References

  1. P. Ghisellini, C. Cialani, S. Ulgiati, A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems, J. Cleaner Prod., 114 (2016) 11–32.
  2. A.A.H. Faisal, Z.S. Nassir, Modeling the removal of cadmium ions from aqueous solutions onto olive pips using neural network technique, Al-Khwarizmi Eng. J., 12 (2016) 1–9.
  3. H. Rashid, A. Faisal, Removal of dissolved trivalent chromium ions from contaminated wastewater using locally available raw scrap iron-aluminum waste, Al-Khwarizmi Eng. J., 15 (2019) 134–143.
  4. A.A. Ibrahim, M.A. Ibrahim, A.G. Yusuf, Implications of industrial effluents on surface water and ground water, World J. Adv. Res. Rev., 9 (2021) 330–336.
  5. M. Jerold, K. Vasantharaj, C. Vigneshwaran, V. Sivasubramanian, Evaluation of biosorption potential of Gracilaria corticata for the removal of malachite green from aqueous solution: isotherm, kinetic and thermodynamic studies, Desal. Water Treat., 66 (2017) 251–262.
  6. A. Babatunde, E.P. Bamgbola, O. Oyelola, The effect of pharmaceutical effluents on the quality of groundwater: a case study of Ikeja industrial area of lagos, Nigeria, Int. J. Res. Med. Health Sci., 4 (2014).
  7. M. Kumar, A. Gogoi, D. Kumari, R. Borah, P. Das, P. Mazumder, V.K. Tyagi, Review of perspective, problems, challenges, and future scenario of metal contamination in the urban environment, J. Hazard. Toxic Radioact. Waste, 21 (2017) 4017007, doi: 10.1061/(ASCE)HZ.2153-5515.0000351.
  8. A.A. Borghi, M.S.A. Palma, Tetracycline: production, waste treatment and environmental impact assessment, Braz. J. Pharm. Sci., 50 (2014) 25–40.
  9. F. Granados-Chinchilla, C. Rodríguez, Tetracyclines in food and feedingstuffs: from regulation to analytical methods, bacterial resistance, and environmental and health implications, J. Anal. Methods Chem., 2017 (2017) 1–24.
  10. F. Ahmad, D. Zhu, J. Sun, Environmental fate of tetracycline antibiotics: degradation pathway mechanisms, challenges, and perspectives, Environ. Sci. Eur., 33 (2021) 64, doi: 10.1186/s12302-021-00505-y.
  11. Y. Amangelsin, Y. Semenova, M. Dadar, M. Aljofan, G. Bjørklund, The impact of tetracycline pollution on the aquatic environment and removal strategies, Antibiotics, 12 (2023) 440, doi: 10.3390/antibiotics12030440.
  12. L. Xu, H. Zhang, P. Xiong, Q. Zhu, C. Liao, G. Jiang, Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: a review, Sci. Total Environ., 753 (2021) 141975, doi: 10.1016/j.scitotenv.2020.141975.
  13. P. Mahamallik, S. Saha, A. Pal, Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly, Chem. Eng. J., 276 (2015) 155–165.
  14. V.J. Wirtz, A. Dreser, R. Gonzales, Trends in antibiotic utilization in eight Latin American countries, 1997–2007, Rev. Panam. Salud Publica/Pan Am. J. Public Health, 27 (2010) 219–225.
  15. Y. Dai, M. Liu, J. Li, S. Yang, Y. Sun, Q. Sun, W. Wang, L. Lu, K. Zhang, J. Xu, W. Zheng, Z. Hu, Y. Yang, Y. Gao, Z. Liu,
    A review on pollution situation and treatment methods of tetracycline in groundwater, Sep. Sci. Technol., 55 (2020) 1005–1021.
  16. M.S. de Ilurdoz, J.J. Sadhwani, J.V. Reboso, Antibiotic removal processes from water and wastewater for the protection of the aquatic environment - a review, J. Water Process Eng., 45 (2022) 102474, doi: 10.1016/j.jwpe.2021.102474.
  17. Y. Zhang, Y.-G. Zhao, F. Maqbool, Y. Hu, Removal of antibiotics pollutants in wastewater by UV-based advanced oxidation processes: Influence of water matrix components, processes optimization and application: a review, J. Water Process Eng., 45 (2022) 102496, doi: 10.1016/j.jwpe.2021.102496.
  18. M.M. Barbooti, S.H. Zahraw, Removal of amoxicillin from water by adsorption on water treatment residues, Baghdad Sci. J., 17 (2020) 1071, doi: 10.21123/bsj.2020.17.3(Suppl.).1071.
  19. W.A. Khanday, M.J. Ahmed, P.U. Okoye, E.H. Hummadi, B.H. Hameed, Single-step pyrolysis of phosphoric acidactivated chitin for efficient adsorption of cephalexin antibiotic, Bioresour. Technol., 280 (2019) 255–259.
  20. I.T. Carvalho, L. Santos, Antibiotics in the aquatic environments: a review of the European scenario, Environ. Int., 94 (2016) 736–757.
  21. Mu. Naushad, Z.A. Alothman, M.R. Awual, M.M. Alam, G.E. Eldesoky, Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger, Ionics (Kiel), 21 (2015) 2237–2245.
  22. W.A. Khanday, M. Asif, B.H. Hameed, Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bioadsorbent for the removal of Methylene Blue and Acid Blue 29 dyes, Int. J. Biol. Macromol., 95 (2017) 895–902.
  23. F. Marrakchi, W.A. Khanday, M. Asif, B.H. Hameed, Crosslinked chitosan/sepiolite composite for the adsorption of Methylene Blue and Reactive Orange 16, Int. J. Biol. Macromol., 93 (2016) 1231–1239.
  24. A.A.H. Faisal, T.R. Abbas, S.H. Jassam, Iron permeable reactive barrier for removal of lead from contaminated groundwater, J. Eng., 20 (2014) 29–46.
  25. M. Faisal, A. Ahmed, Remediation of groundwater contaminated with copper ions by waste foundry sand permeable barrier, J. Eng., 20 (2014) 62–77.
  26. S. Sonal, A. Singh, B.K. Mishra, Decolorization of reactive dye Remazol Brilliant Blue R by zirconium oxychloride as a novel coagulant: optimization through response surface methodology, Water Sci. Technol., 78 (2018) 379–389.
  27. M. Goodarz Naseri, E.B. Saion, A. Kamali, An Overview on nanocrystalline ZnFe2O4, MnFe2O4, and CoFe2O4 synthesized by a thermal treatment method, ISRN Nanotechnol., 2012 (2012) 1–11.
  28. A. Abedini, A. Rajabi, F. Larki, M. Saraji, M.S. Islam, Structural, magnetic and mechanical properties of hydrous Fe/Ni-based oxide components nanoparticles synthesized by radiolytic method, J. Alloys Compd., 711 (2017) 190–196.
  29. N.P. Raval, S. Mukherjee, N.K. Shah, P. Gikas, M. Kumar, Hexametaphosphate cross-linked chitosan beads for the eco-efficient removal of organic dyes: tackling water quality, J. Environ. Manage., 280 (2021) 111680, doi: 10.1016/j.jenvman.2020.111680.
  30. S. Lilhare, S.B. Mathew, A.K. Singh, S.A.C. Carabineiro, Calcium alginate beads with entrapped iron oxide magnetic nanoparticles functionalized with methionine—a versatile adsorbent for arsenic removal, Nanomaterials, 11 (2021) 1345, doi: 10.3390/nano11051345.
  31. R. Sivashankar, A. Thirunavukkarasu, R. Nithya, J. Kanimozhi, A.B. Sathya, V. Sivasubramanian, Sequestration of methylene blue dye from aqueous solution by magnetic biocomposite: three level Box–Behnken experimental design optimization and kinetic studies, Sep. Sci. Technol., 55 (2020) 1752–1765.
  32. L. Lu, M. Liu, Y. Chen, Y. Luo, Effective removal of tetracycline antibiotics from wastewater using practically applicable iron(III)-loaded cellulose nanofibres, R. Soc. Open Sci., 8 (2021) 210336, doi: 10.1098/rsos.210336.
  33. Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloid Interface Sci., 368 (2012) 540–546.
  34. S. Sun, Z. Yang, J. Cao, Y. Wang, W. Xiong, Copper-doped ZIF-8 with high adsorption performance for removal of tetracycline from aqueous solution, J. Solid State Chem., 285 (2020) 121219, doi: 10.1016/j.jssc.2020.121219.
  35. S. Zheng, Z. Kong, L. Meng, J. Song, N. Jiang, Y. Gao, J. Guo, T. Mu, M. Huang, MIL-88A grown in-situ on graphitic carbon nitride (g-C3N4) as a novel sorbent: synthesis, characterization, and high-performance of tetracycline removal and mechanism, Adv. Powder Technol., 31 (2020) 4344–4353.
  36. U. Ortiz-Ramos, R. Leyva-Ramos, E. Mendoza-Mendoza, A. Aragón-Piña, Removal of tetracycline from aqueous solutions by adsorption on raw Ca-bentonite. Effect of operating conditions and adsorption mechanism, Chem. Eng. J., 432 (2022) 134428, doi: 10.1016/j.cej.2021.134428.
  37. W.A. Khanday, B.H. Hameed, Zeolite-hydroxyapatite-activated oil palm ash composite for antibiotic tetracycline adsorption, Fuel, 215 (2018) 499–505.
  38. M. Alhendal, M.J. Nasir, K.S. Hashim, J. Amoako-Attah, D. Al-Faluji, M. Muradov, P. Kot, B. Abdulhadi, Costeffective hybrid filter for remediation of water from fluoride, IOP Conf. Ser.: Mater. Sci. Eng., 888 (2020) 012038, doi: 10.1088/1757-899X/888/1/012038.
  39. A.K. Alenezi, H.A. Hasan, K.S. Hashim, J. Amoako-Attah, M. Gkantou, M. Muradov, P. Kot, B. Abdulhadi, Zeolite-assisted electrocoagulation for remediation of phosphate from calcium-phosphate solution, IOP Conf. Ser.: Mater. Sci. Eng., 888 (2020) 012031, doi: 10.1088/1757-899X/888/1/012031.
  40. S.S.A. Alkurdi, R.A. Al-Juboori, J. Bundschuh, I. Hamawand, Bone char as a green sorbent for removing health threatening fluoride from drinking water, Environ. Int., 127 (2019) 704–719.
  41. C.M.F. Santos, C.M. Narciso, I.R. Soares, Analysis of heat treatment of chicken bones for the obtaining of phosphate biofertilizer, Braz. J. Dev., 6 (2020) 14288–14296.
  42. W.S.B. Dwandaru, E.K. Sari, Chicken bone wastes as precursor for C-dots in olive oil, J. Phys. Sci., 31 (2020) 113–131.
  43. A.-E. Segneanu, C.N. Marin, G. Vlase, C. Cepan, M. Mihailescu, C. Muntean, I. Grozescu, Highly efficient engineered waste eggshell-fly ash for cadmium removal from aqueous solution, Sci. Rep., 12 (2022) 9676, doi: 10.1038/s41598-022-13664-6.
  44. C. Wang, J.-J. Jian, Degradation and detoxicity of tetracycline by an enhanced sonolysis, J. Water Environ. Technol., 13 (2015) 325–334.
  45. S.A. Hamoudi, B. Hamdi, J. Brendlé, Tetracycline removal from water by adsorption on geomaterial, activated carbon and clay adsorbents, Ecol. Chem. Eng. S, 28 (2021) 303–328.
  46. A. Deb, M. Kanmani, A. Debnath, K.L. Bhowmik, B. Saha, Preparation and characterization of magnetic CaFe2O4 nanoparticles for efficient adsorption of toxic Congo Red dye from aqueous solution: predictive modelling by artificial neural network, Desal. Water Treat., 89 (2017) 197–209, doi: 10.5004/dwt.2017.21361.
  47. M.F. Abed, A.A.H. Faisal, Calcium/iron-layered double hydroxides - sodium alginate for removal of tetracycline antibiotic from aqueous solution, Alexandria Eng. J., 63 (2023) 127–142.
  48. Y. Wang, S. Gong, Y. Li, Z. Li, J. Fu, Adsorptive removal of tetracycline by sustainable ceramsite substrate from bentonite/red mud/pine sawdust, Sci. Rep., 10 (2020) 1–18.
  49. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  50. P.R. Puranik, J.M. Modak, K.M. Paknikar, A comparative study of the mass transfer kinetics of metal biosorption by microbial biomass, Hydrometallurgy, 52 (1999) 189–197.
  51. M.F. Al Juboury, M.H. Alshammari, M.R. Al-Juhaishi, L.A. Naji, A.A.H. Faisal, Mu. Naushad, E.C. Lima, Synthesis of composite sorbent for the treatment of aqueous solutions contaminated with methylene blue dye, Water Sci. Technol., 81 (2020) 1494–1506.
  52. S.S. Alquzweeni, R.S. Alkizwini, Removal of cadmium from contaminated water using coated chicken bones with double-layer hydroxide (Mg/Fe-LDH), Water, 12 (2020) 2303, doi: 10.3390/w12082303.
  53. T. Masinga, M. Moyo, V.E. Pakade, Removal of hexavalent chromium by polyethyleneimine impregnated activated carbon: intraparticle diffusion, kinetics and isotherms, J. Mater. Res. Technol., 18 (2022) 1333–1344.
  54. R. Bilas, K. Sriram, P.U. Maheswari, K.M.M. Sheriffa Begum, Highly biocompatible chitosan with super paramagnetic calcium ferrite (CaFe2O4) nanoparticle for the release of ampicillin, Int. J. Biol. Macromol., 97 (2017) 513–525.
  55. H.B. Lakshmi, B.J. Madhu, M. Veerabhadraswamy, Synthesis and characterization of nano-crystaline CaFe2O4 via solution combustion method from solid waste egg shells as source of calcium, Int. J. Eng. Res. Adv. Technol., 3 (2017) 21–30.
  56. F. Saedi, K. Hedayati, A facile synthesis and study of photocatalytic properties of magnetic CaFe2O4-CeO2 nanocomposites applicable for separation of toxic azo dyes, J. Nanostruct., 10 (2020) 497–508.
  57. V. Oskoei, M.H. Dehghani, S. Nazmara, B. Heibati, M. Asif, I. Tyagi, S. Agarwal, V.K. Gupta, Removal of humic acid from aqueous solution using UV/ZnO nano-photocatalysis and adsorption, J. Mol. Liq., 213 (2016) 374–380.
  58. A.A.H. Faisal, L.A. Naji, Simulation of ammonia nitrogen removal from simulated wastewater by sorption onto waste foundry sand using artificial neural network, Assoc. Arab Univ. J. Eng. Sci., 26 (2019) 28–34.
  59. M. Ghaemi, G. Absalan, Fast removal and determination of doxycycline in water samples and honey by Fe3O4 magnetic nanoparticles, J. Iran. Chem. Soc., 12 (2015) 1–7.
  60. Z.T. Abd Ali, L.A. Naji, S.A.A.A.N. Almuktar, A.A.H. Faisal, S.N. Abed, M. Scholz, Mu. Naushad, T. Ahamad, Predominant mechanisms for the removal of nickel metal ion from aqueous solution using cement kiln dust, J. Water Process Eng., 33 (2020) 101033, doi: 10.1016/j.jwpe.2019.101033.
  61. H.K. Hami, R.F. Abbas, A.A. Waheb, D.A. Abdul abass, M.A. Abed, A.A. Maryoosh, Isotherm and pH effect studies of tetracycline drug removal from aqueous solution using cobalt oxide surface, Al-Nahrain J. Sci., 22 (2019) 12–18.
  62. G. Li, Q. Yuan, A.A. Khan, Effect of solution pH on the kinetic adsorption of tetracycline by La-modified magnetic bagasse biochar, Nat. Environ. Pollut. Technol., 18 (2019) 623–627.
  63. Y. Guo, W. Huang, B. Chen, Y. Zhao, D. Liu, Y. Sun, B. Gong, Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: synthesis, characteristic, adsorption performance and mechanism, J. Hazard. Mater., 339 (2017) 22–32.
  64. N.P. Raval, M. Kumar, Development of novel core–shell impregnated polyuronate composite beads for an eco-efficient removal of arsenic, Bioresour. Technol., 364 (2022) 127918, doi: 10.1016/j.biortech.2022.127918.
  65. J.-P. Simonin, On the comparison of pseudo-first order and pseudo-second-order rate laws in the modeling of adsorption kinetics, Chem. Eng. J., 300 (2016) 254–263.
  66. A.A.H. Faisal, A.H. Shihab, Mu. Naushad, T. Ahamad, G. Sharma, K.M. Al-Sheetan, Green synthesis for novel sorbent of sand coated with (Ca/Al)-layered double hydroxide for the removal of toxic dye from aqueous environment, J. Environ. Chem. Eng., 9 (2021) 105342, doi: 10.1016/j.jece.2021.105342.
  67. Y. Lin, S. Xu, J. Li, Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles, Chem. Eng. J., 225 (2013) 679–685.
  68. M. Ersan, U.A. Guler, U. Acıkel, M. Sarioglu, Synthesis of hydroxyapatite/clay and hydroxyapatite/pumice composites for tetracycline removal from aqueous solutions, Process Saf. Environ. Prot., 96 (2015) 22–32.
  69. J. Bao, Y. Zhu, S. Yuan, F. Wang, H. Tang, Z. Bao, H. Zhou, Y. Chen, Adsorption of tetracycline with reduced graphene oxide decorated with MnFe2O4 nanoparticles, Nanoscale Res. Lett., 13 (2018) 396,
    doi: 10.1186/s11671-018-2814-9.
  70. J. Lu, K. Xu, W. Li, D. Hao, L. Qiao, Removal of tetracycline antibiotics from aqueous solutions using easily regenerable pumice: batch and column study, Water Qual. Res. J., 53 (2018) 143–155.
  71. A. Huízar-Félix, C. Aguilar-Flores, A. Martínez-de-la Cruz, J. Barandiarán, S. Sepúlveda-Guzmán, R. Cruz-Silva, Removal of tetracycline pollutants by adsorption and magnetic separation using reduced graphene oxide decorated with α-Fe2O3 nanoparticles, Nanomaterials, 9 (2019) 313, doi: 10.3390/ nano9030313.
  72. L.T. Popoola, Tetracycline and sulfamethoxazole adsorption onto nanomagnetic walnut shell-rice husk: isotherm, kinetic, mechanistic and thermodynamic studies, Int. J. Environ. Anal. Chem., 100 (2020) 1021–1043.
  73. A.A.H. Faisal, D.N. Ahmed, M. Rezakazemi, N. Sivarajasekar, G. Sharma, Cost-effective composite prepared from sewage sludge waste and cement kiln dust as permeable reactive barrier to remediate simulated groundwater polluted with tetracycline, J. Environ. Chem. Eng., 9 (2021) 105194, doi: 10.1016/j.jece.2021.105194.