References

  1. C. Castel, E. Favre, Membrane separations and energy efficiency, J. Membr. Sci., 548 (2018) 345–357.
  2. J. Usman, M.H.D. Othman, A.F. Ismail, M.A. Rahman, J. Jaafar, Y.O. Raji, A.O. Gbadamosi, T.H. El Badawy, K.A.M. Said, An overview of superhydrophobic ceramic membrane surface modification for oil-water separation, J. Mater. Res. Technol., 12 (2021) 643–667.
  3. N. Abdullah, N. Yusof, W.J. Lau, J. Jaafar, A.F. Ismail, Recent trends of heavy metal removal from water/wastewater by membrane technologies, J. Ind. Eng. Chem., 76 (2019) 17–38.
  4. S. Khadijah Hubadillah, M. Riduan Jamalludin, M.H Dzarfan Othman, Y. Iwamoto, Recent progress on low-cost ceramic membrane for water and wastewater treatment, Ceram. Int., 48 (2022) 24157–24191.
  5. W. Li, H. Dong, H. Yu, D. Wang, H. Yu, Global characteristics and trends of research on ceramic membranes from 1998 to 2016: based on bibliometric analysis combined with information visualization analysis, Ceram. Int., 44 (2018) 6926–6934.
  6. I. Kammakakam, Z. Lai, Next-generation ultrafiltration membranes: a review of material design, properties, recent progress, and challenges, Chemosphere, 316 (2023) 137669, doi: 10.1016/j.chemosphere.2022.137669.
  7. Y. Guesmi, R. Lafi, H. Agougui, M. Jabli, A. Oun, S. Majumdar, A. Hafiane, Synthesis and characterization of alpha aluminanatural apatite based porous ceramic support for filtration application, Mater. Chem. Phys., 239 (2020) 122067, doi: 10.1016/j.matchemphys.2019.122067.
  8. S. Lakshmi Sandhya Rani, R. Vinoth Kumar, Fabrication and characterization of ceramic membranes derived from inexpensive raw material fuller’s earth clay, Mater. Sci. Eng., B, 284 (2022) 115877, doi: 10.1016/j.mseb.2022.115877.
  9. S.L. Sandhya Rani, R.V. Kumar, Insights on applications of low-cost ceramic membranes in wastewater treatment: a minireview, Case Stud. Chem. Environ. Eng., 4 (2021) 100149, doi: 10.1016/j.cscee.2021.100149.
  10. I. Barrouk, S. Alami Younssi, A. Kabbabi, M. Persin, A. Albizane, S. Tahiri, New ceramic membranes from natural Moroccan phosphate for microfiltration application, Desal. Water Treat., 55 (2015) 53–60.
  11. N. Saffaj, M. Persin, S.A. Younsi, A. Albizane, M. Cretin, A. Larbot, Elaboration and characterization of microfiltration and ultrafiltration membranes deposited on raw support prepared from natural Moroccan clay: application to filtration of solution containing dyes and salts, Appl. Clay Sci., 31 (2006) 110–119.
  12. P. Belibi, S. Cerneaux, M. Rivallin, N. Martin, M. Cretin, Elaboration of low-cost ceramic membrane based on local material for microfiltration of particle from drinking water, J. Appl. Chem., 3 (2014) 1991–2003.
  13. H. Alghamdi, A. Dakhane, A. Alum, M. Abbaszadegan, B. Mobasher, N. Neithalath, Synthesis and characterization of economical, multi-functional porous ceramics based on abundant aluminosilicates, Mater. Des., 152 (2018) 10–21.
  14. B. Achiou, H. Elomari, M. Ouammou, A. Albizane, J. Bennazha, S.A. Younssi, I.E. El Amrani, A. Aaddane, Elaboration and characterization of flat ceramic microfiltration membrane made from natural Moroccan pozzolan (Central Middle Atlas), Eng. Mater. Sci., 7 (2016) 196–204.
  15. N. Saffaj, N. El Baraka, R. Mamouni, H. Zgou, A. Laknifli, S. Younssi Alami, Y. Darmane, M. Aboulkacem, O. Mokhtari, New bio ceramic support membrane from animal bone, J. Microbiol. Biotechnol. Res., 3 (2013) 1–6.
  16. W. Misrar, M. Loutou, L. Saadi, M. Mansori, M. Waqif, C. Favotto, Cordierite containing ceramic membranes from smectetic clay using natural organic wastes as pore-forming agents, J. Asian Ceram. Soc., 5 (2017) 199–208.
  17. H. De Teng, Q. Wei, Y.L. Wang, S.P. Cui, Q.Y. Li, Z.R. Nie, Asymmetric porous cordierite ceramic membranes prepared by phase inversion tape casting and their desalination performance, Ceram. Int., 46 (2020) 23677–23685.
  18. M. Mohamed, N. Dayirou, H. Mohamed, N. André, L.N. Gisèle Laure, N. Daniel, Effect of porogenic agent type and firing temperatures on properties of low-cost microfiltration membranes from kaolin, Trans. Indian Ceram. Soc., 79 (2020) 1–12.
  19. A. Agarwalla, K. Mohanty, Comprehensive characterization, development, and application of natural/Assam kaolin-based ceramic microfiltration membrane, Mater. Today Chem., 23 (2022) 100649, doi: 10.1016/j.mtchem.2021.100649.
  20. M. Purnima, T. Paul, K. Pakshirajan, G. Pugazhenthi, Onshore oilfield produced water treatment by hybrid microfiltrationbiological process using kaolin based ceramic membrane and oleaginous Rhodococcus opacus, Chem. Eng. J., 453 (2023) 139850, doi: 10.1016/j.cej.2022.139850.
  21. A. El Azizi, A. Bayoussef, Ch. Bai, M. Abou-Salama, M. Mansori, R. Hakkou, M. Loutou, Development of clayey ceramic membranes prepared with bio-based additives: application in water and textile wastewater treatment, Ceram. Int., 49 (2023) 5776–5787.
  22. M.H. Santos, M. de Oliveira, L.P. de F. Souza, H.S. Mansur, W.L. Vasconcelos, Synthesis control and characterization of hydroxyapatite prepared by wet precipitation process, Mater. Res., 7 (2004) 625–630.
  23. N.A.M. Barakat, M.S. Khil, A.M. Omran, F.A. Sheikh, H.Y. Kim, Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods, J. Mater. Process. Technol., 209 (2009) 3408–3415.
  24. A.N.K. Ahmad Fara, M.A. Bin Yahya, H.Z. Abdullah, Preparation and characterization of biological hydroxyapatite (HAp) obtained from tilapia fish bone, Adv. Mater. Res., 1087 (2015) 152–156.
  25. S.K. Hubadillah, M.H.D. Othman, Z.S. Tai, M.R. Jamalludin, N.K. Yusuf, A. Ahmad, M.A. Rahman, J. Jaafar, S.H.S.A. Kadir, Z. Harun, Novel hydroxyapatite-based bio-ceramic hollow fiber membrane derived from waste cow bone for textile wastewater treatment, Chem. Eng. J., 379 (2020) 122396, doi: 10.1016/j.cej.2019.122396.
  26. M. Sadat-Shojai, M.T. Khorasani, E. Dinpanah-Khoshdargi, A. Jamshidi, Synthesis methods for nanosized hydroxyapatite with diverse structures, Acta Biomater., 9 (2013) 7591–7621.
  27. C. Scherdel, G. Reichenauer, M. Wiener, Relationship between pore volumes and surface areas derived from the evaluation of N2-sorption data by DR-, BET- and t-plot, Microporous Mesoporous Mater., 132 (2010) 572–575.
  28. C.Y. Ooi, M. Hamdi, S. Ramesh, Properties of hydroxyapatite produced by annealing of bovine bone, Ceram. Int., 33 (2007) 1171–1177.
  29. M. Figueiredo, A. Fernando, G. Martins, J. Freitas, F. Judas, H. Figueiredo, Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone, Ceram. Int., 36 (2010) 2383–2393.
  30. W. Khoo, F.M. Nor, H. Ardhyananta, D. Kurniawan, Preparation of natural hydroxyapatite from bovine femur bones using calcination at various temperatures, Procedia Manuf., 2 (2015) 196–201.
  31. N. Bano, S.S. Jikan, H. Basri, S. Adzila, A.H. Nuhu, Natural hydroxyapatite extracted from bovine bone, Sci. Technol. J., 9 (2017) 22–28.
  32. M.H. Sadd, Elasticity: Theory, Applications and Numerics, 2nd ed., Elsevier, New York, 2009.
  33. G.C.C. Yang, C.M. Tsai, Effects of starch addition on characteristics of tubular porous ceramic membrane substrates, Desalination, 233 (2008) 129–136.
  34. R.I. Brazdis, I. Fierascu, S.M. Avramescu, R.C. Fierascu, Recent progress in the application of hydroxyapatite for the adsorption of heavy metals from water matrices, Materials, 14 (2021) 6898, doi: 10.3390/ma14226898.