References

  1. W. Zheng, B. Luo, X. Hu, The determinants of farmers’ fertilizers and pesticides use behavior in China: an explanation based on label effect, J. Cleaner Prod., 272 (2020) 123054, doi: 10.1016/j.jclepro.2020.123054.
  2. R. Kaur, G.K. Mavi, S. Raghav, Pesticides classification and its impact on environment, Int. J. Curr. Microbiol. Appl. Sci., 8 (2019) 1889–1897.
  3. H. Lu, H. Xie, Impact of changes in labor resources and transfers of land use rights on agricultural non-point source pollution in Jiangsu Province, China, J. Environ. Manage., 207 (2018) 134–140.
  4. C.A. Damalas, I.G. Eleftherohorinos, Pesticide exposure, safety issues, and risk assessment indicators, Int. J. Environ. Res. Public Health, 8 (2011) 1402–1419.
  5. D. Pan, M. He, F. Kong, Risk attitude, risk perception, and farmers’ pesticide application behavior in China: a moderation and mediation model, J. Cleaner Prod., 276 (2020) 124241, doi: 10.1016/j.jclepro.2020.124241.
  6. T. Wafa, C. Ikbal, H. Mohamed, Environmental Fate and Effects of 2,4-Dichlorophenoxyacetic Herbicide, K.D. Piotrowski, Ed., Herbicides: Properties, Crop Protection, Nova Science Publishers, Inc., Hauppauge, New York, 2011, pp. 245–262.
  7. A.M. Ritter, J.L. Shaw, W. Martin Williams, K.Z. Travis, Characterizing aquatic ecological risks from pesticides using a diquat dibromide case study. I. Probabilistic exposure estimates, Environ. Toxicol. Chem., 19 (2000) 749–759.
  8. R.D. Whitehead Jr., M. Angela Montesano, N.K. Jayatilaka, B. Buckley, B. Winnik, L.L. Needham, D.B. Barr, Method for measurement of the quaternary amine compounds paraquat and diquat in human urine using high-performance liquid chromatography–tandem mass spectrometry, J. Chromatogr. B, 878 (2010) 2548–2553.
  9. H.M. Abu Shawish, N.A. Ghalwa, M. Hamada, A.-H. Basheer, Modified carbon paste electrode for potentiometric determination of diquat dibromide pesticide in water and urine samples, Mater. Sci. Eng. C, 32 (2012) 140–145.
  10. Y. Zhang, J. Ma, L. Shi, D. Cao, X. Quan, Joint toxicity of cadmium and SDBS on Daphnia magna and Danio rerio, Ecotoxicology, 25 (2016) 1703–1711.
  11. R.C. Gebara, L.O.G. Alho, C.B. de Abreu, A. da Silva Mansano, R.A. Moreira, G.S. Rocha, M. da Graça Gama Melão, Toxicity and risk assessment of zinc and aluminum mixtures to Ceriodaphnia silvestrii (Crustacea: Cladocera), Environ. Toxicol. Chem., 40 (2021) 2912–2922.
  12. A. Stollewerk, The water flea Daphnia - a ‘new’ model system for ecology and evolution?, J. Biol., 9 (2010) 21, doi: 10.1186/ jbiol212.
  13. G.O. Erguven, N. Yildirim, E. Adar, The ability of Phanerochaete chrysosporium (ME446) on chemical oxygen demand remediation in submerged culture medium supplemented with malathion insecticide, Desal. Water Treat., 94 (2017) 231–235.
  14. A. Chen, W. Li, X. Zhang, C. Shang, S. Luo, R. Cao, D. Jin, Biodegradation and detoxification of neonicotinoid insecticide thiamethoxam by white-rot fungus Phanerochaete chrysosporium, J. Hazard. Mater., 417 (2021) 126017, doi: 10.1016/j.jhazmat.2021.126017.
  15. A. Vural, S. Demir, G. Boyno, Bioremediation and using of fungi in bioremediation, Yuzuncu Yıl Univ. J. Agric. Sci., 28 (2018) 490–501.
  16. P. Bademkiran, Investigation of Trametes versicolor and Phanerochaete chrysosporium km-F 1767 Laccases; Productive Secration Condations Depanding on Inducer and Proper Mediator for their Effect on Indigo Dyes, M.Sc. Thesis, Dicle University, Diyarbakir, 2011.
  17. V. Šašek, J.A. Glaser, P. Baveye, The Utilization of Bioremediation to Reduce Soil Contamination: Problems and Solutions, Springer, Dordrecht, 2003, p. 417.
  18. S.G. Parte, A.D. Mohekar, A.S. Kharat, Microbial degradation of pesticide: a review, Afr. J. Microbiol. Res., 11 (2017) 992–1012.
  19. A.S. Jatoi, Z. Hashmi, R. Adriyani, A. Yuniarto, S.A. Mazari, F. Akhter, N.M. Mubarak, Recent trends and future challenges of pesticide removal techniques – a comprehensive review, J. Environ. Chem. Eng., 9 (2021) 105571, doi: 10.1016/j.jece.2021.105571.
  20. D.M. Dash, A. Itusha, J.W. Osborne, Bioremoval of Acephate by biofilm-forming Enterobacter cloacae – VITDAJ8 in a vertical packed bed biofilm bioreactor, Asia Pac. J. Mol. Biol. Biotechnol., 28 (2020) 68–80.
  21. A. Bianchini, C.M. Wood, Physiological effects of chronic silver exposure in Daphnia magna, Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 133 (2002) 137–145.
  22. A.L. Valenzuela, R. Vasquez-Medrano, J.G. Ibanez, B.A. Frontana-Uribe, D. Prato-Garcia, Remediation of diquatcontaminated water by electrochemical advanced oxidation processes using boron-doped diamond (BDD) anodes, Water Air Soil Pollut., 228 (2017) 67, doi: 10.1007/s11270-017-3244-5.
  23. M. Tudi, H.D. Ruan, L. Wang, J. Lyu, R. Sadler, D. Connell, C. Chu, P.D. Phung, Agriculture development, pesticide application and its impact on the environment, Int. J. Environ. Res. Public Health, 18 (2021) 1112, doi: 10.3390/ijerph18031112.
  24. Z. Sarigul, S. Bekcan, Acute toxicity of the herbicide glyphosate on Daphnia magna, J. Agric. Sci., 15 (2009) 204–208.
  25. J. da Silva Coelho-Moreira, A. Bracht, A.C. da Silva de Souza, R.F. Oliveira, A.B. de Sá-Nakanishi, C.G.M. de Souza, R.M. Peralta, Degradation of diuron by Phanerochaete chrysosporium: role of ligninolytic enzymes and cytochrome P450, Biomed. Res. Int., 2013 (2013) 251354, doi: 10.1155/2013/251354.
  26. M.J. Villarroel, E. Sancho, M.D. Ferrando, E. Andreu, Acute, chronic and sublethal effects of the herbicide propanil on Daphnia magna, Chemosphere, 53 (2003) 857–864.