References

  1. H. Liu, S. Ning, S. Zhang, X. Wang, L. Chen, T. Fujita, Y. Wei, Preparation of a mesoporous ion-exchange resin for efficient separation of palladium from simulated electroplating wastewater, J. Environ. Chem. Eng., 10 (2022) 106966, doi: 10.1016/j.jece.2021.106966.
  2. X. Yang, Y. Wang, H. Ben, J. Yang, W. Jiang, A. Holmen, Y. Huang, D. Chen, Dynamics of Co/Co2C redox cycle and their catalytic consequences in Fischer–Tropsch synthesis on cobalt–manganese catalysts, Chem. Eng. J., 455 (2023) 140577, doi: 10.1016/j.cej.2022.140577.
  3. A. Ghorpade, M.M. Ahammed, Water treatment sludge for removal of heavy metals from electroplating wastewater, Environ. Eng. Res., 23 (2018) 92–98.
  4. S.S. Moersidik, R. Nugroho, M. Handayani, Kamilawati, M.A. Pratama, Optimization and reaction kinetics on the removal of nickel and COD from wastewater from electroplating industry using electrocoagulation and advanced oxidation processes, Heliyon, 6 (2020) e03319, doi: 10.1016/j.heliyon.2020.e03319.
  5. G. Pooja, P.S. Kumar, G. Prasannamedha, S. Varjani, D.V.N. Vo, Sustainable approach on removal of toxic metals from electroplating industrial wastewater using dissolved air flotation, J. Environ. Manage., 295 (2021) 113147, doi: 10.1016/j.jenvman.2021.113147.
  6. J. Qu, X. Tian, Z. Jiang, B. Cao, M.S. Akindolie, Q. Hu, C. Feng, Y. Feng, X. Meng, Y. Zhang, Multi-component adsorption of Pb(II), Cd(II) and Ni(II) onto microwavefunctionalized cellulose: kinetics, isotherms, thermodynamics, mechanisms and application for electroplating wastewater purification, J. Hazard. Mater., 387 (2020) 121718, doi: 10.1016/j.jhazmat.2019.121718.
  7. Y. Huo, A. Khan, Y. Liu, Z. Wang, Y. Yu, T. Sun, D. Liang, T. Su, K. Ri, X. Xie, S. Zhu, Z. Wang, Conversion of Fe-bearing minerals in sludge to nanorod erdite for real electroplating wastewater treatment: comparative study between ferrihydrite, hematite, magnetite, and troilite, J. Cleaner Prod., 298 (2021) 126826, doi: 10.1016/j.jclepro.2021.126826.
  8. M. Li, Y. Hu, N. Zhou, S. Wang, F. Sun, Hydrothermal treatment coupled with pyrolysis and calcination for stabilization of electroplating sludge: speciation transformation and environmental risk of heavy metals, J. Hazard. Mater., 438 (2022) 129539, doi: 10.1016/j.jhazmat.2022.129539.
  9. G. Peng, S. Deng, F. Liu, T. Li, G. Yu, Superhigh adsorption of nickel from electroplating wastewater by raw and calcined electroplating sludge waste, J. Cleaner Prod., 246 (2020) 118948, doi: 10.1016/j.jclepro.2019.118948.
  10. M.F. Mubarak, A.M. Zayed, H.A. Ahmed, Activated carbon/ carborundum@microcrystalline cellulose core shell nanocomposite: synthesis, characterization and application for heavy metals adsorption from aqueous solutions, Ind. Crops Prod., 182 (2022) 114896, doi: 10.1016/j.indcrop.2022.114896.
  11. S.B. Betancur, S.A. Gil, A.N. Ardila A., A.V. Erasmo, B.Z. Rolando, J.A. Hernández, T.A. Zepeda, Developing bioadsorbents from orange peel waste for treatment of raw textile industry wastewater, Desal. Water Treat., 250 (2022) 80–99.
  12. Nilamsari, Sofyana, M.R. Lubis, D. Prilyanti, T. Maimun, Combination of adsorption process using bioadsorbent from coffee ground and ultrafiltration membrane in removing iron and lead content from water, Mater. Today Proc., 63 (2022) S115–S121.
  13. S. Kokate, K. Parasuraman, H. Prakash, Adsorptive removal of lead ion from water using banana stem scutcher generated in fiber extraction process, Results Eng., 14 (2022) 100439, doi: 10.1016/j.rineng.2022.100439.
  14. N. Ayala-Ruíz, D.H. Malagón-Romero, H.A. Milquez-Sanabria, Exergoeconomic evaluation of a banana waste pyrolysis plant for biofuel production, J. Cleaner Prod., 359 (2022) 132108, doi: 10.1016/j.jclepro.2022.132108.
  15. Q. Wang, C. Zhou, Y.-j. Kuang, Z.-h. Jiang, M. Yang, Removal of hexavalent chromium in aquatic solutions by pomelo peel, Water Sci. Eng., 13 (2020) 65–73.
  16. H. Yu, L. Zheng, T. Zhang, J. Ren, W. Cheng, L. Zhang, P. Meng, Adsorption behavior of Cd(II) on TEMPO-oxidized cellulose in inorganic/organic complex systems, Environ. Res., 195 (2021) 110848, doi: 10.1016/j.envres.2021.110848.
  17. A. Gul, A. Ma’amor, N.G. Khaligh, N. Muhd Julkapli, Recent advancements in the applications of activated carbon for the heavy metals and dyes removal, Chem. Eng. Res. Des., 186 (2022) 276–299.
  18. A. Tomczyk, B. Kondracki, K. Szewczuk-Karpisz, Chemical modification of biochars as a method to improve its surface properties and efficiency in removing xenobiotics from aqueous media, Chemosphere, 312 (2023) 137238, doi: 10.1016/j.chemosphere.2022.137238.
  19. J.-y. Huang, J.-s. Liao, J.-r. Qi, W.-x. Jiang, X.-q. Yang, Structural and physico-chemical properties of pectin-rich dietary fiber prepared from citrus peel, Food Hydrocolloids, 110 (2021) 106140, doi: 10.1016/j.foodhyd.2020.106140.
  20. Z. Wu, Z. Chen, J. Tang, Z. Zhou, L. Chen, Y. Fang, X. Hu, J. Lv, Efficient adsorption and reduction of Cr(VI) in water using one-step H3PO4-assisted prepared Leersia Hexandra Swartz hydrochar, Mater. Today Sustainability, 21 (2023) 100260, doi: 10.1016/j.mtsust.2022.100260.
  21. M. Yin, X. Bai, D. Wu, F. Li, K. Jiang, N. Ma, Z. Chen, X. Zhang, L. Fang, Sulfur-functional group tunning on biochar through sodium thiosulfate modified molten salt process for efficient heavy metal adsorption, Chem. Eng. J., 433 (2022) 134441, doi: 10.1016/j.cej.2021.134441.
  22. A. Pathy, P. Pokharel, X. Chen, P. Balasubramanian, S.X. Chang, Activation methods increase biochar’s potential for heavy-metal adsorption and environmental remediation: a global meta-analysis, Sci. Total Environ., 865 (2023) 161252, doi: 10.1016/j.scitotenv.2022.161252.
  23. F. Huang, S.M. Zhang, R.R. Wu, L. Zhang, P. Wang, R.B. Xiao, Magnetic biochars have lower adsorption but higher separation effectiveness for Cd2+ from aqueous solution compared to nonmagnetic biochars, Environ. Pollut., 275 (2021) 116485, doi: 10.1016/j.envpol.2021.116485.
  24. B. Gupta, A. Mishra, R. Singh, I.S. Thakur, Fabrication of calcite based biocomposites for catalytic removal of heavy metals from electroplating industrial effluent, Environ. Technol. Innovation, 21 (2021) 101278, doi: 10.1016/j.eti.2020.101278.
  25. Y. Zhou, Z. Liu, A. Bo, T. Tana, X. Liu, F. Zhao, S. Sarina, M. Jia, C. Yang, Y. Gu, H. Zheng, H. Zhu, Simultaneous removal of cationic and anionic heavy metal contaminants from electroplating effluent by hydrotalcite adsorbent with disulfide (S2) intercalation, J. Hazard. Mater., 382 (2020) 121111, doi: 10.1016/j.jhazmat.2019.121111.
  26. T. Karuppiah, U. Uthirakrishnan, S.V. Sivakumar, S. Authilingam, J. Arun, R. Sivaramakrishnan, A. Pugazhendhi, Processing of electroplating industry wastewater through dual chambered microbial fuel cells (MFC) for simultaneous treatment of wastewater and green fuel production, Int. J. Hydrogen Energy, 47 (2022) 37569–37576.
  27. A.T. Vo, V.P. Nguyen, A. Ouakouak, A. Nieva, B.T. Doma, H.N. Tran, H.-P. Chao, Efficient removal of Cr(VI) from water by biochar and activated carbon prepared through hydrothermal carbonization and pyrolysis: adsorptioncoupled reduction mechanism, Water, 11 (2019) 1164, doi: 10.3390/w11061164.
  28. H. Ma, J. Yang, X. Gao, Z. Liu, X. Liu, Z. Xu, Removal of chromium(VI) from water by porous carbon derived from corn straw: influencing factors, regeneration and mechanism, J. Hazard. Mater., 369 (2019) 550–560.
  29. A. Kumar, H.M. Jena, Adsorption of Cr(VI) from aqueous phase by high surface area activated carbon prepared by chemical activation with ZnCl2, Process Saf. Environ. Prot., 109 (2017) 63–71.
  30. I. Enniya, L. Rghioui, A. Jourani, Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels, Sustainable Chem. Pharm., 7 (2018) 9–16.
  31. A.S.K. Kumar, S.-J. Jiang, W.-L. Tseng, Effective adsorption of chromium(VI)/Cr(III) from aqueous solution using ionic liquid functionalized mulitwalled carbon nanotube as a super sorbent, J. Mater. Chem. A, 3 (2015) 7044–7057.
  32. N.K. Hamadi, X. Dong, M.M. Farid, M.G.Q. Lu, Adsorption kinetics for the removal of chromium(VI) from aqueous solution by adsorbents derived from used tyres and sawdust, Chem. Eng. J., 84 (2001) 95–105.
  33. H. Kim, R.A. Ko, S. Lee, K. Chon, Removal efficiencies of manganese and iron using pristine and phosphoric acid pretreated biochars made from banana peels, Water (Switzerland), 12 (2020) 1–13.
  34. P.F. Santos, J.B. Neris, F.H.M. Luzardo, F.G. Velasco, M.S. Tokumoto, R.S. da Cruz, Chemical modification of four lignocellulosic materials to improve the Pb2+ and Ni2+ ions adsorption in aqueous solutions, J. Environ. Chem. Eng., 7 (2019) 103363, doi: 10.1016/j.jece.2019.103363.
  35. A.A. Oladipo, E.O. Ahaka, M. Gazi, High adsorptive potential of calcined magnetic biochar derived from banana peels for Cu2+, Hg2+, and Zn2+ ions removal in single and ternary systems, Environ. Sci. Pollut. Res., 26 (2019) 31887–31899.
  36. R. Foroutan, S.J. Peighambardoust, R. Mohammadi, S.H. Peighambardoust, B. Ramavandi, Cadmium ion removal from aqueous media using banana peel biochar/Fe3/O4/ZIF-67, Environ. Res., 211 (2022) 113020, doi: 10.1016/j.envres.2022.113020.
  37. Y. Sun, J. Chen, Z. Wei, Y. Chen, C. Shao, J. Zhou, Aspects copper ion removal from aqueous media using banana peel biochar/Fe3O4/branched polyethyleneimine, Colloids Surf., A, 658 (2023) 130736, doi: 10.1016/j.colsurfa.2022.130736.
  38. N. Zhou, H. Chen, J. Xi, D. Yao, Z. Zhou, Y. Tian, X. Lu, Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization, Bioresour. Technol., 232 (2017) 204–210.
  39. Z. Ahmad, B. Gao, A. Mosa, H. Yu, X. Yin, A. Bashir, H. Ghoveisi, S. Wang, Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass, J. Cleaner Prod., 180 (2018) 437–449.
  40. A.F. Torres Puentes, Evaluación de parámetros en la filtración rápida como tratamiento de agua gris doméstica, Universidad de Los Andes Facultad, 2017.
  41. A.M. Kennedy, M. Arias-Paic, Fixed-bed adsorption comparisons of bone char and activated alumina for the removal of fluoride from drinking water, J. Environ. Eng., 146 (2020) 04019099,
    doi: 10.1061/(asce)ee.1943-7870.0001625.
  42. S. Rajoria, M. Vashishtha, V.K. Sangal, Review on the treatment of electroplating industry wastewater by electrochemical methods, Mater. Today Proc., 47 (2021) 1472–1479.
  43. M. de A. y D. Sostenible, Resolución 0631 del 17 de marzo de 2015, Por La Cual Se Establ. Los Parámetros y Los Valores Límites Máximos Permis. En Los Vertimientos Puntuales a Cuerpos Agua Supeficiales y a Los Sist. Alcantarilladopúblico y Se Dictan Otras Disposiciones, 2015, pp. 1–62.
  44. M.T. Amin, A.A. Alazba, M. Shafiq, Removal of copper and lead using banana biochar in batch adsorption systems: isotherms and kinetic studies, Arabian J. Sci. Eng., 43 (2018) 5711–5722.
  45. G.A. Adebisi, Z.Z. Chowdhury, S.B.A. Hamid, E. Ali, Hydrothermally treated banana empty fruit bunch fiber activated carbon for Pb(II) and Zn(II) removal, BioResources, 11 (2016) 9686–9709.
  46. M. Waqas, A. Aburizaiza, R. Miandad, M. Rehan, M. Barakat, D.A.-S. Nizami, Development of biochar as fuel and catalyst in energy recovery technologies, J. Cleaner Prod., 188 (2018) 477–488.
  47. S. Khoshk, A. Tahmasebi, R. Wang, J. Dou, J. Yu, Formation mechanism of nano graphitic structures during microwave catalytic graphitization of activated carbon, Diamond Relat. Mater., 120 (2021) 108699, doi: 10.1016/j.diamond.2021.108699.
  48. M.F. Aly Aboud, Z.A. Alothman, M.A. Habila, C. Zlotea, M. Latroche, F. Cuevas, Hydrogen storage in pristine and d10-block metal-anchored activated carbon made from local wastes, Energies, 8 (2015) 3578–3590.
  49. E.I. Inam, U.J. Etim, E.G. Akpabio, S.A. Umoren, Simultaneous adsorption of lead(II) and 3,7-bis(dimethylamino)- phenothiazin-5-ium chloride from aqueous solution by activated carbon prepared from plantain peels, Desal. Water Treat., 57 (2016) 6540–6553.
  50. P. Dutournié, M. Bruneau, J. Brendlé, L. Limousy, S. Pluchon, Mass transfer modelling in clay-based material: estimation of apparent diffusivity of a molecule of interest, C.R. Chim., 22 (2019) 250–257.
  51. C. Sun, T. Chen, Q. Huang, M. Zhan, X. Li, J. Yan, Activation of persulfate by CO2-activated biochar for improved phenolic pollutant degradation: performance and mechanism, Chem. Eng. J., 380 (2020) 122519, doi: 10.1016/j.cej.2019.122519.
  52. M. Patel, R. Kumar, C.U. Pittman, D. Mohan, Ciprofloxacin and acetaminophen sorption onto banana peel biochars: environmental and process parameter influences, Environ. Res., 201 (2021) 111218, doi: 10.1016/j.envres.2021.111218.
  53. M.M. Rahman, A.Z. Shafiullah, A. Pal, M.A. Islam, I. Jahan, B.B. Saha, Study on optimum IUPAC adsorption isotherm models employing sensitivity of parameters for rigorous adsorption system performance evaluation, Energies, 14 (2021), doi: 10.3390/en14227478.
  54. D.C.O. Valencia, M. del R.S. Kou, Estudio comparativo de la capacidad de adsorción de Cadmio utilizando carbones activados preparados a partir de semillas de aguaje y de aceituna, Universidad Católica de Perú, 2015. doi: 10.13140/RG.2.1.2075.6322
  55. J.G.D. Nemaleu, R.C. Kaze, S. Tome, T. Alomayri, H. Assaedi, E. Kamseu, U.C. Melo, V.M. Sglavo, Powdered banana peel in calcined halloysite replacement on the setting times and engineering properties on the geopolymer binders, Constr. Build. Mater., 279 (2021) 122480, doi: 10.1016/j.conbuildmat.2021.122480.
  56. M. Qiu, L. Liu, Q. Ling, Y. Cai, S. Yu, S. Wang, D. Fu, B. Hu, X. Wang, Biochar for the removal of contaminants from soil and water: a review, Biochar, 4 (2022) 1–25.
  57. R.T. Kapoor, M. Rafatullah, M.R. Siddiqui, M.A. Khan, M. Sillanpää, Removal of Reactive Black 5 dye by banana peel biochar and evaluation of its phytotoxicity on tomato, Sustainability, 14 (2022) 4176, doi: 10.3390/su14074176.
  58. J. Cui, X. Wang, Y. Yuan, X. Guo, X. Gu, L. Jian, Combined ozone oxidation and biological aerated filter processes for treatment of cyanide containing electroplating wastewater, Chem. Eng. J., 241 (2014) 184–189.
  59. Z. Ma, Z. Cheng, Y. Yang, C. Nie, D. Wu, T. Yang, S. Wang, D. Li, Acid-modified anaerobic biogas residue biochar activates persulfate for phenol degradation: enhancement of the efficiency and non-radical pathway, Colloids Surf., A, 663 (2023) 131121, doi: 10.1016/j.colsurfa.2023.131121.
  60. M. Luo, H. Lin, B. Li, Y. Dong, Y. He, L. Wang, A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water, Bioresour. Technol., 259 (2018) 312–318.
  61. Y. Gao, X. Zhu, Q. Yue, B. Gao, Facile one-step synthesis of functionalized biochar from sustainable prolifera-green-tide source for enhanced adsorption of copper ions, J. Environ. Sci. (China), 73 (2018) 185–194.
  62. C. Liu, W. Wang, R. Wu, Y. Liu, X. Lin, H. Kan, Y. Zheng, Preparation of acid- and alkali-modified biochar for removal of methylene blue pigment, ACS Omega, 5 (2020) 30906–30922.
  63. A. Hafeez, T. Pan, J. Tian, K. Cai, Modified biochars and their effects on soil quality: a review, Environments, 9 (2022) 60, doi: 10.3390/environments9050060.