References
- P. Ghisellini, C. Cialani, S. Ulgiati, A review on circular
economy: the expected transition to a balanced interplay
of environmental and economic systems, J. Cleaner Prod.,
114 (2016) 11–32.
- A.A.H. Faisal, Z.S. Nassir, Modeling the removal of cadmium
ions from aqueous solutions onto olive pips using neural
network technique, Al-Khwarizmi Eng. J., 12 (2016) 1–9.
- H. Rashid, A. Faisal, Removal of dissolved trivalent chromium ions
from contaminated wastewater using locally available raw scrap
iron-aluminum waste, Al-Khwarizmi Eng. J., 15 (2019) 134–143.
- A.A. Ibrahim, M.A. Ibrahim, A.G. Yusuf, Implications of
industrial effluents on surface water and ground water,
World J. Adv. Res. Rev., 9 (2021) 330–336.
- M. Jerold, K. Vasantharaj, C. Vigneshwaran, V. Sivasubramanian,
Evaluation of biosorption potential of Gracilaria corticata for the removal of malachite green from aqueous solution:
isotherm, kinetic and thermodynamic studies, Desal. Water
Treat., 66 (2017) 251–262.
- A. Babatunde, E.P. Bamgbola, O. Oyelola, The effect of
pharmaceutical effluents on the quality of groundwater: a case
study of Ikeja industrial area of lagos, Nigeria, Int. J. Res. Med.
Health Sci., 4 (2014).
- M. Kumar, A. Gogoi, D. Kumari, R. Borah, P. Das, P. Mazumder,
V.K. Tyagi, Review of perspective, problems, challenges,
and future scenario of metal contamination in the urban
environment, J. Hazard. Toxic Radioact. Waste, 21 (2017)
4017007, doi: 10.1061/(ASCE)HZ.2153-5515.0000351.
- A.A. Borghi, M.S.A. Palma, Tetracycline: production, waste
treatment and environmental impact assessment, Braz. J.
Pharm. Sci., 50 (2014) 25–40.
- F. Granados-Chinchilla, C. Rodríguez, Tetracyclines in food and
feedingstuffs: from regulation to analytical methods, bacterial
resistance, and environmental and health implications, J. Anal.
Methods Chem., 2017 (2017) 1–24.
- F. Ahmad, D. Zhu, J. Sun, Environmental fate of tetracycline
antibiotics: degradation pathway mechanisms, challenges,
and perspectives, Environ. Sci. Eur., 33 (2021) 64, doi: 10.1186/s12302-021-00505-y.
- Y. Amangelsin, Y. Semenova, M. Dadar, M. Aljofan, G. Bjørklund,
The impact of tetracycline pollution on the aquatic
environment and removal strategies, Antibiotics, 12 (2023) 440,
doi: 10.3390/antibiotics12030440.
- L. Xu, H. Zhang, P. Xiong, Q. Zhu, C. Liao, G. Jiang, Occurrence,
fate, and risk assessment of typical tetracycline antibiotics
in the aquatic environment: a review, Sci. Total Environ.,
753 (2021) 141975, doi: 10.1016/j.scitotenv.2020.141975.
- P. Mahamallik, S. Saha, A. Pal, Tetracycline degradation in
aquatic environment by highly porous MnO2 nanosheet
assembly, Chem. Eng. J., 276 (2015) 155–165.
- V.J. Wirtz, A. Dreser, R. Gonzales, Trends in antibiotic utilization
in eight Latin American countries, 1997–2007, Rev. Panam.
Salud Publica/Pan Am. J. Public Health, 27 (2010) 219–225.
- Y. Dai, M. Liu, J. Li, S. Yang, Y. Sun, Q. Sun, W. Wang, L. Lu,
K. Zhang, J. Xu, W. Zheng, Z. Hu, Y. Yang, Y. Gao, Z. Liu,
A review
on pollution situation and treatment methods of tetracycline
in groundwater, Sep. Sci. Technol., 55 (2020) 1005–1021.
- M.S. de Ilurdoz, J.J. Sadhwani, J.V. Reboso, Antibiotic removal
processes from water and wastewater for the protection of the
aquatic environment - a review, J. Water Process Eng., 45 (2022)
102474, doi: 10.1016/j.jwpe.2021.102474.
- Y. Zhang, Y.-G. Zhao, F. Maqbool, Y. Hu, Removal of antibiotics
pollutants in wastewater by UV-based advanced oxidation
processes: Influence of water matrix components, processes
optimization and application: a review, J. Water Process Eng.,
45 (2022) 102496, doi: 10.1016/j.jwpe.2021.102496.
- M.M. Barbooti, S.H. Zahraw, Removal of amoxicillin from water
by adsorption on water treatment residues, Baghdad Sci. J.,
17 (2020) 1071, doi: 10.21123/bsj.2020.17.3(Suppl.).1071.
- W.A. Khanday, M.J. Ahmed, P.U. Okoye, E.H. Hummadi,
B.H. Hameed, Single-step pyrolysis of phosphoric acidactivated
chitin for efficient adsorption of cephalexin antibiotic,
Bioresour. Technol., 280 (2019) 255–259.
- I.T. Carvalho, L. Santos, Antibiotics in the aquatic environments:
a review of the European scenario, Environ. Int., 94 (2016)
736–757.
- Mu. Naushad, Z.A. Alothman, M.R. Awual, M.M. Alam,
G.E. Eldesoky, Adsorption kinetics, isotherms, and
thermodynamic studies for the adsorption of Pb2+ and Hg2+
metal ions from aqueous medium using Ti(IV) iodovanadate
cation exchanger, Ionics (Kiel), 21 (2015) 2237–2245.
- W.A. Khanday, M. Asif, B.H. Hameed, Cross-linked beads
of activated oil palm ash zeolite/chitosan composite as a bioadsorbent
for the removal of Methylene Blue and Acid Blue 29
dyes, Int. J. Biol. Macromol., 95 (2017) 895–902.
- F. Marrakchi, W.A. Khanday, M. Asif, B.H. Hameed, Crosslinked
chitosan/sepiolite composite for the adsorption of
Methylene Blue and Reactive Orange 16, Int. J. Biol. Macromol.,
93 (2016) 1231–1239.
- A.A.H. Faisal, T.R. Abbas, S.H. Jassam, Iron permeable reactive
barrier for removal of lead from contaminated groundwater,
J. Eng., 20 (2014) 29–46.
- M. Faisal, A. Ahmed, Remediation of groundwater
contaminated with copper ions by waste foundry sand
permeable barrier, J. Eng., 20 (2014) 62–77.
- S. Sonal, A. Singh, B.K. Mishra, Decolorization of reactive
dye Remazol Brilliant Blue R by zirconium oxychloride as
a novel coagulant: optimization through response surface
methodology, Water Sci. Technol., 78 (2018) 379–389.
- M. Goodarz Naseri, E.B. Saion, A. Kamali, An Overview on
nanocrystalline ZnFe2O4, MnFe2O4, and CoFe2O4 synthesized
by a thermal treatment method, ISRN Nanotechnol.,
2012 (2012) 1–11.
- A. Abedini, A. Rajabi, F. Larki, M. Saraji, M.S. Islam, Structural,
magnetic and mechanical properties of hydrous Fe/Ni-based
oxide components nanoparticles synthesized by radiolytic
method, J. Alloys Compd., 711 (2017) 190–196.
- N.P. Raval, S. Mukherjee, N.K. Shah, P. Gikas, M. Kumar, Hexametaphosphate
cross-linked chitosan beads for the eco-efficient
removal of organic dyes: tackling water quality, J. Environ.
Manage., 280 (2021) 111680, doi: 10.1016/j.jenvman.2020.111680.
- S. Lilhare, S.B. Mathew, A.K. Singh, S.A.C. Carabineiro,
Calcium alginate beads with entrapped iron oxide magnetic
nanoparticles functionalized with methionine—a versatile
adsorbent for arsenic removal, Nanomaterials, 11 (2021) 1345,
doi: 10.3390/nano11051345.
- R. Sivashankar, A. Thirunavukkarasu, R. Nithya, J. Kanimozhi,
A.B. Sathya, V. Sivasubramanian, Sequestration of methylene
blue dye from aqueous solution by magnetic biocomposite:
three level Box–Behnken experimental design optimization and
kinetic studies, Sep. Sci. Technol., 55 (2020) 1752–1765.
- L. Lu, M. Liu, Y. Chen, Y. Luo, Effective removal of tetracycline
antibiotics from wastewater using practically applicable
iron(III)-loaded cellulose nanofibres, R. Soc. Open Sci., 8 (2021)
210336, doi: 10.1098/rsos.210336.
- Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su,
Adsorption and removal of tetracycline antibiotics from
aqueous solution by graphene oxide, J. Colloid Interface Sci.,
368 (2012) 540–546.
- S. Sun, Z. Yang, J. Cao, Y. Wang, W. Xiong, Copper-doped ZIF-8
with high adsorption performance for removal of tetracycline
from aqueous solution, J. Solid State Chem., 285 (2020) 121219,
doi: 10.1016/j.jssc.2020.121219.
- S. Zheng, Z. Kong, L. Meng, J. Song, N. Jiang, Y. Gao, J. Guo,
T. Mu, M. Huang, MIL-88A grown in-situ on graphitic carbon
nitride (g-C3N4) as a novel sorbent: synthesis, characterization,
and high-performance of tetracycline removal and mechanism,
Adv. Powder Technol., 31 (2020) 4344–4353.
- U. Ortiz-Ramos, R. Leyva-Ramos, E. Mendoza-Mendoza,
A. Aragón-Piña, Removal of tetracycline from aqueous
solutions by adsorption on raw Ca-bentonite. Effect of
operating conditions and adsorption mechanism, Chem. Eng.
J., 432 (2022) 134428, doi: 10.1016/j.cej.2021.134428.
- W.A. Khanday, B.H. Hameed, Zeolite-hydroxyapatite-activated
oil palm ash composite for antibiotic tetracycline adsorption,
Fuel, 215 (2018) 499–505.
- M. Alhendal, M.J. Nasir, K.S. Hashim, J. Amoako-Attah,
D. Al-Faluji, M. Muradov, P. Kot, B. Abdulhadi, Costeffective
hybrid filter for remediation of water from
fluoride, IOP Conf. Ser.: Mater. Sci. Eng., 888 (2020) 012038,
doi: 10.1088/1757-899X/888/1/012038.
- A.K. Alenezi, H.A. Hasan, K.S. Hashim, J. Amoako-Attah,
M. Gkantou, M. Muradov, P. Kot, B. Abdulhadi, Zeolite-assisted
electrocoagulation for remediation of phosphate from
calcium-phosphate solution, IOP Conf. Ser.: Mater. Sci. Eng.,
888 (2020) 012031, doi: 10.1088/1757-899X/888/1/012031.
- S.S.A. Alkurdi, R.A. Al-Juboori, J. Bundschuh, I. Hamawand,
Bone char as a green sorbent for removing health threatening
fluoride from drinking water, Environ. Int., 127 (2019) 704–719.
- C.M.F. Santos, C.M. Narciso, I.R. Soares, Analysis of heat
treatment of chicken bones for the obtaining of phosphate
biofertilizer, Braz. J. Dev., 6 (2020) 14288–14296.
- W.S.B. Dwandaru, E.K. Sari, Chicken bone wastes as precursor
for C-dots in olive oil, J. Phys. Sci., 31 (2020) 113–131.
- A.-E. Segneanu, C.N. Marin, G. Vlase, C. Cepan, M. Mihailescu,
C. Muntean, I. Grozescu, Highly efficient engineered waste
eggshell-fly ash for cadmium removal from aqueous solution,
Sci. Rep., 12 (2022) 9676, doi: 10.1038/s41598-022-13664-6.
- C. Wang, J.-J. Jian, Degradation and detoxicity of tetracycline
by an enhanced sonolysis, J. Water Environ. Technol., 13 (2015)
325–334.
- S.A. Hamoudi, B. Hamdi, J. Brendlé, Tetracycline removal from
water by adsorption on geomaterial, activated carbon and clay
adsorbents, Ecol. Chem. Eng. S, 28 (2021) 303–328.
- A. Deb, M. Kanmani, A. Debnath, K.L. Bhowmik, B. Saha,
Preparation and characterization of magnetic CaFe2O4
nanoparticles for efficient adsorption of toxic Congo Red dye
from aqueous solution: predictive modelling by artificial neural
network, Desal. Water Treat., 89 (2017) 197–209, doi: 10.5004/dwt.2017.21361.
- M.F. Abed, A.A.H. Faisal, Calcium/iron-layered double
hydroxides - sodium alginate for removal of tetracycline
antibiotic from aqueous solution, Alexandria Eng. J., 63 (2023)
127–142.
- Y. Wang, S. Gong, Y. Li, Z. Li, J. Fu, Adsorptive removal of
tetracycline by sustainable ceramsite substrate from bentonite/red mud/pine sawdust, Sci. Rep., 10 (2020) 1–18.
- K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption
isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
- P.R. Puranik, J.M. Modak, K.M. Paknikar, A comparative study
of the mass transfer kinetics of metal biosorption by microbial
biomass, Hydrometallurgy, 52 (1999) 189–197.
- M.F. Al Juboury, M.H. Alshammari, M.R. Al-Juhaishi, L.A. Naji,
A.A.H. Faisal, Mu. Naushad, E.C. Lima, Synthesis of composite
sorbent for the treatment of aqueous solutions contaminated
with methylene blue dye, Water Sci. Technol., 81 (2020)
1494–1506.
- S.S. Alquzweeni, R.S. Alkizwini, Removal of cadmium
from contaminated water using coated chicken bones with
double-layer hydroxide (Mg/Fe-LDH), Water, 12 (2020) 2303,
doi: 10.3390/w12082303.
- T. Masinga, M. Moyo, V.E. Pakade, Removal of hexavalent
chromium by polyethyleneimine impregnated activated
carbon: intraparticle diffusion, kinetics and isotherms, J. Mater.
Res. Technol., 18 (2022) 1333–1344.
- R. Bilas, K. Sriram, P.U. Maheswari, K.M.M. Sheriffa Begum,
Highly biocompatible chitosan with super paramagnetic
calcium ferrite (CaFe2O4) nanoparticle for the release of
ampicillin, Int. J. Biol. Macromol., 97 (2017) 513–525.
- H.B. Lakshmi, B.J. Madhu, M. Veerabhadraswamy, Synthesis
and characterization of nano-crystaline CaFe2O4 via solution
combustion method from solid waste egg shells as source of
calcium, Int. J. Eng. Res. Adv. Technol., 3 (2017) 21–30.
- F. Saedi, K. Hedayati, A facile synthesis and study of
photocatalytic properties of magnetic CaFe2O4-CeO2
nanocomposites applicable for separation of toxic azo dyes,
J. Nanostruct., 10 (2020) 497–508.
- V. Oskoei, M.H. Dehghani, S. Nazmara, B. Heibati, M. Asif,
I. Tyagi, S. Agarwal, V.K. Gupta, Removal of humic acid from
aqueous solution using UV/ZnO nano-photocatalysis and
adsorption, J. Mol. Liq., 213 (2016) 374–380.
- A.A.H. Faisal, L.A. Naji, Simulation of ammonia nitrogen
removal from simulated wastewater by sorption onto waste
foundry sand using artificial neural network, Assoc. Arab Univ.
J. Eng. Sci., 26 (2019) 28–34.
- M. Ghaemi, G. Absalan, Fast removal and determination of
doxycycline in water samples and honey by Fe3O4 magnetic
nanoparticles, J. Iran. Chem. Soc., 12 (2015) 1–7.
- Z.T. Abd Ali, L.A. Naji, S.A.A.A.N. Almuktar, A.A.H. Faisal,
S.N. Abed, M. Scholz, Mu. Naushad, T. Ahamad, Predominant
mechanisms for the removal of nickel metal ion from aqueous
solution using cement kiln dust, J. Water Process Eng., 33 (2020)
101033, doi: 10.1016/j.jwpe.2019.101033.
- H.K. Hami, R.F. Abbas, A.A. Waheb, D.A. Abdul abass,
M.A. Abed, A.A. Maryoosh, Isotherm and pH effect studies of
tetracycline drug removal from aqueous solution using cobalt
oxide surface, Al-Nahrain J. Sci., 22 (2019) 12–18.
- G. Li, Q. Yuan, A.A. Khan, Effect of solution pH on the kinetic
adsorption of tetracycline by La-modified magnetic bagasse
biochar, Nat. Environ. Pollut. Technol., 18 (2019) 623–627.
- Y. Guo, W. Huang, B. Chen, Y. Zhao, D. Liu, Y. Sun, B. Gong,
Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: synthesis, characteristic,
adsorption performance and mechanism, J. Hazard. Mater.,
339 (2017) 22–32.
- N.P. Raval, M. Kumar, Development of novel core–shell
impregnated polyuronate composite beads for an eco-efficient
removal of arsenic, Bioresour. Technol., 364 (2022) 127918,
doi: 10.1016/j.biortech.2022.127918.
- J.-P. Simonin, On the comparison of pseudo-first order and
pseudo-second-order rate laws in the modeling of adsorption
kinetics, Chem. Eng. J., 300 (2016) 254–263.
- A.A.H. Faisal, A.H. Shihab, Mu. Naushad, T. Ahamad,
G. Sharma, K.M. Al-Sheetan, Green synthesis for novel sorbent
of sand coated with (Ca/Al)-layered double hydroxide for the
removal of toxic dye from aqueous environment, J. Environ.
Chem. Eng., 9 (2021) 105342, doi: 10.1016/j.jece.2021.105342.
- Y. Lin, S. Xu, J. Li, Fast and highly efficient tetracyclines removal
from environmental waters by graphene oxide functionalized
magnetic particles, Chem. Eng. J., 225 (2013) 679–685.
- M. Ersan, U.A. Guler, U. Acıkel, M. Sarioglu, Synthesis of
hydroxyapatite/clay and hydroxyapatite/pumice composites
for tetracycline removal from aqueous solutions, Process Saf.
Environ. Prot., 96 (2015) 22–32.
- J. Bao, Y. Zhu, S. Yuan, F. Wang, H. Tang, Z. Bao, H. Zhou,
Y. Chen, Adsorption of tetracycline with reduced graphene
oxide decorated with MnFe2O4 nanoparticles, Nanoscale Res.
Lett., 13 (2018) 396,
doi: 10.1186/s11671-018-2814-9.
- J. Lu, K. Xu, W. Li, D. Hao, L. Qiao, Removal of tetracycline
antibiotics from aqueous solutions using easily regenerable
pumice: batch and column study, Water Qual. Res. J., 53 (2018)
143–155.
- A. Huízar-Félix, C. Aguilar-Flores, A. Martínez-de-la Cruz,
J. Barandiarán, S. Sepúlveda-Guzmán, R. Cruz-Silva, Removal
of tetracycline pollutants by adsorption and magnetic
separation using reduced graphene oxide decorated with
α-Fe2O3 nanoparticles, Nanomaterials, 9 (2019) 313, doi: 10.3390/
nano9030313.
- L.T. Popoola, Tetracycline and sulfamethoxazole adsorption
onto nanomagnetic walnut shell-rice husk: isotherm, kinetic,
mechanistic and thermodynamic studies, Int. J. Environ.
Anal. Chem., 100 (2020) 1021–1043.
- A.A.H. Faisal, D.N. Ahmed, M. Rezakazemi, N. Sivarajasekar,
G. Sharma, Cost-effective composite prepared from sewage
sludge waste and cement kiln dust as permeable reactive
barrier to remediate simulated groundwater polluted
with tetracycline, J. Environ. Chem. Eng., 9 (2021) 105194,
doi: 10.1016/j.jece.2021.105194.