References

  1. C. Chen, H. Zeng, M. Yi, G. Xiao, S. Xu, S. Shen, B. Feng, In-situ growth of Ag3PO4 on calcined Zn-Al layered double hydroxides for enhanced photocatalytic degradation of tetracycline under simulated solar light irradiation and toxicity assessment, Appl. Catal., B, 252 (2019) 47–54.
  2. X.N. Hu, Y. Ye, W.B. Dong, Y.C. Huang, M.S. Zhu, Quantitative evaluation of structure-activity relationships in heterogeneous photocatalytic oxidation towards organic contaminants, Appl. Catal., B, 309 (2022) 121238, doi: 10.1016/j.apcatb.2022.121238.
  3. K. Domagala, C. Jacquin, M. Borlaf, B. Sinnet, T. Julian, D. Kata, T. Graule, Efficiency and stability evaluation of Cu2O/MWCNTs filters for virus removal from water, Water Res., 179 (2020) 115879, doi: 10.1016/j.watres.2020.115879.
  4. D. Pathania, A. Sharma, S. Kumar, A.K. Srivastava, A. Kumar, L. Singh, Bio-synthesized Cu-ZnO hetro-nanostructure for catalytic degradation of organophosphate chlorpyrifos under solar illumination, Chemosphere, 277 (2021) 130315, doi: 10.1016/j.chemosphere.2021.130315.
  5. A. Kumar, G. Sharma, M. Thakur, D. Pathania, Sol-gel synthesis of polyacrylamide stannic arsenate nanocomposite ion exchanger: binary separations and enhanced photocatalytic activity, SN Appl. Sci., 1 (2019) 862, doi: 10.1007/s42452-019-0905-6.
  6. A. Kumar, D. Pathania, N. Gupta, P. Raj, A. Sharma, Photodegradation of noxious pollutants from water system using Cornulaca monacantha stem supported ZnFe2O4 magnetic bionanocomposite, Sustainable Chem. Pharm., 18 (2020) 100290, doi: 10.1016/j.scp.2020.100290.
  7. M. Liu, T. Peng, H. Li, L. Zhao, Y. Sang, Q. Feng, L. Xu, Y. Jiang, H. Liu, J. Zhang, Photoresponsive nanostructure assisted green synthesis of organics and polymers, Appl. Catal., B, 249 (2019) 172–210.
  8. N.A. Khan, S.H. Jhung, Adsorptive removal and separation of chemicals with metal–organic frameworks: contribution of pi-complexation, J. Hazard. Mater., 325 (2017) 198–213.
  9. K. Hemine, N. Lukasik, M. Gazda, I. Nowak, β-cyclodextrincontaining polymer based on renewable cellulose resources for effective removal of ionic and non-ionic toxic organic pollutants from water, J. Hazard. Mater., 418 (2021) 126286, doi: 10.1016/j.jhazmat.2021.126286.
  10. S. Singh, R. Punia, K.K. Pant, P. Biswas, Effect of work-function and morphology of heterostructure components on CO2 reduction photo-catalytic activity of MoS2-Cu2O heterostructure, Chem. Eng. J., 433 (2022) 132709, doi: 10.1016/j.cej.2021.132709.
  11. J. Li, A.N. Pham, R. Dai, Z. Wang, T.D. Waite, Recent advances in Cu-Fenton systems for the treatment of industrial wastewaters: role of Cu complexes and Cu composites, J. Hazard. Mater., 392 (2020) 122261, doi: 10.1016/j.jhazmat.2020.122261.
  12. L.K. Cui, L.Q. Hu, Q.Q. Shen, X.G. Liu, H.S. Jia, J.B. Xue, Three-dimensional porous Cu2O with dendrite for efficient photocatalytic reduction of CO2 under visible light, Appl. Surf. Sci., 581 (2022) 152343, doi: 10.1016/j.apsusc.2021.152343.
  13. X.S. Zhou, B. Jin, J. Luo, X.X. Gu, S.Q. Zhang, Photoreduction preparation of Cu2O@polydopamine nanospheres with enhanced photocatalytic activity under visible light irradiation, J. Solid State Chem., 254 (2017) 56–61.
  14. H.M. Zhu, Y. Li, X.C. Jiang, Room-temperature synthesis of cuprous oxide and its heterogeneous nanostructures for photocatalytic applications, J. Alloys Compd., 772 (2019) 447–459.
  15. J.F. Zhang, P. Wang, C.P. Yu, X. Shu, L. Jiang, Enhanced visible-light photoelectrochemical behavior of heterojunction composite with Cu2O nanoparticles-decorated TiO2 nanotube arrays, New J. Chem., 38 (2014) 4975–4984.
  16. J. Shravanti, J.I. Samuel, S.V. Manorama, Convenient architectures of Cu2O/SnO2 type II p-n heterojunctions and their application in visible light catalytic degradation of Rhodamine B, RSC. Adv., 6 (2016) 43672–43684.
  17. S.H. Liu, Y.S. Wei, J.S. Lu, Visible-light-driven photodegradation of sulfamethoxazole and methylene blue by Cu2O/rGO photocatalysts, Chemosphere, 154 (2016) 118–123.
  18. S.W. Lee, J.W. Hong, H. Lee, D.H. Wi, S.M. Kim, S.W. Han, J.Y. Park, The surface plasmon-induced hot carrier effect on the catalytic activity of CO oxidation on a Cu2O/hexoctahedral Au inverse catalyst, Nanoscale, 10 (2018) 10835–10843.
  19. Q. Li, Y.W. Li, P.G. Wu, R.C. Xie, Palladium oxide nanoparticles on nitrogen-doped titanium oxide: accelerated photocatalytic disinfection and post-illumination catalytic “memory”, Adv. Mater., 20 (2008) 3717–3723.
  20. Q. Li, Y.W. Li, Z.Q. Liu, R.C. Xie, K.S. Jian, Memory antibacterial effect from photoelectron transfer between nanoparticles and visible light photocatalyst, J. Mater. Chem., 20 (2010) 1068–1072.
  21. L.N. Li, Z.S. Liu, L.T. Guo, H.L. Fan, X.Y. Tao, NaBiO3/BiO2–x composite photocatalysts with post-illumination “memory” activity, Mater. Lett., 234 (2019) 30–34.
  22. M. Wei, C.S. Chen, X. Chen, X.Y. Liu, Z. Yang, F. Ding, Z.S. Chao, T.G. Liu, Low-temperature construction of MoS2 quantum dots/ZnO spheres and their photocatalytic activity under natural sunlight, J. Colloid Interface Sci., 530 (2018) 714–724.
  23. T. Cai, Y.T. Liu, L.L. Wang, W.Y. Dong, G.M. Zeng, Recent advances in round-the-clock photocatalytic system: mechanisms, characterization techniques and applications, J. Photochem. Photobiol., C, 39 (2019) 58–75.
  24. W. Yang, Y. Chen, S. Gao, L.C. Sang, R.G. Tao, C.X. Sun, J.K. Shang, Q. Li, Post-illumination activity of Bi2WO6 in the dark from the photocatalytic “memory” effect, J. Adv. Ceram., 10 (2021) 355–367.
  25. M.Y. Kuo, C.F. Hsiao, Y.H. Chiu, T.H. Lai, Y.J. Hsu, Au@Cu2O core@shell nanocrystals as dual-functional catalysts for sustainable environmental applications, Appl. Catal., B, 242 (2019) 499–506.
  26. S. Begum, S.R. Mishra, M. Ahmaruzzaman, Facile synthesis of NiO-SnO2 nanocomposite for enhanced photocatalytic degradation of Bismarck brown, Inorg. Chem. Commun., 143 (2022) 109721, doi: 10.1016/j.inoche.2022.109721.
  27. S.M. Lam, Z.H. Jaffari, J.C. Sin, H.H. Zeng, H. Lin, H.X. Li, A.R. Mohamed, D.Q. Ng, Surface decorated coral-like magnetic BiFeO3 with Au nanoparticles for effective sunlight photodegradation of 2,4-D and E. coli inactivation, J. Mol. Liq., 326 (2021) 115372, doi: 10.1016/j.molliq.2021.115372.
  28. B. Pan, Y. Wu, B. Rhimi, J. Qin, Y. Huang, M. Yuan, C. Wang, Oxygen-doping of ZnIn2S4 nanosheets towards boosted photocatalytic CO2 reduction, J. Energy Chem., 57 (2021) 1–9.
  29. V. Kumar, V. Kumar, S. Som, J.H. Neethling, E. Olivier, O.M. Ntwaeaborwa, H.C. Swart, The role of surface and deep-level defects on the emission of tin oxide quantum dots, Nanotechnology, 25 (2014) 135701, doi: 10.1088/0957-4484/25/13/135701.
  30. J.F. Zhang, Y. Wang, T.K. Shen, X. Shu, J.W. Cui, Z. Chen, Y.C. Wu, Visible light photocatalytic performance of
    Cu2O/TiO2 nanotube heterostructures prepared by pulse deposition, Acta Phys. Chim. Sin., 30 (2014) 1535–1542.
  31. D.J. Yang, I. Kamienchick, D.Y. Youn, A. Rothschild, I.D. Kim, Ultrasensitive and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading, Adv. Funct. Mater., 20 (2010) 4258–4264.
  32. L.M. Liu, W.Z. Sun, W.Y. Yang, Q. Li, J.K. Shang, Postillumination activity of SnO2 nanoparticle-decorated Cu2O nanocubes by H2O2 production in dark from photocatalytic “memory”, Sci. Rep., 6 (2016) 20878, doi: 10.1038/srep20878.
  33. X.Z. Yang, C.Y. Wang, B. Zhou, S.C. Cheng, Characterization of an iron-copper bimetallic metal-organic framework for adsorption of methyl orange in aqueous solution, J. Autom. Methods Manage. Chem., 2023 (2023) 9985984, doi: 10.1155/2023/9985984.
  34. X.Y. Cheng, R.Q. Guan, Y.N. Chen, Y.D. Qian, Q.K. Shang, Y.N. Sun, Adsorption and photocatalytic degradation process of oxytetracycline using mesoporous Fe-TiO2 based on highresolution mass spectrometry, Chem. Eng. J., 460 (2023) 141618, doi: 10.1016/j.cej.2023.141618.
  35. H.S. El-Sheshtawy, H.M. El-Hosainy, K.R. Shoueir, I.M. El-Mehasseb, M. El-Kemary, Facile immobilization of Ag nanoparticles on g-C3N4/V2O5 surface for enhancement of postillumination, catalytic, and photocatalytic activity removal of organic and inorganic pollutants, Appl. Surf. Sci., 467 (2019) 268–276.
  36. Y.D. Chiou, Y.J. Hsu, Room-temperature synthesis of singlecrystalline Se nanorods with remarkable photocatalytic properties, Appl. Catal., B, 105 (2011) 211–219.
  37. Y. Jia, Y. Zhang, X. Zhang, J.H. Cheng, Y.J. Xie, Y. Zhang, X.Y. Yin, F. Song, H.Y. Cui, Novel CdS/PANI/MWCNTs photocatalysts for photocatalytic degradation of xanthate in wastewater, Sep. Purif. Technol., 309 (2023) 123022, doi: 10.1016/j.seppur.2022.123022.
  38. H. Gao, Y.W. Hu, Y. Xue, One-step solvothermal synthesis of Cu-Cu2O composite with improved photocatalytic activity under visible light irradiation, Micro Nano Lett., 14 (2019) 1136–1139.
  39. J.W. Li, J.S. Guo, J.X. Zhang, Z.L. Sun, J.P. Gao, Surface etching and photodeposition nanostructures core-shell Cu2O@ CuO-Ag with S-scheme heterojunction for high efficiency photocatalysis, Surf. Interfaces, 34 (2022) 102308, doi: 10.1016/j. surfin.2022.102308.
  40. K. Daideche, H. Lahmar, D. Lerari, A. Azizi, Influence of deposition potential on the electrochemical growth and photocatalysis performance of SnO2 nanostructures, Inorg. Chem. Commun., 147 (2023) 110154, doi: 10.1016/j.inoche.2022.110154.
  41. L. Zhao, S.M. Lam, Y.T. Ong, J.C. Sin, H.H. Zeng, Q.D. Xie, J.W. Lim, Fe2WO6 coupling on cube-like SrTiO3 as a highly active S-scheme heterojunction composite for visible light photocatalysis and antibacterial applications, Environ. Technol. Innovation, 28 (2022) 102941, doi: 10.1016/j.eti.2022.102941.
  42. H.M. Zhang, W. Xu, G. Li, Z.M. Liu, Z.C. Wu, B.G. Li, Assembly of coupled redox fuel cells using copper as electron acceptors to generate power and its in-situ retrieval, Sci. Rep., 6 (2016) 21059, doi: 10.1038/srep21059.
  43. C.M. Fan, Y. Peng, Q. Zhu, L. Lin, R.X. Wang, A.W. Xu, Synproportionation reaction for the fabrication of Sn2+ self-doped SnO2–x nanocrystals with tunable band structure and highly efficient visible light photocatalytic activity, J. Phys. Chem. C, 46 (2013) 24157–24166.