References
- K. Wang, Q. Wang, Y. Chen, D. Li, Q. Tian, X. Guo, Status of
solid waste disposal in antimony metallurgy, Nonferrous Met.
Sci. Eng., 13 (2022) 8–17.
- B. Chen, Z. Wang, Z. Zhou, G. Hu, Y. Qiu, Commercial test of
cleanly production technology of second arsenic-alkali residue,
Min. Metall. Eng., 27 (2007) 47–49.
- W. Deng, L. Chai, Y. Dai, Industrial experimental study on
comprehensive recoverying valuable resources from antimony
smelting arsenic-alkali residue, Hunan Nonferrous Met.,
30 (2014) 24–27.
- J. Li, H. Liang, Treatment strategies study on the comprehensive
utilization of arsenic-alkali residue in Xikuangshan area,
Hunan Nonferrous Met., 26 (2010) 53–55.
- J. Tian, Y. Wang, X. Zhang, W. Sun, H. Han, Z. Yu, T. Yue, A novel
scheme for safe disposal and resource utilization of arsenicalkali
slag, Process Saf. Environ. Prot., 156 (2021) 429–437.
- R. Su, X. Ma, J. Lin, E. Heredia, R. Chernikov, S. Wang, Y. Jia,
An alternative method for the treatment of metallurgical
arsenic-alkali residue and recovery of high-purity sodium
bicarbonate, Hydrometallurgy, 202 (2021) 105590, doi: 10.1016/j.hydromet.2021.105590.
- H. Long, Y. Zheng, Y. Peng, H. He, Recovery of alkali,
selenium and arsenic from antimony smelting arsenic-alkali
residue, J. Cleaner Prod., 251 (2019) 119673, doi: 10.1016/j.jclepro.2019.119673.
- X. Guo, K. Wang, M. He, Z. Liu, H. Yang, S. Li, Antimony smelting
process generating solid wastes and dust: characterization and
leaching behaviors, J. Environ. Sci., 26 (2014) 1549–1556.
- X. Wang, J. Ding, L. Wang, S. Zhang, H. Hou, J. Zhang, J. Chen,
M. Ma, C. Daniel, X. Wu, Stabilization treatment of arsenicalkali
residue (AAR): effect of the coexisting soluble carbonate
on arsenic stabilization, Environ. Int., 135 (2020) 105406,
doi: 10.1016/j.envint.2019.105406.
- F. Han, L. Shao, X. Shi, X. Liu, C. Li, Study on stabilizing
and curing agent and method for arsenic residue, Hunan
Nonferrous Met., 33 (2017) 65–77.
- G. Jiang, X. Min, Y. Ke, Y. Liang, X. Yan, W. Xu, Z. Lin,
Solidification/stabilization of highly toxic arsenic-alkali residue
by MSWI fly ash-based cementitious material containing
Friedel’s salt: efficiency and mechanism, J. Hazard. Mater.,
425 (2022) 127992, doi: 10.1016/j.jhazmat.2021.127992.
- H. Long, Y. Zheng, Y. Peng, G. Jin, W. Deng, S. Zhang, H. He,
Separation and recovery of arsenic and alkali products during
the treatment of antimony smelting residues, Miner. Eng.,
153 (2020) 106379, doi: 10.1016/j.mineng.2020.106379.
- H. Long, X. Huang, Y. Zheng, Y. Peng, H. He, Purification of
crude As2O3 recovered from antimony smelting arsenic-alkali
residue, Process Saf. Environ. Prot., 139 (2020) 201–209.
- G. Zeng, H. Li, S. Chen, X. Tu, W. Wang, Leaching kinetics and
separation of antimony and arsenic from arsenic alkali residue,
Adv. Mater. Res., 402 (2011) 57–60.
- Y. Li, Z. Liu, Q. Li, F. Liu, Z. Liu, Alkaline oxidative
pressure leaching of arsenic and antimony bearing dusts,
Hydrometallurgy, 166 (2016) 41–47.
- J. Wang, Hydrometallurgical process for recovery of antimony
from arsenic-alkali residue, Tech. Equip. Environ. Pollut.
Control, 7 (2006) 64–67.
- Y. Qiu, B. Lu, B. Chen, Y. Zhong, F. Wei, Y. Yang, Commercial
scale test of anti-pollution control technique for slag of arsenic
and soda, J. Cent. South Univ. Technol., 36 (2005) 234–238.
- R. De Klerk, Y. Jia, R. Daenzer, M. Gomez, G. Demopoulos,
Continuous circuit coprecipitation of arsenic(V) with ferric
iron by lime neutralization: process parameter effects on
arsenic removal and precipitate quality, Hydrometallurgy,
111–112 (2012) 65–72.
- Y. Jia, D. Zhang, R. Pan, L. Xu, G. Demopoulos, A novel twostep
coprecipitation process using Fe(III) and Al(III) for the
removal and immobilization of arsenate from acidic aqueous
solution, Water Res., 46 (2012) 500–508.
- Y. Du, Q. Lu, H. Chen, Y. Du, D. Du, A novel strategy for arsenic
removal from dirty acid wastewater via CaCO3-Ca(OH)2-Fe(III)
processing, J. Water Process Eng., 12 (2016) 41–46.
- E. Balladares, O. Jerez, F. Parada, L. Baltierra, C. Hernández,
E. Araneda, V. Parra, Neutralization and co-precipitation of
heavy metals by lime addition to effluent from acid plant in a
copper smelter, Miner. Eng., 122 (2018) 122–129.
- J. Lei, B. Peng, Y. Liang, X. Min, Y. Chai, Y. Ke, Y. You, Effects
of anions on calcium arsenate crystalline structure and arsenic
stability, Hydrometallurgy, 177 (2018) 123–131.
- E. Li, T. Yang, Q. Wang, Z. Yu, S. Tian, J. Wang, Long-term
stability of arsenic calcium residue (ACR) treated with FeSO4
and H2SO4: function of H+ and Fe(II), J. Hazard. Mater.,
420 (2021) 126549, doi: 10.1016/j.jhazmat.2021.126549.
- D. Zhang, S. Wang, Y. Wang, M. Gomez, Y. Jia, The longterm
stability of calcium arsenates: implications for phase
transformation and arsenic mobilization, J. Environ. Sci.,
84 (2019) 29–41.
- A. Nazari, R. Radzinski, A. Ghahreman, Review of arsenic
metallurgy: treatment of arsenical minerals and the
immobilization of arsenic, Hydrometallurgy, 174 (2017)
258–281.
- X. Xiang, L. Chai, X. Min, Y. Zhang, R. Deng, W. Jiang, A study
on the removal of arsenic from leaching liquor of arseniccontaining
alkaline dregs by precipitation as ferric arsenates,
China Manganese Ind., 24 (2006) 30–33.
- B. Das, Theoretical study of formation of secondary arsenic
minerals: scorodite and pharmacosiderite, ACS Earth Space
Chem., 3 (2019) 192–201.
- X. Ma, Z. Yuan, G. Zhang, J. Zhang, X. Wang, S. Wang, Y. Jia,
Alternative method for the treatment of hydrometallurgical
arsenic–calcium residues: the immobilization of arsenic as
scorodite, ACS Omega, 5 (2020) 12979–12988.
- X. Ma, M. Gomez, Z. Yuan, G. Zhang, Wang, S. Li, S. Yao,
X. Wang, Y. Jia, A novel method for preparing an As(V) solution
for scorodite synthesis from an arsenic sulphide residue in a
Pb refinery, Hydrometallurgy, 183 (2019) 1–8.
- Y. Sun, Q. Yao, X. Zhang, H. Yang, N. Li, Z. Zhang, Z. Hao,
Insight into mineralizer modified and tailored scorodite
crystal characteristics and leachability for arsenic-rich smelter
wastewater stabilization, RSC Adv., 8 (2018) 19560–19569.
- X.J. Qi, Y.K. Li, L.H. Wei, F.Y. Hao, X. Zhu, Y.G. Wei, K.Z. Li,
H. Wang, Disposal of high-arsenic waste acid by the stepwise
formation of gypsum and scorodite, RSC Adv., 10 (2020) 29–42.
- Y. Li, X. Zhu, X. Qi, B. Shu, X. Zhang, K. Li, Y. Wei, F. Hao,
H. Wang, Efficient removal of arsenic from copper smelting
wastewater in form of scorodite using copper slag, J. Cleaner
Prod., 270 (2020) 122428, doi: 10.1016/j.jclepro.2020.122428.
- X. Li, G. Cai, Y. Li, X. Zhu, X. Qi, X. Zhang, B. Shu, K. Li,
Y. Wei, H. Wang, Limonite as a source of solid iron in the
crystallization of scorodite aiming at arsenic removal from
smelting wastewater, J. Cleaner Prod., 278 (2021) 123552,
doi: 10.1016/j.jclepro.2020.123552.
- G. Cai, X. Zhu, K. Li, X. Qi, Y. Wei, H. Wang, F. Hao, Selfenhanced
and efficient removal of arsenic from waste acid
using magnetite as an in-situ iron donator, Water Res.,
157 (2019) 269–280.
- R. Su, X. Ma, X. Yin, X. Zhao, Z. Yan, J. Lin, X. Zeng, D. Zhang,
S. Wang, Y. Jia, Arsenic removal from hydrometallurgical
waste sulfuric acid via scorodite formation using siderite
(FeCO3), Chem. Eng. J., 424 (2021) 130552, doi: 10.1016/j.cej.2021.130552.
- X. Ma, R. Su, X.Y. Zhu, Z.X. Zhao, X.F. Zeng, S.F. Wang,
Y.F. Jia, An innovative strategy for efficient and economical
arsenic removal in hydrometallurgical waste sulfuric acid by
co-treatment with Fe-As coprecipitation residue via scorodite
formation, J. Cleaner Prod, 375 (2022) 134186, doi: 10.1016/j.jclepro.2022.134186.
- J. Tian, W. Sun, X. Zhang, H. Han, Z. Yu, T. Yue, L. Wang,
Y. Yang, H. Tang, E. Li, Comprehensive utilization and safe
disposal of hazardous arsenic-alkali slag by the combination
of beneficiation and metallurgy, J. Cleaner Prod., 295 (2021)
126381, doi: 10.1016/j.jclepro.2021.126381.
- R. Su, B. Qi, L. Zhao, Y. Gao, Study on the effect of ionic
strength on the crystallization process of scorodite and fixation
of arsenic, Appl. Chem. Ind., 51 (2022) 3207–3211.
- C. Silva, X. Liu, F. Millero, Solubility of siderite (FeCO3) in NaCl
solutions, J. Solution Chem., 31 (2002) 97–108.
- H. Itou, Mechanism of Scorodite Formation at Ambient
Temperature as Determined by TEM Analysis, Paper Presented
at: International Symposium on Iron Control Technologies,
2006.
- Y. Jia, L. Xu, X. Wang, G. Demopoulos, Infrared spectroscopic
and X-ray diffraction characterization of the nature of
adsorbed arsenate on ferrihydrite, Geochim. Cosmochim. Acta,
71 (2007) 1643–1654.
- X. Ma, S. Li, Z. Yuan, S. Yao, Y. Jia, S. Wang, Stabilization
of scorodite by aluminum silicate microencapsulation,
J. Environ. Eng., 145 (2019) 04019010, doi: 10.1061/(ASCE)
EE.1943-7870.0001511.
- G. Waychunas, B. Rea, C. Fuller, J. Davis, Surface chemistry
of ferrihydrite: part 1. EXAFS studies of the geometry of
coprecipitated and adsorbed arsenate, Geochim. Cosmochim.
Acta, 57 (1993) 2251–2269.
- W. Richmond, M. Loan, J. Morton, J. Parkinson, Arsenic removal
from aqueous solution via ferrihydrite crystallization control,
Environ. Sci. Technol., 38 (2004) 2368–2372.
- B. Moldovan, M. Hendry, Characterizing and quantifying
controls on arsenic solubility over a pH range of 1–11 in a
uranium mill-scale experiment, Environ. Sci. Technol., 39 (2005)
4913–4920.
- Y. Jia, G. Demopoulos, Coprecipitation of arsenate with iron(III)
in aqueous sulfate media: effect of time, lime as base and
co-ions on arsenic retention, Water Res., 42 (2008) 661–668.
- E. Krause, V.A. Ettel, Solubilities and stabilities of ferric
arsenate compounds, Hydrometallurgy, 22 (1989) 311–337.
- Y.H. Qiu, B.Q. Lu, B.Z. Chen, Y. Zhong, W. Fu, Y.Q. Yang,
Commercial-scale test of anti-pollution control technique for
slag of arsenic and soda, J. Cent. South Univ. Technol., 36 (2005)
234–237.
- Y.S. Wei, X.W. Deng, Arsenic removal kinetics of hydrothermal
sulfide precipitation for arsenic-alkali residue from antimony
smelting, Nonferrous Met. (Smelting Part), 1 (2014) 8–11.
- Z. Li, W. Chen, C. Jin, The process research for separation of
arsenic-alkali residue by fractional crystallization, Hunan
Nonferrous Met., 31 (2015) 23–28.