References

  1. L. Zhang, K.H. Wong, Z. Chen, J.C. Yu, J. Zhao, C. Hu, Y.C. Chan, P.K. Wong, AgBr-Ag-Bi2WO6 nanojunction system: a novel and efficient photocatalyst with double visible-light active components, Appl. Catal., A, 363 (2009) 221–229.
  2. H. Chen, J. Zhao, Adsorption study for removal of Congo red anionic dye using organo-attapulgite, Adsorption, 15 (2009) 381–389.
  3. S.T. Ong, P.S. Keng, W.N. Lee, S.T. Ha, Y.T. Hung, Dye waste treatment, Water, 3 (2011) 157–176.
  4. S.H. Huo, X.P. Yan, Metal–organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution, J. Mater. Chem., 22 (2012) 7449–7455.
  5. G. Crini, Non-conventional low-cost adsorbents for dye removal: a review, Bioresour. Technol., 97 (2006) 1061–1085.
  6. I.K. Konstantinou, T.A. Albanis, TiO2 assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review, Appl. Catal., B, 49 (2004) 1–14.
  7. A.K. Vera, R.R. Dash, P. Bhunia, A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters, J. Environ. Manage., 93 (2012) 154–168.
  8. L.S. Andrade, L.A.M. Ruotolo, R.C. Rocha-Filho, N. Bocchi, S.R. Biaggio, J. Iniesta, V. García-Garcia, V. Montiel, On the performance of Fe and Fe,F doped Ti–Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater, Chemosphere, 66 (2007) 2035–2043.
  9. C.I. Pearce, J. Lloyd, J. Guthrie, The removal of colour from textile wastewater using whole bacterial cells: a review, Dyes Pigm., 58 (2003) 179–196.
  10. V.K. Gupta, A. Mittal, R. Jain, M. Mathur, S. Sikarwar, Adsorption of Safranin-T from wastewater using waste materials-activated carbon and activated rice husks, J. Colloid Interface Sci., 303 (2006) 80–86.
  11. S.K. Alpat, O. Ozbayrak, S. Alpat, Akçay, The adsorption kinetics and removal of cationic dye, Toluidine Blue O, from aqueous solution with Turkish zeolite, J. Hazard. Mater., 151 (2008) 213–220.
  12. X. Lu, W. Yang, Z. Quan, T. Lin, L. Bai, L. Wang, F. Huang, Y. Zhao, Enhanced electron transport in Nb-doped TiO2 nanoparticles via pressure-induced phase transitions, J. Am. Chem. Soc., 136 (2014) 419–426.
  13. B. Ohtani, Photocatalysis A to Z–what we know and what we do not know in a scientific sense, J. Photochem. Photobiol., C, 11 (2010) 157–178.
  14. T.L. Thompson, J.T. Yates, Surface science studies of the photoactivation of TiO2 – new photochemical processes, Chem. Rev., 106 (2006) 4428–4453.
  15. D. Chen, K. Wang, W. Hong, R. Zong, W. Yao, Y. Zhu, Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite, Appl. Catal., B, 166 (2015) 366–373.
  16. S.B. Zhu, T.G. Xu, H.B. Fu, J. Zhao, Y. Zhu, Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation, Environ. Sci. Technol., 41 (2007) 6234–6239.
  17. Y. Wang, X. Bai, C. Pan, J. He, Y. Zhu, Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4, J. Mater. Chem., 22 (2012) 11568–11573.
  18. S. Chen, Y. Hu, X. Jiang, S. Meng, X. Fu, Fabrication and characterization of novel Z-scheme photocatalyst
    WO3/g-C3N4 with high-efficient visible light photocatalytic activity, Mater. Chem. Phys., 149–150 (2015) 512–521.
  19. N. Tian, H. Huang, Y. Guo, Y. He, Y. Zhang, A g-C3N4/Bi2O2CO3 composite with high visible-light-driven photocatalytic activity for Rhodamine B degradation, Appl. Surf. Sci., 322 (2014) 249–254.
  20. Y.T. Liang, B.K. Vijayan, K.A. Gray, M.C. Hersam, Minimizing graphene defects enhances titania nanocomposite based photocatalytic reduction of CO2 for improved solar fuel production, Nano Lett., 11 (2011) 2865−2870.
  21. Q.P. Luo, X.Y. Yu, B.X. Lei, H.Y. Chen, D.B.C. Kuang, Y. Su, Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity, J. Phys. Chem. C, 116 (2012) 8111−8117.
  22. F. Cai, Y. Tang, F. Chen, Y. Yan, W. Shi, Enhanced visiblelight- driven photocatalytic degradation of tetracycline by Cr3+ doping SrTiO3 cubic nanoparticles, RSC Adv., 5 (2015) 21290–21296.
  23. C.A. Bignozzi, S. Caramori, V. Cristino, R. Argazzi, L. Meda, A. Tacca, Nanostructured photoelectrodes based on WO3: applications to photooxidation of aqueous electrolytes, Chem. Soc. Rev., 42 (2013) 2228–2246.
  24. V. Fischer, M.B. Bannwarth, G. Jakob, K. Landfester, R. Munoz- Espi, Luminescent and magnetoresponsive multifunctional chalcogenide/polymer hybrid nanoparticles, J. Phys. Chem. C, 117 (2013) 5999–6005.
  25. V. Purushothaman, S. Prabhu, K. Jothivenkatachalam, S. Parthiban, J.Y. Kwon, K. Jeganathan, Photocatalytic dye degradation properties of wafer level GaN nanowires by catalytic and self-catalytic approach using chemical vapor deposition, RSC Adv., 4 (2014) 25569–25575.
  26. Z. Zhang, W. Wang, M. Shang, W. Yin, Photocatalytic degradation of Rhodamine B and phenol by solution combustion synthesized BiVO4 photocatalyst, Catal. Commun., 11 (2010) 982–986.
  27. K. Yu, S. Yang, H. He, C. Sun, C. Gu, Y. Ju, Visible light-driven photocatalytic degradation of Rhodamine B over NaBiO3: pathways and mechanism, J. Phys. Chem. A, 113 (2009) 10024–10032.
  28. B. Chai, J. Li, Q. Xu, Reduced graphene oxide grafted Ag3PO4 composites with efficient photocatalytic activity under visible-light irradiation, Ind. Eng. Chem. Res., 53 (2014) 8744−8752.
  29. R. Verma, S.K. Samdarshi, In-situ decorated optimized CeO2 on reduced graphene oxide with enhanced adsorptivity and visible light photocatalytic stability and reusability, J. Phys. Chem. C, 120 (2016) 22281–22290.
  30. L. Whittaker-Brooks, J. Gao, A.K. Hailey, C.R. Thomas, N. Yao, Y.L. Loo, Bi2S3 nanowire networks as electron acceptor layers in solution-processed hybrid solar cells, J. Mater. Chem. C, 3 (2015) 2686–2692.
  31. M. Barroso, S.R. Pendlebury, A.J. Cowan, J.R. Durrant, Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes, Chem. Sci., 4 (2013) 2724–2734.
  32. G. Palmisano, E. Garcia-Lopez, G. Marci, V. Loddo, S. Yurdakal, V. Augugliaro, L. Palmisano, Advances in selective conversions by heterogeneous photocatalysis, Chem. Commun., 46 (2010) 7074–7089.
  33. H. Xeuli, L. Peng, H. Youzhou, W. Cheng, Anionic/cationic synergistic action of insulator BaCO3 enhanced the photocatalytic activities of graphitic carbon nitride, Appl. Surf. Sci., 528 (2020) 146924, doi: 10.1016/j.apsusc.2020.146924.
  34. J.F. Huang, F.H. Tao, C.H. Yu, Y.J. Mao, Z.Y. Xue, M.C. Wang, C.G. Fan, L.Z. Pei, Hydrothermal synthesis and photocatalytic performance of barium carbonate/tin dioxide nanoparticles, Micro Nanosyst., 14 (2022) 204–211.
  35. X. Lv, W. Wei, Q. Sun, F. Li, B. Huang, Y. Dai, Two-dimensional germanium monochalcogenides for photocatalytic water splitting with high carrier mobility, Appl. Catal., B, 217 (2017) 275–284.
  36. A.D. Liyanage, S.D. Perera, K. Tan, Y. Chabal, K.J. Balkusjr, Synthesis, characterization, and photocatalytic activity of Y-doped CeO2 nanorods, ACS Catal., 4 (2014) 577–584.
  37. Z. Zhang, S. Zhai, M. Wang, H. Ji, L. He, C. Ye, C. Wang, S. Fang, H. Zhang, Photocatalytic degradation of Rhodamine B by using a nanocomposite of cuprous oxide, three-dimensional reduced graphene oxide, and nanochitosan prepared via one-pot synthesis, J. Alloys Compd., 659 (2016) 101–111.
  38. Y. Wang, W. Wang, H. Mao, Y. Lu, J. Lu, J. Huang, Z. Ye, B. Lu, Electrostatic self-assembly of BiVO4–reduced graphene oxide nanocomposites for highly efficient visible light photocatalytic activities, ACS Appl. Mater. Interfaces, 6 (2014) 12698–12706.
  39. J. Ding, W. Yan, S. Sun, J. Bao, C. Gao, Hydrothermal synthesis of CaIn2S4-reduced graphene oxide nanocomposites with increased photocatalytic performance, ACS Appl. Mater. Interfaces, 6 (2014) 12877–12884.
  40. S. Liu, J. Tian, L. Wang, Y. Luo, X. Sun, One-pot synthesis of CuO nano flower decorated reduced graphene oxide and its application to photocatalytic degradation of dyes, Catal. Sci. Technol., 2 (2012) 339–344.
  41. C. Zhang, L. Ai, J. Jiang, Graphene hybridized photoactive iron terephthalate with enhanced photocatalytic activity for the degradation of Rhodamine B under visible light, Ind. Eng. Chem. Res., 54 (2015) 153–163.
  42. S. Issarapanacheewina, K. Wetchakun, S. Phanichphant, W. Kangwansupamonkon, N. Wetchakun, Efficient photocatalytic degradation of Rhodamine B by a novel CeO2/Bi2WO6 composite film, Catal. Today, 278 (2016) 280–290.
  43. R. Arunadevi, B. Kavitha, M. Rajarajan, A. Suganthi, Sonochemical synthesis and high-efficient solar-light-driven photocatalytic activity of novel cobalt and manganese co-doped tungsten oxide nanoparticles, Chem. Phys. Lett., 715 (2019) 252–262.
  44. R. Arunadevi, B. Kavitha, M. Rajarajan, A. Suganthi, Synthesis of Ce/Mo-V4O9 nanoparticles with superior visible light photocatalytic activity for Rhodamine-B degradation, J. Environ. Chem. Eng., 6 (2018) 3349–3357.