References
- D. Woolf, J.E. Amonette, F.A. Street-Perrott, J. Lehmann,
S. Joseph, Sustainable biochar to mitigate global climate change,
Nat. Commun., 1 (2010) 56, doi: 10.1038/ncomms1053.
- J. Lehmann, S. Joseph, Biochar for Environmental Management:
Science, Technology and Implementation, Routledge, Taylor &
Francis Group, Abingdon and New York, 2015.
- D. Xu, L. Yang, K. Ding, Y. Zhang, W. Gao, Y. Huang, H. Sun,
X. Hu, S.S.A. Syed-Hassan, S. Zhang, H. Zhang,
Mini-review on
char catalysts for tar reforming during biomass gasification: the
importance of char structure, Energy Fuels, 34 (2020) 1219–1229.
- Q. Hu, J. Jung, D. Chen, K. Leong, S. Song, F. Li, B.C. Mohan,
Z. Yao, A.K. Prabhakar, X.H. Lin, E.Y. Lim, L. Zhang,
G. Souradeep, Y.S. Ok, H.W. Kua, S.F.Y. Li, H.T.W. Tan, Y. Dai,
Y.W. Tong, Y. Peng, S. Joseph, C.H. Wang, Biochar industry
to circular economy, Sci. Total Environ., 757 (2021) 143820,
doi: 10.1016/J.SCITOTENV.2020.143820.
- E.F. Zama, B.J. Reid, H.P.H. Arp, G.X. Sun, H.Y. Yuan,
Y.G. Zhu, Advances in research on the use of biochar in soil for
remediation: a review, J. Soils Sediments, 18 (2018) 2433–2450.
- J. Yuan, Y. Wen, D.D. Dionysiou, V.K. Sharma, X. Ma, Biochar as
a novel carbon-negative electron source and mediator: electron
exchange capacity (EEC) and environmentally persistent free
radicals (EPFRs): a review, Chem. Eng. J., 429 (2022) 132313,
doi: 10.1016/J.CEJ.2021.132313.
- A.M. Dehkhoda, N. Ellis, E. Gyenge, Effect of activated biochar
porous structure on the capacitive deionization of NaCl and
ZnCl2 solutions, Microporous Mesoporous Mater., 224 (2016)
217–228.
- W.J. Liu, H. Jiang, H.Q. Yu, Emerging applications of
biochar-based materials for energy storage and conversion,
Energy Environ. Sci., 12 (2019) 1751–1779.
- J. Lim, Y.U. Shin, S. Hong, Enhanced capacitive deionization
using a biochar-integrated novel flow-electrode, Desalination,
528 (2022) 115636, doi: 10.1016/J.DESAL.2022.115636.
- F. Srocke, L. Han, P. Dutilleul, X. Xiao, D.L. Smith, O. Mašek,
Synchrotron X-ray microtomography and multifractal analysis
for the characterization of pore structure and distribution
in softwood pellet biochar, Biochar, 1 (2021) 3, doi: 10.1007/s42773-021-00104-3.
- K. Weber, P. Quicker, Properties of biochar, Fuel, 217 (2018)
240–261.
- S. Il Jeon, H.R. Park, J.G. Yeo, S. Yang, C.H. Cho, M.H. Han,
D.K. Kim, Desalination via a new membrane capacitive
deionization process utilizing flow-electrodes, Energy Environ.
Sci., 6 (2013) 1471–1475.
- C. Zhang, J. Ma, L. Wu, J. Sun, L. Wang, T. Li, T.D. Waite, Flow
electrode capacitive deionization (FCDI): recent developments,
environmental applications, and future perspectives,
Environ. Sci. Technol., 55 (2021) 4243–4267.
- F. Yang, Y. He, L. Rosentsvit, M.E. Suss, X. Zhang, T. Gao,
P. Liang, Flow-electrode capacitive deionization: a review and
new perspectives, Water Res., 200 (2021) 117222, doi: 10.1016/j.watres.2021.117222.
- F. Yu, Z. Yang, Y. Cheng, S. Xing, Y. Wang, J. Ma, A comprehensive
review on flow-electrode capacitive deionization: design,
active material and environmental application, Sep. Purif.
Technol., 281 (2022) 119870, doi: 10.1016/J.SEPPUR.2021.119870.
- S. Yang, J. Choi, J.G. Yeo, S. Il Jeon, H.R. Park, D.K. Kim, Flowelectrode
capacitive deionization using an aqueous electrolyte
with a high salt concentration, Environ. Sci. Technol., 50 (2016)
5892–5899.
- A. Rommerskirchen, A. Kalde, C.J. Linnartz, L. Bongers,
G. Linz, M. Wessling, Unraveling charge transport in carbon
flow-electrodes: performance prediction for desalination
applications, Carbon N. Y., 145 (2019) 507–520.
- S. Porada, D. Weingarth, H.V.M. Hamelers, M. Bryjak, V. Presser,
P.M. Biesheuvel, Carbon flow electrodes for continuous
operation of capacitive deionization and capacitive mixing
energy generation, J. Mater. Chem. A, 2 (2014) 9313–9321.
- K. Tang, S. Yiacoumi, Y. Li, C. Tsouris, Enhanced water
desalination by increasing the electroconductivity of carbon
powders for high-performance flow-electrode capacitive
deionization, ACS Sustainable Chem. Eng., 7 (2018) 1085–1094.
- K.S. Ngai, Electrode Materials for Electrochemical Double-Layer Capacitors, LF. Cabeza, Ed., Encyclopedia of Energy
Storage, Elsevier, 2022, pp. 341–350, ISBN 9780128197301.
doi: 10.1016/B978-0-12-819723-3.00108-6
- G. Ravenni, O.H. Elhami, J. Ahrenfeldt, U.B. Henriksen,
Y. Neubauer, Adsorption and decomposition of tar model
compounds over the surface of gasification char and
active carbon within the temperature range 250°C–800°C,
Appl. Energy, 241 (2019) 139–151.
- S. Dahiya, B.K. Mishra, Enhancing understandability and
performance of flow electrode capacitive deionisation by
optimizing configurational and operational parameters: a
review on recent progress, Sep. Purif. Technol., 240 (2020)
116660, doi: 10.1016/j.seppur.2020.116660.
- K.B. Hatzell, M.C. Hatzell, K.M. Cook, M. Boota, G.M. Housel,
A. McBride, E.C. Kumbur, Y. Gogotsi, Effect of oxidation of
carbon material on suspension electrodes for flow electrode
capacitive deionization, Environ. Sci. Technol., 49 (2015)
3040–3047.
- D.V. Cuong, P.C. Wu, N.L. Liu, C.H. Hou, Hierarchical porous
carbon derived from activated biochar as an eco-friendly
electrode for the electrosorption of inorganic ions, Sep. Purif.
Technol., 242 (2020) 116813, doi: 10.1016/J.SEPPUR.2020.116813.
- S. Porada, R. Zhao, A. Van Der Wal, V. Presser, P.M. Biesheuvel,
Review on the science and technology of water desalination
by capacitive deionization, Prog. Mater. Sci., 58 (2013)
1388–1442.
- Y. Shen, Chars as carbonaceous adsorbents/catalysts for
tar elimination during biomass pyrolysis or gasification,
Renewable Sustainable Energy Rev., 43 (2015) 281–295.
- L. Tsechansky, E.R. Graber, Methodological limitations to
determining acidic groups at biochar surfaces via the Boehm
titration, Carbon N. Y., 66 (2014) 730–733.
- N.B. Klinghoffer, M.J. Castaldi, A. Nzihou, Influence of char
composition and inorganics on catalytic activity of char
from biomass gasification, Fuel, 157 (2015) 37–47.
- D. Feng, H. Sun, Y. Ma, S. Sun, Y. Zhao, D. Guo, G. Chang,
X. Lai, J. Wu, H. Tan, Catalytic mechanism of K and Ca on the
volatile-biochar interaction for rapid pyrolysis of biomass:
experimental and simulation studies, Energy Fuels, 34 (2020)
9741–9753.
- J. Ahrenfeldt, U. Henriksen, T.K. Jensen, B. Gøbel, L. Wiese,
A. Kather, H. Egsgaard, Validation of a continuous combined
heat and power (CHP) operation of a two-stage biomass
gasifier, Energy Fuels, 20 (2006) 2672–2680.
- J. Jagiełło, Stable numerical solution of the adsorption
integral equation using splines, Langmuir, 10 (2002) 2778–2785.
- J. Jagiello, J.P. Olivier, 2D-NLDFT adsorption models for carbon
slit-shaped pores with surface energetical heterogeneity and
geometrical corrugation, Carbon N. Y., 55 (2013) 70–80.
- J. Bitenc, A. Vizintin, J. Grdadolnik, R. Dominko, Tracking
electrochemical reactions inside organic electrodes by
operando IR spectroscopy, Energy Storage Mater., 21 (2019)
347–353.
- M. Ilić, F.H. Haegel, A. Lolić, Z. Nedić, T. Tosti, I.S. Ignjatović,
A. Linden, N.D. Jablonowski, H. Hartmann, Surface functional
groups and degree of carbonization of selected chars from
different processes and feedstock, PLoS One, 17 (2022) e0277365,
doi: 10.1371/JOURNAL.PONE.0277365.
- C. Qin, H. Wang, X. Yuan, T. Xiong, J. Zhang, J. Zhang,
Understanding structure-performance correlation of biochar
materials in environmental remediation and electrochemical
devices, Chem. Eng. J., 382 (2020) 122977, doi: 10.1016/J.CEJ.2019.122977.
- A. Dufour, A. Celzard, V. Fierro, E. Martin, F. Broust,
A. Zoulalian, Catalytic decomposition of methane over a wood
char concurrently activated by a pyrolysis gas, Appl. Catal., A,
346 (2008) 164–173.
- D. Boonpakdee, C.F. Guajardo Yévenes, W. Surareungchai,
C. La-O-Vorakiat, Exploring non-linearities of carbon-based
microsupercapacitors from an equivalent circuit perspective,
J. Mater. Chem. A, 6 (2018) 7162–7167.
- M. Forghani, S.W. Donne, Method comparison for
deconvoluting capacitive and pseudo-capacitive contributions
to electrochemical capacitor electrode behavior, J. Electrochem.
Soc., 165 (2018) A664–A673.
- S. Bhattacharjee, DLS and zeta potential – What they are and
what they are not?, J. Control Release, 235 (2016) 337–351.
- D. Biriukov, P. Fibich, M. Předota, Zeta potential determination
from molecular simulations, J. Phys. Chem. C, 124 (2020)
3159–3170.
- T.F. Tadros, Ed., Volume 1 Basic Principles of Interface
Science and Colloid Stability, De Gruyter, n.d. doi: 10.1515/9783110540895.
- J. Ma, C. He, D. He, C. Zhang, T.D. Waite, Analysis of capacitive
and electrodialytic contributions to water desalination by
flow-electrode CDI, Water Res., 144 (2018) 296–303.
- K. Alsaikhan, A. Alsultan, A. Alkhaldi, A. Bentalib, A. Abutalib,
D. Wu, J. Li, R. Xie, Z. Peng, M. Khamis, I. Wait, V. Nenov,
Carbon material-based flow-electrode capacitive deionization
for continuous water desalination, Processes, 11 (2023) 195,
doi: 10.3390/PR11010195.
- J.H. Choi, Determination of the electrode potential causing
Faradaic reactions in membrane capacitive deionization,
Desalination, 347 (2014) 224–229.
- P. Nativ, Y. Badash, Y. Gendel, New insights into the mechanism
of flow-electrode capacitive deionization, Electrochem.
Commun., 76 (2017) 24–28.
- C. Zhang, D. He, J. Ma, W. Tang, T.D. Waite, Faradaic reactions
in capacitive deionization (CDI) - problems and possibilities: a
review, Water Res., 128 (2018) 314–330.
- I. Cohen, E. Avraham, Y. Bouhadana, A. Soffer, D. Aurbach,
Long term stability of capacitive de-ionization processes
for water desalination: the challenge of positive electrodes
corrosion, Electrochim. Acta, 106 (2013) 91–100.
- J.R. Rumble, D.R. Lide, T.J. Bruno, CRC Handbook of
Chemistry and Physics [2019–
- : A Ready-Reference Book of
Chemical and Physical Data, CRC Press, Boca Raton, 2019.
- A. Rommerskirchen, C.J. Linnartz, F. Egidi, S. Kendir,
M. Wessling, Flow-electrode capacitive deionization enables
continuous and energy-efficient brine concentration,
Desalination, 490 (2020) 114453, doi: 10.1016/j.desal.2020.114453.
- X. Ruan, Y. Sun, W. Du, Y. Tang, Q. Liu, Z. Zhang, W. Doherty,
R.L. Frost, G. Qian, D.C.W. Tsang, Formation, characteristics,
and applications of environmentally persistent free radicals
in biochars: a review, Bioresour. Technol., 281 (2019) 457–468.
- Y. Liu, M. Paskevicius, M.V. Sofianos, G. Parkinson, S. Wang,
C.Z. Li, A SAXS study of the pore structure evolution in
biochar during gasification in H2O, CO2 and H2O/CO2, Fuel,
292 (2021) 120384, doi: 10.1016/j.fuel.2021.120384.