptian crude oil emulsion, J. Mol. Liq., 338 (2021) 116779, doi: 10.1016/j.molliq.2021.116779.
  37. N. Nciri, N. Cho, A thorough study on the molecular weight distribution in natural asphalts by gel permeation chromatography (GPC): the case of Trinidad Lake Asphalt and Asphalt Ridge Bitumen, Mater. Today Proc., 5 (2018) 23656–23663.
  38. J. Ma, J. Shi, H. Ding, G. Zhu, K. Fu, X. Fu, Synthesis of cationic polyacrylamide by low-pressure UV initiation for turbidity water flocculation, Chem. Eng. J., 312 (2017) 20–29.
  39. B. Huang, J. Wang, W. Zhang, C. Fu, Y. Wang, X. Liu, Screening and optimization of demulsifiers and flocculants based on ASP flooding-produced water, Processes, 7 (2019) 239, doi: 10.3390/pr7040239.
  40. W.L. Kang, B. Xu, Y.J. Wang, X.H. Shan, Y. Li, Q.C. Liu, Study on stability and treatment of surfactant/polymer flooding wastewater, J. Pet. Sci. Technol., 31 (2013) 880–886.
  41. R. Lyu, Z. Li, C. Liang, C. Zhang, T. Xia, M. Wu, Y. Wang, L. Wang, X. Luo, C. Xu, Acylated carboxymethyl chitosan grafted with MPEG-1900 as a high-efficiency demulsifier for O/W crude oil emulsions, Carbohydr. Polym. Technol. Appl., 2 (2021) 100144, doi: 10.1016/j.carpta.2021.100144.
  42. H. Sun, X. He, Q.Q. Wang, X.B. Li, Demulsification of O/W emulsion using a novel polyether-polyquaternium copolymer: effect of the demulsifier structure and solution environment conditions, Sep. Sci. Technol., 56 (2021) 811–820.
  43. P. Biniaz, M. Farsi, M.R. Rahimpour, Demulsification of water in oil emulsion using ionic liquids: statistical modeling and optimization, Fuel, 184 (2016) 325–333.
  44. J. Mao, G.H. Ni, Y.H. Xu, H. Wang, Z. Li, Z.Y. Wang, Modeling and optimization of mechanical properties of drilling sealing materials based on response surface method, J. Cleaner Prod., 377 (2022) 134452, doi: 10.1016/j.jclepro.2022.134452.
  45. Y. Zhao, F. Bi, M. Khayet, T. Symonds, X. Wang, Study of seat-to-head vertical vibration transmissibility of commercial vehicle seat system through response surface method modeling and Genetic Algorithm, Appl. Acoust., 203 (2023) 109216, doi: 10.1016/j.apacoust.2023.109216.
  46. Y. Li, Y. Zhou, R. Ni, J. Shang, X. Cheng, Degradation of sulfamethazine sodium salt by peroxymonosulfate activated by biochar supported CoFe2S4: performance, mechanism and response surface method optimization, J. Environ. Chem. Eng., 10 (2022) 108059, doi: 10.1016/j.jece.2022.108059.
  47. X. Huang, F. Li, Y. Li, X. Meng, X. Yang, B. Sundén, Optimization of melting performance of a heat storage tank under rotation conditions: based on Taguchi design and response surface method, Energy, 271 (2023) 127100, doi: 10.1016/j.energy.2023.127100.
  48. Z.H. Liu, W. Chen, D. Wu, S.X. Wei, M.J. Zhu, Optimized electrocoagulation technology using response surface methodology to control H-2 production and treatment effect of fracturing flowback fluid treated by electrocoagulation, Desal. Water Treat., 262 (2022) 74–88.
  49. D. Li, H. Chen, X. Gao, J. Zhang, Establishment and optimization of partial nitrification/anammox/partial nitrification/anammox (PN/A/PN/A) process based on multi-stage ammonia oxidation: using response surface method as a tool, Bioresour. Technol., 361 (2022) 127722, doi: 10.1016/j.biortech.2022.127722.
  50. M. Fan, C. Nie, H. Du, J. Ni, B. Wang, X. Wang, An insight into the solar demulsification of highly emulsified water produced from oilfields by monitoring the viscosity, zeta potential, particle size and rheology, Colloids Surf., A, 575 (2019) 144–154.
  51. Y. Wang, S. Fang, X. Wang, Y. Wang, Y. Xiong, M. Duan, Synthesis of a novel reverse demulsifier with the characteristics of polyacrylate and polycation and its demulsification performance, J. Appl. Polym. Sci., 138 (2021) 1–11.
  52. R. Zolfaghari, A. Fakhru L-Razi, L.C. Abdullah, S.S.E.H. Elnashaie, A. Pendashteh, Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry, Sep. Purif. Technol., 170 (2016) 377–407.
  53. B. Huang, X.H. Li, W. Zhang, C. Fu, Y. Wang, S.Q. Fu, Study on Demulsification–flocculation mechanism of oil-water emulsion in produced water from alkali/surfactant/polymer flooding, Polymers, 11 (2019) 1–13.
  54. X. Ma, D. Duan, X. Chen, X. Feng, Y. Ma, A polysaccharide-based bioflocculant BP50-2 from banana peel waste: purification, structure and flocculation performance, Int. J. Biol. Macromol., 205 (2022) 604–614.
  55. S. Wang, H. Zhao, D. Qu, L. Yang, L. Zhu, H. Song, H. Liu, Destruction of hydrogen bonding and electrostatic interaction in soy hull polysaccharide: effect on emulsion stability, Food Hydrocolloids, 124 (2022) 107304, doi: 10.1016/j.foodhyd.2021.107304.
  56. Z. Wang, L. Shen, X.L. Zhuang, J.S. Shi, Y.P. Wang, N. He, Y.I. Chang, Flocculation characterization of a bioflocculant from Bacillus licheniformis, Ind. Eng. Chem. Res., 54 (2015) 2894–2901.
  57. M. Nadella, R. Sharma, S. Chellam, Fit-for-purpose treatment of produced water with iron and polymeric coagulant for reuse in hydraulic fracturing: temperature effects on aggregation and high-rate sedimentation, Water Res., 170 (2020) 115330, doi: 10.1016/j.watres.2019.115330.
  58. Y.F. Wang, H. Jia, H.W. Zhang, J. Wang, W.J. Liu, Performance of a novel recycling magnetic flocculation membrane filtration process for tetracycline-polluted surface water treatment, Water Sci. Technol., 76 (2017) 490–500.
  59. S.D. Anicio, V.D. Lopes, A.L. de Oliveira, PSD and fractal dimension for flocculation with different parameters and ferric chloride, aluminium polychloride and aluminium sulfate as coagulants, J. Water Process Eng., 43 (2021) 102180, doi: 10.1016/j.jwpe.2021.102180.