References

  1. T.-N. Kroger, S. Wiemers-Meyer, P. Harte, M. Winter, S. Nowak, Direct multielement analysis of polydisperse microparticles by classification-single-particle ICP-OES in the field of lithium-ion battery electrode materials, Anal. Chem., 93 (2021) 7532–7539.
  2. Z. Cai, H. Zou, Y. Chen, Z. Wang, Ultrasensitive determination of mercury by ICP-OES coupled with a vapor generation approach based on solution cathode glow discharge, Chin. Chem. Lett., 33 (2022) 2692–2696.
  3. Y. Ji, Y. Wei, J. Liu, D. An, Design and realization of a novel hybrid-drive robotic fish for aquaculture water quality monitoring, J. Bionic Eng., 20 (2023) 543–557.
  4. H.N. Gowda, H. Kido, X. Wu, O. Shoval, A. Lee, A. Lorenzana, M. Madou, M. Hoffmann, S.C. Jiang, Development of a proof-of-concept microfluidic portable pathogen analysis system for water quality monitoring, Sci. Total Environ., 813 (2022) 152556, doi: 10.1016/j.scitotenv.2021.152556.
  5. Y. Huang, X. Wang, W. Xiang, T. Wang, C. Otis, L. Sarge, Y. Lei, B. Li, Forward-looking roadmaps for long-term continuous water quality monitoring: bottlenecks, innovations, and prospects in a critical review, Environ. Sci. Technol., 56 (2022) 5334–5354.
  6. Y. Teramoto, H.-H. Kim, Size distribution measurement of microplastics using a temporally and spatially resolved inductively coupled plasma optical emission spectrometer (ICP-OES), J. Anal. At. Spectrom., 36 (2021) 1594–1599.
  7. W.I. Mortada, S. Alharthi, Preconcentration of aluminum by dual-cloud point extraction and its determination by inductively coupled plasma-optical emission spectrometry, Curr. Anal. Chem., 17 (2021) 1365–1372.
  8. T.L. Van Surksum, E.R. Fisher, Employing optical emission spectroscopy to elucidate the impact of titanium dioxide in plasma-assisted catalysis, J. Phys. C. Chem., 125 (2021) 3924–3939.
  9. R. Serrano, G. Grindlay, L. Gras, J. Mora, Insight into the origin of carbon matrix effects on the emission signal of atomic lines in inductively coupled plasma optical emission spectrometry, Spectrochim. Acta, Part B, 177 (2021) 106070, doi: 10.1016/j.sab.2021.106070.
  10. L. Dospatliev, M. Ivanova, Inductively coupled plasma optical emission spectrometry determination of total phosphorus and sulphur in virginia tobacco leaves, Oxid. Commun., 45 (2022) 115–124.
  11. E. Kırıs, H. Baltas, Assessing pollution levels and health effects of heavy metals in sediments around Cayeli copper mine area, Rize, Turkey, Environ. Forensics, 22 (2020) 372–384.
  12. C. Hommel, M. Laabs, T. Vogt, C. Vogt, S. Guhl, B. Meyer, Continuous measurement of K and S release by means of ETV-ICP OES for high-temperature coal conversion processes, Fuel, 316 (2022) 123292, doi: 10.1016/j.fuel.2022.123292.
  13. F. Di Donato, F. Squeo, A. Biancolillo, L. Rossi, A.A. D’Archivio, Characterization of high value Italian chickpeas (Cicer arietinum L.) by means of ICP-OES multi-elemental analysis coupled with chemometrics, Food Control, 131 (2022) 108451, doi: 10.1016/j.foodcont.2021.108451.
  14. C. Cascone, K.R. Murphy, H. Markensten, J.S. Kern, C. Schleich, A. Keuckende, S.J. Köhler, AbspectroscoPY,
    a Python toolbox for absorbance-based sensor data in water quality monitoring, Environ. Sci.: Water Res. Technol., 8 (2022) 836–848.
  15. J. Chen, D. Zhang, S. Yang, Y.A. Nanehkaran, Intelligent monitoring method of water quality based on image processing and RVFL-GMDH model, IET Image Proc., 14 (2021) 4646–4656.
  16. Y. Liu, X. Yang, F. Lei, Y. Xiao, Synergistic effect of alkali metals in coal and introduced CaO during steam gasification, J. Therm. Sci., 29 (2020) 1627–1637.
  17. L. Pillay, Simple experiment assisting students with identification of spectral interference and selection emission lines for ICP-OES analysis using soil samples, J. Chem. Educ., 97 (2020) 1460–1464.
  18. A. Masasire, F. Rwere, P. Dzomba, M. Mupa, A new preconcentration technique for the determination of PGMs and gold by fire assay and ICP-OES, J. South. Afr. Inst. Min. Metall., 122 (2022) 29–36.