References
- H. Liu, S. Ning, S. Zhang, X. Wang, L. Chen, T. Fujita, Y. Wei,
Preparation of a mesoporous ion-exchange resin for efficient
separation of palladium from simulated electroplating
wastewater, J. Environ. Chem. Eng., 10 (2022) 106966,
doi: 10.1016/j.jece.2021.106966.
- X. Yang, Y. Wang, H. Ben, J. Yang, W. Jiang, A. Holmen,
Y. Huang, D. Chen, Dynamics of Co/Co2C redox cycle and
their catalytic consequences in Fischer–Tropsch synthesis on
cobalt–manganese catalysts, Chem. Eng. J., 455 (2023) 140577,
doi: 10.1016/j.cej.2022.140577.
- A. Ghorpade, M.M. Ahammed, Water treatment sludge for
removal of heavy metals from electroplating wastewater,
Environ. Eng. Res., 23 (2018) 92–98.
- S.S. Moersidik, R. Nugroho, M. Handayani, Kamilawati,
M.A. Pratama, Optimization and reaction kinetics on
the removal of nickel and COD from wastewater from
electroplating industry using electrocoagulation and advanced
oxidation processes, Heliyon, 6 (2020) e03319, doi: 10.1016/j.heliyon.2020.e03319.
- G. Pooja, P.S. Kumar, G. Prasannamedha, S. Varjani,
D.V.N. Vo, Sustainable approach on removal of toxic metals
from electroplating industrial wastewater using dissolved air
flotation, J. Environ. Manage., 295 (2021) 113147, doi: 10.1016/j.jenvman.2021.113147.
- J. Qu, X. Tian, Z. Jiang, B. Cao, M.S. Akindolie, Q. Hu,
C. Feng, Y. Feng, X. Meng, Y. Zhang, Multi-component
adsorption of Pb(II), Cd(II) and Ni(II) onto microwavefunctionalized
cellulose: kinetics, isotherms, thermodynamics,
mechanisms and application for electroplating wastewater
purification, J. Hazard. Mater., 387 (2020) 121718, doi: 10.1016/j.jhazmat.2019.121718.
- Y. Huo, A. Khan, Y. Liu, Z. Wang, Y. Yu, T. Sun, D. Liang,
T. Su, K. Ri, X. Xie, S. Zhu, Z. Wang, Conversion of Fe-bearing
minerals in sludge to nanorod erdite for real electroplating
wastewater treatment: comparative study between ferrihydrite,
hematite, magnetite, and troilite, J. Cleaner Prod.,
298 (2021) 126826, doi: 10.1016/j.jclepro.2021.126826.
- M. Li, Y. Hu, N. Zhou, S. Wang, F. Sun, Hydrothermal treatment
coupled with pyrolysis and calcination for stabilization
of electroplating sludge: speciation transformation and
environmental risk of heavy metals, J. Hazard. Mater.,
438 (2022) 129539, doi: 10.1016/j.jhazmat.2022.129539.
- G. Peng, S. Deng, F. Liu, T. Li, G. Yu, Superhigh adsorption
of nickel from electroplating wastewater by raw and calcined
electroplating sludge waste, J. Cleaner Prod., 246 (2020) 118948,
doi: 10.1016/j.jclepro.2019.118948.
- M.F. Mubarak, A.M. Zayed, H.A. Ahmed, Activated carbon/
carborundum@microcrystalline cellulose core shell nanocomposite:
synthesis, characterization and application for
heavy metals adsorption from aqueous solutions, Ind. Crops
Prod., 182 (2022) 114896, doi: 10.1016/j.indcrop.2022.114896.
- S.B. Betancur, S.A. Gil, A.N. Ardila A., A.V. Erasmo, B.Z. Rolando,
J.A. Hernández, T.A. Zepeda, Developing bioadsorbents
from orange peel waste for treatment of raw textile industry
wastewater, Desal. Water Treat., 250 (2022) 80–99.
- Nilamsari, Sofyana, M.R. Lubis, D. Prilyanti, T. Maimun,
Combination of adsorption process using bioadsorbent from
coffee ground and ultrafiltration membrane in removing
iron and lead content from water, Mater. Today Proc.,
63 (2022) S115–S121.
- S. Kokate, K. Parasuraman, H. Prakash, Adsorptive removal
of lead ion from water using banana stem scutcher generated
in fiber extraction process, Results Eng., 14 (2022) 100439,
doi: 10.1016/j.rineng.2022.100439.
- N. Ayala-Ruíz, D.H. Malagón-Romero, H.A. Milquez-Sanabria,
Exergoeconomic evaluation of a banana waste pyrolysis plant
for biofuel production, J. Cleaner Prod., 359 (2022) 132108,
doi: 10.1016/j.jclepro.2022.132108.
- Q. Wang, C. Zhou, Y.-j. Kuang, Z.-h. Jiang, M. Yang, Removal
of hexavalent chromium in aquatic solutions by pomelo peel,
Water Sci. Eng., 13 (2020) 65–73.
- H. Yu, L. Zheng, T. Zhang, J. Ren, W. Cheng, L. Zhang,
P. Meng, Adsorption behavior of Cd(II) on TEMPO-oxidized
cellulose in inorganic/organic complex systems, Environ. Res.,
195 (2021) 110848, doi: 10.1016/j.envres.2021.110848.
- A. Gul, A. Ma’amor, N.G. Khaligh, N. Muhd Julkapli, Recent
advancements in the applications of activated carbon for
the heavy metals and dyes removal, Chem. Eng. Res. Des.,
186 (2022) 276–299.
- A. Tomczyk, B. Kondracki, K. Szewczuk-Karpisz, Chemical
modification of biochars as a method to improve its surface
properties and efficiency in removing xenobiotics from
aqueous media, Chemosphere, 312 (2023) 137238, doi: 10.1016/j.chemosphere.2022.137238.
- J.-y. Huang, J.-s. Liao, J.-r. Qi, W.-x. Jiang, X.-q. Yang, Structural
and physico-chemical properties of pectin-rich dietary fiber
prepared from citrus peel, Food Hydrocolloids, 110 (2021)
106140, doi: 10.1016/j.foodhyd.2020.106140.
- Z. Wu, Z. Chen, J. Tang, Z. Zhou, L. Chen, Y. Fang, X. Hu, J. Lv,
Efficient adsorption and reduction of Cr(VI) in water using
one-step H3PO4-assisted prepared Leersia Hexandra Swartz
hydrochar, Mater. Today Sustainability, 21 (2023) 100260,
doi: 10.1016/j.mtsust.2022.100260.
- M. Yin, X. Bai, D. Wu, F. Li, K. Jiang, N. Ma, Z. Chen, X. Zhang,
L. Fang, Sulfur-functional group tunning on biochar through
sodium thiosulfate modified molten salt process for efficient
heavy metal adsorption, Chem. Eng. J., 433 (2022) 134441,
doi: 10.1016/j.cej.2021.134441.
- A. Pathy, P. Pokharel, X. Chen, P. Balasubramanian,
S.X. Chang, Activation methods increase biochar’s potential
for heavy-metal adsorption and environmental remediation:
a global meta-analysis, Sci. Total Environ., 865 (2023) 161252,
doi: 10.1016/j.scitotenv.2022.161252.
- F. Huang, S.M. Zhang, R.R. Wu, L. Zhang, P. Wang, R.B. Xiao,
Magnetic biochars have lower adsorption but higher separation
effectiveness for Cd2+ from aqueous solution compared to
nonmagnetic biochars, Environ. Pollut., 275 (2021) 116485,
doi: 10.1016/j.envpol.2021.116485.
- B. Gupta, A. Mishra, R. Singh, I.S. Thakur, Fabrication of calcite
based biocomposites for catalytic removal of heavy metals
from electroplating industrial effluent, Environ. Technol.
Innovation, 21 (2021) 101278, doi: 10.1016/j.eti.2020.101278.
- Y. Zhou, Z. Liu, A. Bo, T. Tana, X. Liu, F. Zhao, S. Sarina,
M. Jia, C. Yang, Y. Gu, H. Zheng, H. Zhu, Simultaneous
removal of cationic and anionic heavy metal contaminants
from electroplating effluent by hydrotalcite adsorbent with
disulfide (S2–) intercalation, J. Hazard. Mater., 382 (2020) 121111,
doi: 10.1016/j.jhazmat.2019.121111.
- T. Karuppiah, U. Uthirakrishnan, S.V. Sivakumar,
S. Authilingam, J. Arun, R. Sivaramakrishnan, A. Pugazhendhi,
Processing of electroplating industry wastewater through
dual chambered microbial fuel cells (MFC) for simultaneous
treatment of wastewater and green fuel production, Int. J.
Hydrogen Energy, 47 (2022) 37569–37576.
- A.T. Vo, V.P. Nguyen, A. Ouakouak, A. Nieva, B.T. Doma,
H.N. Tran, H.-P. Chao, Efficient removal of Cr(VI) from
water by biochar and activated carbon prepared through
hydrothermal carbonization and pyrolysis: adsorptioncoupled
reduction mechanism, Water, 11 (2019) 1164,
doi: 10.3390/w11061164.
- H. Ma, J. Yang, X. Gao, Z. Liu, X. Liu, Z. Xu, Removal of
chromium(VI) from water by porous carbon derived from
corn straw: influencing factors, regeneration and mechanism,
J. Hazard. Mater., 369 (2019) 550–560.
- A. Kumar, H.M. Jena, Adsorption of Cr(VI) from aqueous phase
by high surface area activated carbon prepared by chemical
activation with ZnCl2, Process Saf. Environ. Prot., 109 (2017)
63–71.
- I. Enniya, L. Rghioui, A. Jourani, Adsorption of hexavalent
chromium in aqueous solution on activated carbon prepared
from apple peels, Sustainable Chem. Pharm., 7 (2018) 9–16.
- A.S.K. Kumar, S.-J. Jiang, W.-L. Tseng, Effective adsorption
of chromium(VI)/Cr(III) from aqueous solution using ionic
liquid functionalized mulitwalled carbon nanotube as a super
sorbent, J. Mater. Chem. A, 3 (2015) 7044–7057.
- N.K. Hamadi, X. Dong, M.M. Farid, M.G.Q. Lu, Adsorption
kinetics for the removal of chromium(VI) from aqueous
solution by adsorbents derived from used tyres and sawdust,
Chem. Eng. J., 84 (2001) 95–105.
- H. Kim, R.A. Ko, S. Lee, K. Chon, Removal efficiencies of
manganese and iron using pristine and phosphoric acid pretreated
biochars made from banana peels, Water (Switzerland),
12 (2020) 1–13.
- P.F. Santos, J.B. Neris, F.H.M. Luzardo, F.G. Velasco,
M.S. Tokumoto, R.S. da Cruz, Chemical modification of four
lignocellulosic materials to improve the Pb2+ and Ni2+ ions
adsorption in aqueous solutions, J. Environ. Chem. Eng.,
7 (2019) 103363, doi: 10.1016/j.jece.2019.103363.
- A.A. Oladipo, E.O. Ahaka, M. Gazi, High adsorptive potential
of calcined magnetic biochar derived from banana peels for
Cu2+, Hg2+, and Zn2+ ions removal in single and ternary systems,
Environ. Sci. Pollut. Res., 26 (2019) 31887–31899.
- R. Foroutan, S.J. Peighambardoust, R. Mohammadi,
S.H. Peighambardoust, B. Ramavandi, Cadmium ion
removal from aqueous media using banana peel biochar/Fe3/O4/ZIF-67, Environ. Res., 211 (2022) 113020, doi: 10.1016/j.envres.2022.113020.
- Y. Sun, J. Chen, Z. Wei, Y. Chen, C. Shao, J. Zhou, Aspects
copper ion removal from aqueous media using banana peel
biochar/Fe3O4/branched polyethyleneimine, Colloids Surf., A,
658 (2023) 130736, doi: 10.1016/j.colsurfa.2022.130736.
- N. Zhou, H. Chen, J. Xi, D. Yao, Z. Zhou, Y. Tian, X. Lu, Biochars
with excellent Pb(II) adsorption property produced from fresh
and dehydrated banana peels via hydrothermal carbonization,
Bioresour. Technol., 232 (2017) 204–210.
- Z. Ahmad, B. Gao, A. Mosa, H. Yu, X. Yin, A. Bashir, H. Ghoveisi,
S. Wang, Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous
solutions by biochars derived from potassium-rich biomass,
J. Cleaner Prod., 180 (2018) 437–449.
- A.F. Torres Puentes, Evaluación de parámetros en la
filtración rápida como tratamiento de agua gris doméstica,
Universidad de Los Andes Facultad, 2017.
- A.M. Kennedy, M. Arias-Paic, Fixed-bed adsorption
comparisons of bone char and activated alumina for the
removal of fluoride from drinking water, J. Environ. Eng.,
146 (2020) 04019099,
doi: 10.1061/(asce)ee.1943-7870.0001625.
- S. Rajoria, M. Vashishtha, V.K. Sangal, Review on the treatment
of electroplating industry wastewater by electrochemical
methods, Mater. Today Proc., 47 (2021) 1472–1479.
- M. de A. y D. Sostenible, Resolución 0631 del 17 de marzo
de 2015, Por La Cual Se Establ. Los Parámetros y Los Valores
Límites Máximos Permis. En Los Vertimientos Puntuales a
Cuerpos Agua Supeficiales y a Los Sist. Alcantarilladopúblico
y Se Dictan Otras Disposiciones, 2015, pp. 1–62.
- M.T. Amin, A.A. Alazba, M. Shafiq, Removal of copper and lead
using banana biochar in batch adsorption systems: isotherms
and kinetic studies, Arabian J. Sci. Eng., 43 (2018) 5711–5722.
- G.A. Adebisi, Z.Z. Chowdhury, S.B.A. Hamid, E. Ali,
Hydrothermally treated banana empty fruit bunch fiber
activated carbon for Pb(II) and Zn(II) removal, BioResources,
11 (2016) 9686–9709.
- M. Waqas, A. Aburizaiza, R. Miandad, M. Rehan, M. Barakat,
D.A.-S. Nizami, Development of biochar as fuel and catalyst
in energy recovery technologies, J. Cleaner Prod., 188 (2018)
477–488.
- S. Khoshk, A. Tahmasebi, R. Wang, J. Dou, J. Yu, Formation
mechanism of nano graphitic structures during microwave
catalytic graphitization of activated carbon, Diamond Relat.
Mater., 120 (2021) 108699, doi: 10.1016/j.diamond.2021.108699.
- M.F. Aly Aboud, Z.A. Alothman, M.A. Habila, C. Zlotea,
M. Latroche, F. Cuevas, Hydrogen storage in pristine and
d10-block metal-anchored activated carbon made from local
wastes, Energies, 8 (2015) 3578–3590.
- E.I. Inam, U.J. Etim, E.G. Akpabio, S.A. Umoren, Simultaneous
adsorption of lead(II) and 3,7-bis(dimethylamino)-
phenothiazin-5-ium chloride from aqueous solution by
activated carbon prepared from plantain peels, Desal. Water
Treat., 57 (2016) 6540–6553.
- P. Dutournié, M. Bruneau, J. Brendlé, L. Limousy, S. Pluchon,
Mass transfer modelling in clay-based material: estimation
of apparent diffusivity of a molecule of interest, C.R. Chim.,
22 (2019) 250–257.
- C. Sun, T. Chen, Q. Huang, M. Zhan, X. Li, J. Yan, Activation
of persulfate by CO2-activated biochar for improved phenolic
pollutant degradation: performance and mechanism,
Chem. Eng. J., 380 (2020) 122519, doi: 10.1016/j.cej.2019.122519.
- M. Patel, R. Kumar, C.U. Pittman, D. Mohan, Ciprofloxacin
and acetaminophen sorption onto banana peel biochars:
environmental and process parameter influences, Environ.
Res., 201 (2021) 111218, doi: 10.1016/j.envres.2021.111218.
- M.M. Rahman, A.Z. Shafiullah, A. Pal, M.A. Islam, I. Jahan,
B.B. Saha, Study on optimum IUPAC adsorption isotherm
models employing sensitivity of parameters for rigorous
adsorption system performance evaluation, Energies, 14 (2021),
doi: 10.3390/en14227478.
- D.C.O. Valencia, M. del R.S. Kou, Estudio comparativo de
la capacidad de adsorción de Cadmio utilizando carbones
activados preparados a partir de semillas de aguaje y de
aceituna, Universidad Católica de Perú, 2015. doi: 10.13140/RG.2.1.2075.6322
- J.G.D. Nemaleu, R.C. Kaze, S. Tome, T. Alomayri, H. Assaedi,
E. Kamseu, U.C. Melo, V.M. Sglavo, Powdered banana
peel in calcined halloysite replacement on the setting times
and engineering properties on the geopolymer binders,
Constr. Build. Mater., 279 (2021) 122480, doi: 10.1016/j.conbuildmat.2021.122480.
- M. Qiu, L. Liu, Q. Ling, Y. Cai, S. Yu, S. Wang, D. Fu, B. Hu,
X. Wang, Biochar for the removal of contaminants from soil
and water: a review, Biochar, 4 (2022) 1–25.
- R.T. Kapoor, M. Rafatullah, M.R. Siddiqui, M.A. Khan,
M. Sillanpää, Removal of Reactive Black 5 dye by banana
peel biochar and evaluation of its phytotoxicity on tomato,
Sustainability, 14 (2022) 4176, doi: 10.3390/su14074176.
- J. Cui, X. Wang, Y. Yuan, X. Guo, X. Gu, L. Jian, Combined ozone
oxidation and biological aerated filter processes for treatment
of cyanide containing electroplating wastewater, Chem. Eng. J.,
241 (2014) 184–189.
- Z. Ma, Z. Cheng, Y. Yang, C. Nie, D. Wu, T. Yang, S. Wang,
D. Li, Acid-modified anaerobic biogas residue biochar activates
persulfate for phenol degradation: enhancement of the
efficiency and non-radical pathway, Colloids Surf., A, 663 (2023)
131121, doi: 10.1016/j.colsurfa.2023.131121.
- M. Luo, H. Lin, B. Li, Y. Dong, Y. He, L. Wang, A novel
modification of lignin on corncob-based biochar to enhance
removal of cadmium from water, Bioresour. Technol., 259 (2018)
312–318.
- Y. Gao, X. Zhu, Q. Yue, B. Gao, Facile one-step synthesis of
functionalized biochar from sustainable prolifera-green-tide
source for enhanced adsorption of copper ions, J. Environ. Sci.
(China), 73 (2018) 185–194.
- C. Liu, W. Wang, R. Wu, Y. Liu, X. Lin, H. Kan, Y. Zheng,
Preparation of acid- and alkali-modified biochar for removal
of methylene blue pigment, ACS Omega, 5 (2020) 30906–30922.
- A. Hafeez, T. Pan, J. Tian, K. Cai, Modified biochars and their
effects on soil quality: a review, Environments, 9 (2022) 60,
doi: 10.3390/environments9050060.