References
- C. Castel, E. Favre, Membrane separations and energy
efficiency, J. Membr. Sci., 548 (2018) 345–357.
- J. Usman, M.H.D. Othman, A.F. Ismail, M.A. Rahman, J. Jaafar,
Y.O. Raji, A.O. Gbadamosi, T.H. El Badawy, K.A.M. Said, An
overview of superhydrophobic ceramic membrane surface
modification for oil-water separation, J. Mater. Res. Technol.,
12 (2021) 643–667.
- N. Abdullah, N. Yusof, W.J. Lau, J. Jaafar, A.F. Ismail, Recent
trends of heavy metal removal from water/wastewater by
membrane technologies, J. Ind. Eng. Chem., 76 (2019) 17–38.
- S. Khadijah Hubadillah, M. Riduan Jamalludin, M.H Dzarfan
Othman, Y. Iwamoto, Recent progress on low-cost ceramic
membrane for water and wastewater treatment, Ceram. Int.,
48 (2022) 24157–24191.
- W. Li, H. Dong, H. Yu, D. Wang, H. Yu, Global characteristics
and trends of research on ceramic membranes from 1998 to
2016: based on bibliometric analysis combined with information
visualization analysis, Ceram. Int., 44 (2018) 6926–6934.
- I. Kammakakam, Z. Lai, Next-generation ultrafiltration
membranes: a review of material design, properties, recent
progress, and challenges, Chemosphere, 316 (2023) 137669,
doi: 10.1016/j.chemosphere.2022.137669.
- Y. Guesmi, R. Lafi, H. Agougui, M. Jabli, A. Oun, S. Majumdar,
A. Hafiane, Synthesis and characterization of alpha aluminanatural
apatite based porous ceramic support for filtration
application, Mater. Chem. Phys., 239 (2020) 122067,
doi: 10.1016/j.matchemphys.2019.122067.
- S. Lakshmi Sandhya Rani, R. Vinoth Kumar, Fabrication
and characterization of ceramic membranes derived from
inexpensive raw material fuller’s earth clay, Mater. Sci. Eng., B,
284 (2022) 115877, doi: 10.1016/j.mseb.2022.115877.
- S.L. Sandhya Rani, R.V. Kumar, Insights on applications of
low-cost ceramic membranes in wastewater treatment: a minireview,
Case Stud. Chem. Environ. Eng., 4 (2021) 100149,
doi: 10.1016/j.cscee.2021.100149.
- I. Barrouk, S. Alami Younssi, A. Kabbabi, M. Persin, A. Albizane,
S. Tahiri, New ceramic membranes from natural Moroccan
phosphate for microfiltration application, Desal. Water Treat.,
55 (2015) 53–60.
- N. Saffaj, M. Persin, S.A. Younsi, A. Albizane, M. Cretin,
A. Larbot, Elaboration and characterization of microfiltration
and ultrafiltration membranes deposited on raw support
prepared from natural Moroccan clay: application to filtration
of solution containing dyes and salts, Appl. Clay Sci., 31 (2006)
110–119.
- P. Belibi, S. Cerneaux, M. Rivallin, N. Martin, M. Cretin,
Elaboration of low-cost ceramic membrane based on local
material for microfiltration of particle from drinking water,
J. Appl. Chem., 3 (2014) 1991–2003.
- H. Alghamdi, A. Dakhane, A. Alum, M. Abbaszadegan,
B. Mobasher, N. Neithalath, Synthesis and characterization
of economical, multi-functional porous ceramics based on
abundant aluminosilicates, Mater. Des., 152 (2018) 10–21.
- B. Achiou, H. Elomari, M. Ouammou, A. Albizane, J. Bennazha,
S.A. Younssi, I.E. El Amrani, A. Aaddane, Elaboration and
characterization of flat ceramic microfiltration membrane
made from natural Moroccan pozzolan (Central Middle Atlas),
Eng. Mater. Sci., 7 (2016) 196–204.
- N. Saffaj, N. El Baraka, R. Mamouni, H. Zgou, A. Laknifli,
S. Younssi Alami, Y. Darmane, M. Aboulkacem, O. Mokhtari,
New bio ceramic support membrane from animal bone,
J. Microbiol. Biotechnol. Res., 3 (2013) 1–6.
- W. Misrar, M. Loutou, L. Saadi, M. Mansori, M. Waqif,
C. Favotto, Cordierite containing ceramic membranes from
smectetic clay using natural organic wastes as pore-forming
agents, J. Asian Ceram. Soc., 5 (2017) 199–208.
- H. De Teng, Q. Wei, Y.L. Wang, S.P. Cui, Q.Y. Li, Z.R. Nie,
Asymmetric porous cordierite ceramic membranes prepared
by phase inversion tape casting and their desalination
performance, Ceram. Int., 46 (2020) 23677–23685.
- M. Mohamed, N. Dayirou, H. Mohamed, N. André, L.N. Gisèle
Laure, N. Daniel, Effect of porogenic agent type and firing
temperatures on properties of low-cost microfiltration
membranes from kaolin, Trans. Indian Ceram. Soc., 79 (2020)
1–12.
- A. Agarwalla, K. Mohanty, Comprehensive characterization,
development, and application of natural/Assam kaolin-based
ceramic microfiltration membrane, Mater. Today Chem.,
23 (2022) 100649, doi: 10.1016/j.mtchem.2021.100649.
- M. Purnima, T. Paul, K. Pakshirajan, G. Pugazhenthi, Onshore
oilfield produced water treatment by hybrid microfiltrationbiological
process using kaolin based ceramic membrane and
oleaginous Rhodococcus opacus, Chem. Eng. J., 453 (2023) 139850,
doi: 10.1016/j.cej.2022.139850.
- A. El Azizi, A. Bayoussef, Ch. Bai, M. Abou-Salama, M. Mansori,
R. Hakkou, M. Loutou, Development of clayey ceramic
membranes prepared with bio-based additives: application in
water and textile wastewater treatment, Ceram. Int., 49 (2023)
5776–5787.
- M.H. Santos, M. de Oliveira, L.P. de F. Souza, H.S. Mansur,
W.L. Vasconcelos, Synthesis control and characterization
of hydroxyapatite prepared by wet precipitation process,
Mater. Res., 7 (2004) 625–630.
- N.A.M. Barakat, M.S. Khil, A.M. Omran, F.A. Sheikh, H.Y. Kim,
Extraction of pure natural hydroxyapatite from the bovine
bones bio waste by three different methods, J. Mater. Process.
Technol., 209 (2009) 3408–3415.
- A.N.K. Ahmad Fara, M.A. Bin Yahya, H.Z. Abdullah,
Preparation and characterization of biological hydroxyapatite
(HAp) obtained from tilapia fish bone, Adv. Mater. Res.,
1087 (2015) 152–156.
- S.K. Hubadillah, M.H.D. Othman, Z.S. Tai, M.R. Jamalludin,
N.K. Yusuf, A. Ahmad, M.A. Rahman, J. Jaafar, S.H.S.A. Kadir,
Z. Harun, Novel hydroxyapatite-based bio-ceramic hollow
fiber membrane derived from waste cow bone for textile
wastewater treatment, Chem. Eng. J., 379 (2020) 122396,
doi: 10.1016/j.cej.2019.122396.
- M. Sadat-Shojai, M.T. Khorasani, E. Dinpanah-Khoshdargi,
A. Jamshidi, Synthesis methods for nanosized hydroxyapatite
with diverse structures, Acta Biomater., 9 (2013) 7591–7621.
- C. Scherdel, G. Reichenauer, M. Wiener, Relationship between
pore volumes and surface areas derived from the evaluation
of N2-sorption data by DR-, BET- and t-plot, Microporous
Mesoporous Mater., 132 (2010) 572–575.
- C.Y. Ooi, M. Hamdi, S. Ramesh, Properties of hydroxyapatite
produced by annealing of bovine bone, Ceram. Int., 33 (2007)
1171–1177.
- M. Figueiredo, A. Fernando, G. Martins, J. Freitas, F. Judas,
H. Figueiredo, Effect of the calcination temperature on the
composition and microstructure of hydroxyapatite derived
from human and animal bone, Ceram. Int., 36 (2010) 2383–2393.
- W. Khoo, F.M. Nor, H. Ardhyananta, D. Kurniawan, Preparation
of natural hydroxyapatite from bovine femur bones using
calcination at various temperatures, Procedia Manuf., 2 (2015)
196–201.
- N. Bano, S.S. Jikan, H. Basri, S. Adzila, A.H. Nuhu, Natural
hydroxyapatite extracted from bovine bone, Sci. Technol. J.,
9 (2017) 22–28.
- M.H. Sadd, Elasticity: Theory, Applications and Numerics,
2nd ed., Elsevier, New York, 2009.
- G.C.C. Yang, C.M. Tsai, Effects of starch addition on
characteristics of tubular porous ceramic membrane substrates,
Desalination, 233 (2008) 129–136.
- R.I. Brazdis, I. Fierascu, S.M. Avramescu, R.C. Fierascu,
Recent progress in the application of hydroxyapatite for the
adsorption of heavy metals from water matrices, Materials,
14 (2021) 6898, doi: 10.3390/ma14226898.