References

  1. N.C. Ezeanya, C.C. Egwuonwu, A.B. Istifanus, V.C. Okafor, Determination of thin-layer solar drying kinetics of cassava noodles (tapioca), IJRET: Int. J. Res. Eng. Technol., 5 (2016) 352–360.
  2. H. Eustache, E. Dushimire, C. Amizero, Design and optimization of domestic solar dryer, Science, 5 (2017) 130–135.
  3. K.R. Arun, M. Srinivas, C.A. Saleel, S. Jayaraj, Active drying of unripened bananas (Musa Nendra) in a multi-tray mixed-mode solar cabinet dryer with backup energy storage, Sol. Energy, 188 (2019) 1002–1012.
  4. N.C. Ezeanya, K.N. Nwaigwe, P.E. Ugwuoke, Analysis of the effects of a flat plate solar dryer geometry on drying rate of agricultural seeds, Asian J. Agric. Sci., 4 (2012) 333–336.
  5. D.M. Kadam, D.V.K. Samuel, Convective flat-plate solar heat collector for cauliflower drying, Biosyst. Eng., 93 (2006) 189–198.
  6. B.M.A. Amer, M.A. Hossain, K. Gottschalk, Design and performance evaluation of a new hybrid solar dryer for banana, Energy Convers. Manage., 51 (2010) 813–820.
  7. D.R. Pangavhane, R.L. Sawhney, P.N. Sarsavadia, Design, development and performance testing of a new natural convection solar dryer, Energy, 27 (2002) 579–590.
  8. S. Abubakar, S. Umaru, M.U. Kaisan, U.A. Umar, B. Ashok, K. Nanthagopal, Development and performance comparison of mixed-mode solar crop dryers with and without thermal storage, Renewable Energy, 128 (2018) 285–298.
  9. A. El Khadraoui, I. Hamdi, S. Kooli, A. Guizani, Drying of red pepper slices in a solar greenhouse dryer and under open sun: experimental and mathematical investigations, Innovative Food Sci. Emerg. Technol., 52 (2019) 262–270.
  10. F. Gulcimen, H. Karakaya, A. Durmus, Drying of sweet basil with solar air collectors, Renewable Energy, 93 (2016) 77–86.
  11. E.A. Mewa, M.W. Okoth, C.N. Kunyanga, M.N. Rugiri, Experimental evaluation of beef drying kinetics in a solar tunnel dryer, Renewable Energy, 139 (2019) 235–241.
  12. A. Abene, V. Dubois, M. Le Ray, A. Ouagued, Study of a solar air flat plate collector: use of obstacles and application for the drying of grape, J. Food Eng., 65 (2004) 15–22.
  13. R.B. Slama, M. Combarnous, Study of orange peels dryings kinetics and development of a solar dryer by forced convection, Solar Energy, 85 (2011) 570–578.
  14. K. Seshachalam, V.A. Thottipalayam, V. Selvaraj, Drying of carrot slices in a triple pass solar dryer, Therm. Sci., 21 (2017) 389–398.
  15. S. Vijayan, T.V. Arjunan, A. Kumar, Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices, Renewable Energy, 146 (2020) 2210–2223.
  16. G. Kalaiarasi, R. Velraj, M.N. Vanjeswaran, N.G. Pandian, Experimental analysis and comparison of flat plate solar air heater with and without integrated sensible heat storage, Renewable Energy, 150 (2020) 255–265.
  17. A.K. Bhardwaj, R. Chauhan, R. Kumar, M. Sethi, A. Rana, Experimental investigation of an indirect solar dryer integrated with phase change material for drying Valeriana jatamansi (medicinal herb), Case Stud. Therm. Eng., 10 (2017) 302–314.
  18. Z. Azaizia, S. Kooli, I. Hamdi, W. Elkhal, A.A. Guizani, Experimental study of a new mixed mode solar greenhouse drying system with and without thermal energy storage for pepper, Renewable Energy, 145 (2020) 1972–1984.
  19. S. Aboul-Enein, A.A. El-Sebaii, M.R.I. Ramadan, H.G. El-Gohary, Parametric study of a solar air heater with and without thermal storage for solar drying applications, Renewable Energy, 21 (2000) 505–522.
  20. S. Vijayan, T.V. Arjunan, A. Kumar, M.M. Matheswaran, Experimental and thermal performance investigations on sensible storage based solar air heater, J. Energy Storage, 31 (2020) 101620, doi: 10.1016/j.est.2020.101620.
  21. H. Sabahi, A.A. Tofigh, I.M. Kakhki, H. Bungypoor-Fard, Design, construction and performance test of an efficient large-scale solar simulator for investigation of solar thermal collectors, Sustainable Energy Technol. Assess., 15 (2016) 35–41.
  22. A. Gallo, A. Marzo, E. Fuentealba, E. Alonso, High flux solar simulators for concentrated solar thermal research: a review, Renewable Sustainable Energy Rev., 77 (2017) 1385–402.
  23. M. Tawfik, X. Tonnellier, C. Sansom, Light source selection for a solar simulator for thermal applications: a review, Renewable Sustainable Energy Rev., 90 (2018) 802–813.
  24. J. Song, J. Wang, Y. Niu, W. Wang, K. Tong, H. Yu, Y. Yang, Flexible high flux solar simulator based on optical fiber bundles, Sol. Energy, 193 (2019) 576–583.
  25. B.M. Ekman, G. Brooks, M.A. Rhamdhani, Development of high flux solar simulators for solar thermal research, Sol. Energy Mater. Sol. Cells, 141 (2015) 436–446.
  26. J. Sarwar, G. Georgakis, R. LaChance, N. Ozalp, Description and characterization of an adjustable flux solar simulator for solar thermal, thermochemical and photovoltaic applications, Sol. Energy, 100 (2014) 179–194.
  27. M.A. Satter, Design and Development of a Portable Copra Dryer, Proceedings of the International Conference on Mechanical Engineering 2003 (ICME2003) 26–28 December 2003, Dhaka, Bangladesh, 2003.
  28. S.M. Tasirin, I. Puspasari, L.J. Xing, Z. Yaakob, J.A. Ghani, Energy optimization of fluidized bed drying of orange peel using Taguchi method, World Appl. Sci. J., 26 (2013) 1602–1609.
  29. B.O. Osodo, Simulation and Optimization of a Drying Model for a Forced Convection Grain Dryer, Unpublished Ph.D. Thesis, Kenyatta University, Kenya, 2018.
  30. M. Selvaraj, P. Sadagopan, S. Vijayan, Investigation of thermal performance of an indirect forced convection solar dryer for tapioca chips drying, Desal. Water Treat., 230 (2021) 430–441.
  31. J.P. Holman, Experimental Methods for Engineers, McGraw- Hill Book Co., Singapore, 2011.