References

  1. K. Kusmierek, M. Sankowska, A. Swiatkowski, Kinetic and equilibrium studies of simultaneous adsorption of monochlorophenols and chlorophenoxy herbicides on activated carbon, Desal. Water Treat., 52 (2014) 178–183.
  2. A.M. Youssef, H. El-Didamony, S.F. El-Sharabasy, M. Sobhy, A.F. Hassan, R. Bolaneke, Adsorption of
    2,4-dichlorophenoxyacetic acid on different types of activated carbonsbased date palm pits: kinetic and thermodynamics studies, Int. Res. J. Pure Appl. Chem., 14 (2017) 1–15.
  3. H. Zhang, X. Yuan, T. Xiong, H. Wang, L. Jiang, Bioremediation of co-contaminated soil with heavy metals and pesticides: influence factors, mechanisms and evaluation methods, Chem. Eng. J., 398 (2020) 125657, doi: 10.1016/j.cej.2020.125657.
  4. Z. Aksu, E. Kabasakal, Adsorption characteristics of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous solution on powdered activated carbon, J. Environ. Sci. Health., Part B, 40 (2005) 545–570.
  5. R.M. Madero-Castro, J.M. Vicent-Luna, X. Peng, S. Calero, Adsorption of linear alcohols in amorphous activated carbons: implications for energy storage applications, ACS Sustainable Chem. Eng., 10 (2022) 6509−6520.
  6. M.M. Bade, A.A. Dubale, D.F. Bebizuh, M. Atlabachew, Highly efficient multisubstrate agricultural waste-derived activated carbon for enhanced CO2 capture, ACS Omega, 7 (2022) 18770−18779.
  7. A.I. Abd-Elhamid, M. Emran, M.H. El-Sadek, A.A. El-Shanshory, H.M.A. Soliman, A.M. Awwad, M. Rashad, Enhanced removal of cationic dye by eco-friendly activated biochar derived from rice straw, Appl. Water Sci., 10 (2020) 45, doi: 10.1007/s13201-019-1128-0.
  8. S. Usanmaz, Ç. Özer, M. İmamoğlu, Removal of Cu(II), Ni(II) and Co(II) ions from aqueous solutions by hazelnut husks carbon activated with phosphoric acid, Desal. Water Treat., 227 (2021) 300–308.
  9. S. Tünay, R. Köklü, M. İmamoğlu, Removal of diclofenac, ciprofloxacin and sulfamethoxazole from wastewater using granular activated carbon from hazelnut shell: isotherm, kinetic and thermodynamic studies, Desal. Water Treat., 277 (2022) 155–168.
  10. A.T. Adeolu, O.T. Okareh, A.O. Dada, Adsorption of chromium ion from industrial effluent using activated carbon derived from plantain (Musa paradisiaca) wastes, Am. J. Environ. Prot., 4 (2016) 7–20.
  11. H.O. Chukwuemeka‑Okorie, F.K. Ekuma, K.G. Akpomie, J.C. Nnaji, A.G. Okereafor, Adsorption of tartrazine and sunset yellow anionic dyes onto activated carbon derived from cassava sievate biomass, Appl. Water Sci., 11 (2021) 27, doi: 10.1007/s13201-021-01357-w.
  12. H.Y. Wu, S.S. Chen, W. Liao, W. Wang, M.F. Jang, W.H. Chen, T. Ahamad, S.M. Alshehri, C.H. Hou, K.S. Lin, T. Charinpanitkul, K.C. Wu, Assessment of agricultural waste-derived activated carbon in multiple applications, Environ. Res., 191 (2020) 110176, doi: 10.1016/j.envres.2020.110176.
  13. U. Yunusa, B. Usman, M. Ibrahim, Modeling and regeneration studies for the removal of crystal violet using Balanites aegyptiaca seed shell activated carbon, J. Turk. Chem. Soc. Sect. A Chem., 8 (2021) 195–208.
  14. Y. Umar, I.K. Abdulrahman, A. Yusuf, A. Tahir, H. Musa, Hexavalent chromium removal from simulated wastewater using biomass-based activated carbon: kinetics, mechanism, thermodynamics and regeneration studies, Alger. J. Eng. Technol., 4 (2021) 29–44.
  15. G. Wyasu, H.T. Rumah, S. Moses, Batch adsorption of Hg2+ and As3+ ions in hospital wastewater using activated carbon from Balanites aegyptiaca and Detarium microcarpum, Commun. Phys. Sci., 5 (2020) 611–618.
  16. E.E. Mon, T. Hirata, K. Kawamoto, S. Hiradate, T. Komatsu, P. Moldrup, Adsorption of
    2,4-dichlorophenoxyacetic acid onto volcanic ash soils: effects of pH and soil organic matter, Environ. Asia, 1 (2009) 1–9, doi: 10.14456/ea.2009.1.
  17. M. Pirsaheb, A. Dargahi, S. Hazrati, M. Fazlzadehdavil, Removal of diazinon and 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solutions by granular activated carbon, Desal. Water Treat., 52 (2014) 4350–4355.
  18. Guidelines for Drinking-Water Quality, Fourth Edition Incorporating the First Addendum, World Health Organization, Geneva, 2017, pp. 347–348.
  19. H. Zhang, J. Wang, Y. Teng, S. Jia, H. Huang, Y. Li, C. Wang, Ce-MOF composite electrospinning as antibacterial adsorbent for the removal of 2,4-dichlorophenoxyacetic acid, Chem. Eng. J., 462 (2023) 142195, doi: 10.1016/j.cej.2023.142195.
  20. H.N. Tran, H.-P. Chao, S.-J. You, Activated carbons from golden shower upon different chemical activation methods: synthesis and characterizations, Adsorpt. Sci. Technol., 36 (2018) 95–113.
  21. R. Abubeah, H. Altaher, T.E. Khalil, Removal of hexavalent chromium using two innovative adsorbents, Environ. Eng. Manage. J., 17 (2018) 1621–1634.
  22. T. Skripkina, E. Podgorbunskikh, A. Bychkov, O. Lomovsky, Sorption of methylene blue for studying the specific surface properties of biomass carbohydrates, Coatings, 10 (2020) 1115, doi: 10.3390/coatings10111115.
  23. B.T. Brij, O.T. Clint, Use of basic methylene blue dye for specific surface area measurement of metal hexacyanoferrate(II) complexes, Rev. Soc. Quím. Perú, 74 (2010) 330–335.
  24. A.U. Itodo, H.U. Itodo, M.K. Gafar, Estimation of specific surface area using Langmuir isotherm method, J. Appl. Sci. Environ. Manage., 14 (2010) 141–145.
  25. D.L. Pavia, G.M. Lampman, G.S. Kriz, J.R. Vyvyan, Introduction to Spectroscopy, 4th ed., Brooks Cole Cengage Learning, USA, 2008, pp. 46–48.
  26. N.S. Trivedi, R.A. Kharkar, S.A. Mandavgane, 2,4-dichlorophenoxyacetic acid adsorption on adsorbent prepared from groundnut shell: effect of preparation conditions on equilibrium adsorption capacity, Arabian J. Chem., 12 (2019) 4541–4549.
  27. Y.F. Jia, K.M. Thomas, Adsorption of cadmium ions on oxygen surface sites in activated carbon, Langmuir, 16 (2006) 1114–1122.
  28. Z. Belala, M. Jeguirim, M. Belhachemi, F. Addoun, G. Trouvé, Biosorption of basic dye from aqueous solutions by date stones and palm-trees waste: kinetic, equilibrium and thermodynamic studies, Desalination, 271 (2011) 80–87.
  29. C. Bouchelta, M.S. Medjram, O. Bertrand, J.P. Bellat, Preparation and characterization of activated carbon from date stones by physical activation with steam, J. Anal. Appl. Pyrolysis, 82 (2008) 70–77.
  30. N. El Messaoudi, M. El Khomri, S. Bentahar, A. Dbik, A. Lacherai, B. Bakiz, Evaluation of performance of chemically treated date stones: application for the removal of cationic dyes from aqueous solutions, J. Taiwan Inst. Chem. Eng., 67 (2016) 244–253.
  31. B. Virote, S. Srisuda, T. Wiwut, Preparation of activated carbons from coffee residue for the adsorption of formaldehyde, Sep. Purif. Technol., 42 (2005) 159–168.
  32. A.A. El-Hendawy, Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions, J. Anal. Appl. Pyrolysis, 75 (2006) 159–166.
  33. S.A. Kalam, M.S. Abu-Khamsin, Kamal, S. Patil, Surfactant adsorption isotherms: a review, ACS Omega, 6 (2021) 32342–32348.
  34. D. Xiao, W. Ding, J. Zhang, Y. Ge, Z. Wu, Z. Li, Fabrication of a versatile lignin-based nano-trap for heavy metal ion capture and bacterial inhibition, Chem. Eng. J., 358 (2019) 310–320.
  35. M.S.I. Syafiqah, H.W. Yussof, Kinetics, isotherms, and thermodynamic studies on the adsorption of mercury(II) ion from aqueous solution using modified palm oil fuel ash, Mater. Today Proc., 5 (2018) 21690–21697.
  36. R. Hazzaa, M. Hussein, Adsorption of cationic dye from aqueous solution onto activated carbon prepared from olive stones, Environ. Technol. Innovation, 4 (2015) 36–51.
  37. D. Kavitha, C. Namasivayam, Experimental and kinetic studies on methylene blue adsorption by coir pith carbon, Bioresour. Technol., 98 (2007) 14–21.
  38. T. Kameda, K. Horikoshi, S. Kumagai, Y. Saito, T. Yoshioka, Adsorption of urea, creatinine, and uric acid onto spherical activated carbon, Sep. Purif. Technol., 237 (2020) 116367, doi: 10.1016/j.seppur.2019.116367.
  39. B. Zhang, S. Yu, Y. Zhu, Y. Shen, X. Gao, W. Shi, J.-H. Tay, Adsorption mechanisms of crude oil onto polytetrafluoroethylene membrane: kinetics and isotherm, and strategies for adsorption fouling control, Sep. Purif. Technol., 235 (2020) 116212, doi: 10.1016/j.seppur.2019.116212.
  40. J.M. Salman, V.O. Njoku, B.H. Hameed, Batch and fixed-bed adsorption of 2,4-dichlorophenoxyacetic acid onto oil palm frond activated carbon, Chem. Eng. J., 174 (2011) 33–40.
  41. O.V. Anumasahun, A.O. Akinola, O.O. Bello, O.S. Agboola, O.S. Bello, Removal of 2,4-dichlorophenol from aqueous medium using activated carbon prepared from cocoa pod husks, Chem. Data Collect., 44 (2023) 100997, doi: 10.1016/j.cdc.2023.100997.
  42. S. Deng, R. Ma, Q. Yu, J. Huang, G. Yu, Enhanced removal of pentachlorophenol and 2,4-D from aqueous solution by an aminated biosorbent, J. Hazard. Mater., 165 (2009) 408–414.
  43. J. Gülen, S. Aslan, Adsorption of 2,4-dichlorophenoxyacetic acid from aqueous solution using carbonized chestnut as low cost adsorbent: kinetic and thermodynamic, Z. Phys. Chem., 234 (2020) 461–484.
  44. M. Khoshnood, S. Azizian, Adsorption of 2,4-dichlorophenoxyacetic acid pesticide by graphitic carbon nanostructures prepared from biomasses, J. Ind. Eng. Chem., 18 (2012) 1796–1800.
  45. R. Vinayagam, S. Ganga, G. Murugesan, G. Rangasamy, R. Bhole, L.C. Goveas, T. Varadavenkatesan, N. Dave, A. Samanth, V.R. Devi, R. Selvaraj, 2,4-Dichlorophenoxyacetic acid (2,4-D) adsorptive removal by algal magnetic activated carbon nanocomposite, Chemosphere, 310 (2023) 136883, doi: 10.1016/j.chemosphere.2022.136883.
  46. K. Rambabu, J. AlYammahi, G. Bharath, A. Thanigaivelan, N. Sivarajasekar, F. Banat, Nano-activated carbon derived from date palm coir waste for efficient sequestration of noxious 2,4-dichlorophenoxyacetic acid herbicide, Chemosphere, 282 (2021) 131103, doi: 10.1016/j.chemosphere.2021.131103.
  47. O. Redlich, D.L. Peterson, A useful adsorption isotherm, J. Phys. Chem., 63 (1959) 1024, doi: 10.1021/j150576a611.
  48. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms, J. Chem., 2017 (2017) 3039817, doi: 10.1155/2017/3039817.
  49. J. Toth, Calculation of the BET-compatible surface area from any Type I isotherms measured above the critical temperature, J. Colloid Interface Sci., 225 (2000) 378–383.
  50. M. Brdar, M. Šćiban, A. Takači, T. Došenović, Comparison of two and three parameters adsorption isotherm for Cr(VI) onto Kraft lignin, Chem. Eng. J., 183 (2012) 108–111.
  51. Q. Li, J. Sun, T. Ren, L. Guo, Z. Yang, Q. Yang, H. Chen, Adsorption mechanism of 2,4-dichlorophenoxyacetic acid onto nitric-acid-modified activated carbon fiber, Environ. Technol., 39 (2018) 895–906.
  52. J. Salman, B. Hameed, Adsorption of 2,4-dichlorophenoxyacetic acid and carbofuran pesticides onto granular activated carbon, Desalination, 256 (2010) 129–135.
  53. G. Wu, X. Sun, H. Hui, X. Zhang, J. Yan, Q. Zhang, Adsorption of 2,4-dichlorophenol from aqueous solution by activated carbon derived from moso bamboo processing waste, Desal. Water Treat., 51 (2013) 4603–4612.
  54. H.M.N. Hazrin, A. Lim, C. Li, J.J. Chew, J. Sunarso, Adsorption of 2,4-dichlorophenoxyacetic acid onto oil palm trunk-derived activated carbon: isotherm and kinetic studies at acidic, ambient condition, Mater. Today Proc., 64 (2022) 1557–1562.
  55. A.A. Nayla, I.M. Ahmed, A.I. Abd-Elhamid, H.F. Aly, M.F. Attallah, Selective sorption of 134Cs and 60Co radioisotopes using synthetic nano-copper ferrocyanide-SiO2 materials, Sep. Purif. Technol., 234 (2020) 116060, doi: 10.1016/j.seppur.2019.116060.
  56. J. Goscianska, A. Olejnik, Removal of 2,4-D herbicide from aqueous solution by aminosilane-grafted mesoporous carbons, Adsorption, 25 (2019) 345–355.
  57. Z. Aksu, E. Kabasakal, Batch adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous solution by granular activated carbon, Sep. Purif. Technol., 35 (2004) 223–240.
  58. V. Njoku, B. Hameed, Preparation and characterization of activated carbon from corncob by chemical activation with H3PO4 for 2,4-dichlorophenoxyacetic acid adsorption, Chem. Eng. J., 173 (2011) 391–399.
  59. M. Dehghani, S. Nasseri, M. Karamimanesh, Removal of 2,4-dichlorophenolyxacetic acid (2,4-D) herbicide in the aqueous phase using modified granular activated carbon, J. Environ. Health Sci. Eng., 12 (2014) 28, doi: 10.1186/2052-336X-12-28.
  60. A. Samanth, R. Vinayagam, G. Murugesan, T. Varadavenkatesan, R. Selvaraj, A. Pugazhendhi, Enhanced adsorption of 2,4-dichlorophenoxyacetic acid using low-temperature carbonized Peltophorum pterocarpum pods and its statistical physics modeling, Chemosphere, 336 (2023) 139143, doi: 10.1016/j.chemosphere.2023.139143.
  61. A.M. Awad, R. Jalab, A. Benamor, M.S. Nasser, M.M. Ba-Abbad, M. El-Naas, A. Mohammad, Adsorption of organic pollutants by nanomaterial-based adsorbents: an overview, J. Mol. Liq., 301 (2020) 112335, doi: 10.1016/j.molliq.2019.112335.
  62. A.K. Sahu, V.C. Srivastava, I.D. Mall, D.H. Lataye, Adsorption of furfural from aqueous solution onto activated carbon: kinetic, equilibrium and thermodynamic study, Sep. Sci. Technol., 43 (2008) 1239–1259.
  63. N. Kannan, M.M. Sundaram, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study, Dyes Pigm., 51(2001) 25–40.
  64. J. Wang, X. Guo, Adsorption kinetic models: physical meanings, applications, and solving methods, J. Hazard. Mater., 390 (2020) 122156, doi: 10.1016/j.jhazmat.2020.122156.