References
- X. Zhang, Y. Zhang, P. Shi, Z. Bi, Z. Shan, L. Ren, The deep
challenge of nitrate pollution in river water of China, Sci. Total
Environ., 770 (2021) 144674, doi: 10.1016/j.scitotenv.2020.144674.
- X. Ran, M. Zhou, T. Wang, W. Wang, S. Kumari, Y. Wang,
Multidisciplinary characterization of nitrogen-removal
granular sludge: a review of advances and technologies,
Water Res., 214 (2022) 118214, doi: 10.1016/j.watres.2022.118214.
- M. Zhang, S. Wang, Y. Bi, F. Meng, D. Wang, C. Qiu, C. Wang,
J. Yu, Enhanced nitrogen removal of single stage partial
nitritation anammox system by glycine betaine addition at low
temperature: performance and mechanism, J. Water Process
Eng., 49 (2022) 102959, doi: 10.1016/j.jwpe.2022.102959.
- Y. Huang, W. Huang, X. Gu, Y. Li, Research progress of NOB
inhibition strategy of partial nitrosation-anammox process
in municipal wastewater, Chin. J. Environ. Eng., 17 (2023)
1075–1083.
- M. Zhang, X. Wang, D. Zhang, G. Zhao, B. Zhou, D. Wang,
Z. Wu, C. Yan, J. Liang, L. Zhou, Food waste hydrolysate as
a carbon source to improve nitrogen removal performance of
high ammonium and high salt wastewater in a sequencing
batch reactor, Bioresour. Technol., 349 (2022) 126855,
doi: 10.1016/j.biortech.2022.126855.
- C.J. Sedlacek, S. Nielsen, K.D. Greis, W.D. Haffey, N.P. Revsbech,
T. Ticak, H.J. Laanbroek, A. Bollmann, Effects of bacterial
community members on the proteome of the ammoniaoxidizing
Bacterium nitrosomonas sp strain Is79, Appl. Environ.
Microbiol., 82 (2016) 4776–4788.
- M. Cai, S.-K. Ng, C.K. Lim, H. Lu, Y. Jia, P.K.H. Lee, Physiological
and metagenomic characterizations of the synergistic
relationships between ammonia- and nitrite-oxidizing bacteria
in freshwater nitrification, Front. Microbiol., 9 (2018) 00280,
doi: 10.3389/fmicb.2018.00280.
- M. Ali, M. Oshiki, T. Awata, K. Isobe, Z. Kimura, H. Yoshikawa,
D. Hira, T. Kindaichi, H. Satoh, T. Fujii, S. Okabe, Physiological
characterization of anaerobic ammonium oxidizing bacterium
“CandidatusJettenia caeni”, Environ. Microbiol., 17 (2015)
2172–2189.
- R. Manser, W. Gujer, H. Siegrist, Consequences of mass
transfer effects on the kinetics of nitrifiers, Water Res., 39 (2005)
4633–4642.
- S. Lackner, K. Thoma, E.M. Gilbert, W. Gander, D. Schreff,
H. Horn, Start-up of a full-scale deammonification SBR-treating
effluent from digested sludge dewatering, Water Sci. Technol.,
71 (2014) 553–559.
- W. Zhu, M. Van Tendeloo, J. De Paepe, S.E. Vlaeminck,
Comparison of typical nitrite-oxidizing bacteria suppression
strategies and the effect on nitrous oxide emissions in a
biofilm reactor, Bioresour. Technol., 387 (2023) 129607–129607,
doi: 10.1016/j.biortech.2023.129607.
- L. Yao, Y. Liang, M. Chen, L. Chen, K. He, G. Yu, Effects of
aeration rates on the performance and microbial characteristics
of partial nitrification under high dissolved oxygen condition,
Acta Sci. Circum., 41 (2021) 3258–3267.
- Y. Chen, Z. Zhao, H. Liu, Y. Ma, F. An, J. Huang, Z. Shao, Achieving
stable two-stage mainstream partial-nitrification/anammox
(PN/A) operation via intermittent aeration, Chemosphere,
245 (2020) 125650, doi: 10.1016/j.chemosphere.2019.125650.
- J. Wang, Y. Zhang, Q. Liu, H. Xue, Y. Wang, Characteristics of
MBBR-nitrite biofilm under continuous/intermittent aeration,
Chin. Environ. Sci., 40 (2020) 261–268.
- K. Zhang, J. Li, Z. Zheng, J. Zhang, M. Sun, S. Huang, Analyzing
the sludge characteristics and microbial communities of biofilm
and activated sludge in the partial nitrification/anammox
process, J. Water Process Eng., 46 (2022) 102618, doi: 10.1016/j.jwpe.2022.102618.
- G. Liu, J. Wang, Long-term low DO enriches and shifts
nitrifier community in activated sludge, Environ. Sci. Technol.,
47 (2013) 5109–5117.
- Z. Lei, L. Wang, J. Wang, S. Yang, Z. Hou, X. Wang, R. Chen,
Partial-nitritation of low-strength anaerobic effluent: a
moderate-high dissolved oxygen concentration facilitates
ammonia-oxidizing bacteria disinhibition and nitrite-oxidizing
bacteria suppression, Sci. Total Environ., 770 (2021) 145337,
doi: 10.1016/j.scitotenv.2021.145337.
- W. Bian, J. Li, A. Hou, M. Wang, S. Zhang, Rapidly startup
of partial nitrification in sequencing batch reactor and
microbiological analysis, Desal. Water Treat., 57 (2016)
21062–21070.
- H. Cui, L. Zhang, Y. Peng, Q. Zhang, X. Li, Achieving stable
nitritation for mainstream anammox by combining nitrite
exposure inhibition with high DO reactivation, J. Water Process
Eng., 46 (2022) 102589, doi: 10.1016/j.jwpe.2022.102589.
- B. Cui, Q. Yang, X. Liu, S. Huang, Y. Yang, Z. Liu, The effect
of dissolved oxygen concentration on long-term stability of
partial nitrification process, J. Environ. Sci. Chin., 90 (2020)
343–351.
- C. Yeshi, K. Hong, M.C.M. van Loosdrecht, G.T. Daigger, P. Yi,
Y.L. Wah, C.S. Chye, Y.A. Ghani, Mainstream partial nitritation
and anammox in a 200,000 m3/day activated sludge process in
Singapore: scale-down by using laboratory fed-batch reactor,
Water Sci. Technol., 74 (2016) 48–56.
- J. Li, L. Zhang, Y. Peng, S. Yang, X. Wang, X. Li, Q. Zhang, NOB
suppression in partial nitritation-anammox (PNA) process by
discharging aged flocs: performance and microbial community
dynamics, Chemosphere, 227 (2019) 26–33.
- X. Gu, W. Huang, Y. Li, Y. Huang, M. Zhang, Regulation of
partial nitrification by influent N loading and sludge discharge
in mainstream sewage treatment, J. Water Process Eng.,
52 (2023) 103536, doi: 10.1016/j.jwpe.2023.103536.
- K. Trojanowicz, J. Trela, E. Plaza, Possible mechanism of efficient
mainstream partial nitritation/anammox (PN/A) in hybrid
bioreactors (IFAS), Environ. Technol., 42 (2021) 1023–1037.
- C.T. Kinh, J. Ahn, T. Suenaga, N. Sittivorakulpong, P. Noophan,
T. Hori, S. Riya, M. Hosomi, A. Terada, Free nitrous acid
and pH determine the predominant ammonia-oxidizing
bacteria and amount of N2O in a partial nitrifying reactor,
Appl. Microbiol. Biotechnol., 101 (2017) 1673–1683.
- H. Duan, L. Ye, X. Lu, Z. Yuan, Overcoming nitrite-oxidizing
bacteria adaptation through alternating sludge treatment with
free nitrous acid and free ammonia, Environ. Sci. Technol.,
53 (2019) 1937–1946.
- D.J. Kim, D.W. Seo, S.H. Lee, O. Shipin, Free nitrous acid
selectively inhibits and eliminates nitrite oxidizers from
nitrifying sequencing batch reactor, Bioprocess. Biosyst. Eng.,
35 (2012) 441–448.
- A. Soler-Jofra, L. Schmidtchen, L. Olmo, M.C.M. van Loosdrecht,
J. Pérez, Short and long term continuous hydroxylamine
feeding in a granular sludge partial nitritation reactor, Water
Res., 209 (2022) 117945, doi: 10.1016/j.watres.2021.117945.
- W. Feng, J. Qiao, J. Li, F. Zhang, Q. Zhang, X. Li, Y. Peng,
Anammox granule destruction and reconstruction in a
partial nitrification/anammox system under hydroxylamine
stress, J Environ. Manage., 345 (2023) 118688, doi: 10.1016/j.jenvman.2023.118688.
- Y. Miao, Y. Peng, L. Zhang, B. Li, X. Li, L. Wu, S. Wang, Partial
nitrification-anammox (PNA) treating sewage with intermittent
aeration mode: effect of influent C/N ratios, Chem. Eng. J.,
334 (2018) 664–672.
- J. Li, L. Zhang, J. Liu, J. Lin, Y. Peng, Hydroxylamine
addition and real-time aeration control in sewage nitritation
system for reduced start-up period and improved process
stability, Bioresour. Technol., 294 (2019) 122183, doi: 10.1016/j.biortech.2019.122183.
- Q. Sui, Y. Wang, H. Wang, W. Yue, Y. Chen, D. Yu, M. Chen,
Y. Wei, Roles of hydroxylamine and hydrazine in the in-situ
recovery of one-stage partial nitritation-anammox process:
characteristics and mechanisms, Sci. Total Environ., 707 (2020)
135648, doi: 10.1016/j.scitotenv.2019.135648.
- Y. Wang, Y. Wang, Y. Wei, M. Chen, In-situ restoring nitrogen
removal for the combined partial nitritation-anammox process
deteriorated by nitrate build-up, Biochem. Eng. J., 98 (2015)
127–136.
- Y. Wang, R. Bailis, The revolution from the kitchen: social
processes of the removal of traditional cookstoves in Himachal
Pradesh, India, Energy Sustainable Dev., 27 (2015) 127–136.
- J. Li, Q. Zhang, X. Li, Y. Peng, Rapid start-up and stable
maintenance of domestic wastewater nitritation through shortterm
hydroxylamine addition, Bioresour. Technol., 278 (2019)
468–472.
- J. Zhao, J. Zhao, S. Xie, S. Lei, The role of hydroxylamine in
promoting conversion from complete nitrification to partial
nitrification: NO toxicity inhibition and its characteristics,
Bioresour. Technol., 319 (2021) 124230, doi: 10.1016/j.biortech.2020.124230.
- E.N.P. Courtens, H. De Clippeleir, S.E. Vlaeminck, R. Jordaens,
H. Park, K. Chandran, N. Boon, Nitric oxide preferentially
inhibits nitrite oxidizing communities with high affinity for
nitrite, J. Biotechnol., 193 (2015) 120–122.
- S. Ganesan, V.M. Vadivelu, Effect of external hydrazine addition
on anammox reactor start-up time, Chemosphere, 223 (2019)
668–674.
- P. Xiao, P. Lu, D. Zhang, X. Han, Q. Yang, Effect of trace
hydrazine addition on the functional bacterial community of
a sequencing batch reactor performing completely autotrophic
nitrogen removal over nitrite, Bioresour. Technol., 175 (2015)
216–223.
- T. Xiang, H. Liang, P. Wang, D. Gao, Insights into two stable
mainstream deammonification process and different microbial
community dynamics at ambient temperature, Bioresour.
Technol., 331 (2021) 125058, doi: 10.1016/j.biortech.2021.125058.
- T. Xiang, D. Gao, Comparing two hydrazine addition strategies
to stabilize mainstream deammonification: performance and
microbial community analysis, Bioresour. Technol., 289 (2019)
121710, doi: 10.1016/j.biortech.2019.121710.
- J. Ma, H. Yao, H. Yu, L. Zuo, H. Li, J. Ma, Y. Xu, J. Pei, X. Li,
Hydrazine addition enhances the nitrogen removal capacity
in an anaerobic ammonium oxidation system through
accelerating ammonium and nitrite degradation and reducing
nitrate production, Chem. Eng. J., 335 (2018) 401–408.
- B. Ma, S. Wang, S. Cao, Y. Miao, F. Jia, R. Du, Y. Peng, Biological
nitrogen removal from sewage via anammox: recent advances,
Bioresour. Technol., 200 (2016) 981–990.
- D. Seuntjens, M. Van Tendeloo, I. Chatzigiannidou,
J.M. Carvajal-Arroyo, S. Vandendriessche, S.E. Vlaeminck,
N. Boon, Synergistic exposure of return-sludge to anaerobic
starvation, sulfide, and free ammonia to suppress nitriteoxidizing
bacteria, Environ. Sci. Technol., 52 (2018) 8725–8732.
- V. Kouba, E. Proksova, H. Wiesinger, D. Vejmelkova, J. Bartacek,
Good servant, bad master: sulfide influence on partial nitritation
of sewage, Water Sci. Technol., 76 (2017) 3258–3268.
- J. Wang, Y. Liu, F. Meng, W. Li, The short- and long-term
effects of formic acid on rapid nitritation start-up, Environ. Int.,
135 (2020) 105350, doi: 10.1016/j.envint.2019.105350.
- R.L. Moore, Biological effects of magnetic fields: studies with
microorganisms, Can. J. Microbiol., 25 (1979) 1145–1151.
- Q. Tao, S. Zhou, Effect of static magnetic field on electricity
production and wastewater treatment in microbial fuel cells,
Appl. Microbiol. Biotechnol., 98 (2014) 9879–9887.
- Z. Wang, X. Liu, S. Ni, J. Zhang, X. Zhang, H.A. Ahmad, B. Gao,
Weak magnetic field: a powerful strategy to enhance partial
nitrification, Water Res., 120 (2017) 190–198.
- Z. Wang, P. Liu, S. Ni, T. Lee, S. Ahmad, Low-frequency infrared
electromagnetic wave promotes partial nitrification by affecting
the community signal system, Chem. Eng. J., 425 (2021) 131636,
doi: 10.1016/j.cej.2021.131636.
- W. Jia, J. Zhang, Y. Lu, G. Li, W. Yang, Q. Wang, Response of
nitrite accumulation and microbial characteristics to lowintensity
static magnetic field during partial nitrification,
Bioresour. Technol., 259 (2018) 214–220.
- S. Tian, S. Huang, Y. Zhu, G. Zhang, J. Lian, Z. Liu, L. Zhang,
X. Qin, Effect of low-intensity ultrasound on partial nitrification:
performance, sludge characteristics, and properties of
extracellular polymeric substances, Ultrason. Sonochem.,
73 (2021) 105527, doi: 10.1016/j.ultsonch.2021.105527.
- M. Zheng, S. Wu, Q. Dong, X. Huang, Z. Yuan, Y. Liu, Achieving
mainstream nitrogen removal via the nitrite pathway from real
municipal wastewater using intermittent ultrasonic treatment,
Ultrason. Sonochem., 51 (2019) 406–411.
- S. Huang, Y. Zhu, J. Lian, Z. Liu, L. Zhang, S. Tian, Enhancement
in the partial nitrification of wastewater sludge via lowintensity
ultrasound: effects on rapid start-up and temperature
resilience, Bioresour. Technol., 294 (2019) 122196, doi: 10.1016/j.biortech.2019.122196.
- C. Picioreanu, J. Perez, M.C.M. van Loosdrecht, Impact of cell
cluster size on apparent half-saturation coefficients for oxygen
in nitrifying sludge and biofilms, Water Res., 106 (2016) 371–382.
- J. Zhao, T. Liu, J. Meng, Z. Hu, X. Lu, S. Hu, Z. Yuan, M. Zheng,
Ammonium concentration determines oxygen penetration
depth to impact the suppression of nitrite-oxidizing bacteria
inside partial nitritation and anammox biofilms, Chem. Eng. J.,
455 (2023) 140738, doi: 10.1016/j.cej.2022.140738.
- Z. Yang, K. Fu, M. Liao, F. Qiu, X. Cao, Discussion on inhibition
strategies of two nitrite-oxidizing bacteria in nitritation,
Chin. J. Environ. Eng., 13 (2019) 222–231.
- B. Zhang, C. Sun, H. Lin, W. Liu, W. Qin, T. Chen, T. Yang,
X. Wen, Differences in distributions, assembly mechanisms,
and putative interactions of AOB and NOB at a large spatial
scale, Front. Environ. Sci. Eng., 17 (2023) 122, doi: 10.1007/s11783-023-1722-0.
- C.M. Waters, B.L. Bassler, Quorum sensing: cell-to-cell
communication in bacteria, Annu. Rev. Cell Dev. Biol., 21 (2005)
319–346.
- C. Jiang, X. Wang, H. Wang, S. Xu, W. Zhang, Q. Meng,
X. Zhuang, Achieving partial nitritation by treating sludge with
free nitrous acid: the potential role of quorum sensing, Front.
Microbiol., 13 (2022) 897566, doi: 10.3389/fmicb.2022.897566.
- Z. Feng, Y. Sun, T. Li, F. Meng, G. Wu, Operational pattern
affects nitritation, microbial community and quorum sensing
in nitrifying wastewater treatment systems, Sci. Total Environ.,
677 (2019) 456–465.
- T. Ma, C. Cheng, L. Xing, Y. Sun, G. Wu, Quorum sensing
responses of r-/K-strategists Nitrospira in continuous flow and
sequencing batch nitrifying biofilm reactors, Sci Total Environ.,
857 (2023) 159328, doi: 10.1016/j.scitotenv.2022.159328.