References

  1. K. Wang, Q. Wang, Y. Chen, D. Li, Q. Tian, X. Guo, Status of solid waste disposal in antimony metallurgy, Nonferrous Met. Sci. Eng., 13 (2022) 8–17.
  2. B. Chen, Z. Wang, Z. Zhou, G. Hu, Y. Qiu, Commercial test of cleanly production technology of second arsenic-alkali residue, Min. Metall. Eng., 27 (2007) 47–49.
  3. W. Deng, L. Chai, Y. Dai, Industrial experimental study on comprehensive recoverying valuable resources from antimony smelting arsenic-alkali residue, Hunan Nonferrous Met., 30 (2014) 24–27.
  4. J. Li, H. Liang, Treatment strategies study on the comprehensive utilization of arsenic-alkali residue in Xikuangshan area, Hunan Nonferrous Met., 26 (2010) 53–55.
  5. J. Tian, Y. Wang, X. Zhang, W. Sun, H. Han, Z. Yu, T. Yue, A novel scheme for safe disposal and resource utilization of arsenicalkali slag, Process Saf. Environ. Prot., 156 (2021) 429–437.
  6. R. Su, X. Ma, J. Lin, E. Heredia, R. Chernikov, S. Wang, Y. Jia, An alternative method for the treatment of metallurgical arsenic-alkali residue and recovery of high-purity sodium bicarbonate, Hydrometallurgy, 202 (2021) 105590, doi: 10.1016/j.hydromet.2021.105590.
  7. H. Long, Y. Zheng, Y. Peng, H. He, Recovery of alkali, selenium and arsenic from antimony smelting arsenic-alkali residue, J. Cleaner Prod., 251 (2019) 119673, doi: 10.1016/j.jclepro.2019.119673.
  8. X. Guo, K. Wang, M. He, Z. Liu, H. Yang, S. Li, Antimony smelting process generating solid wastes and dust: characterization and leaching behaviors, J. Environ. Sci., 26 (2014) 1549–1556.
  9. X. Wang, J. Ding, L. Wang, S. Zhang, H. Hou, J. Zhang, J. Chen, M. Ma, C. Daniel, X. Wu, Stabilization treatment of arsenicalkali residue (AAR): effect of the coexisting soluble carbonate on arsenic stabilization, Environ. Int., 135 (2020) 105406, doi: 10.1016/j.envint.2019.105406.
  10. F. Han, L. Shao, X. Shi, X. Liu, C. Li, Study on stabilizing and curing agent and method for arsenic residue, Hunan Nonferrous Met., 33 (2017) 65–77.
  11. G. Jiang, X. Min, Y. Ke, Y. Liang, X. Yan, W. Xu, Z. Lin, Solidification/stabilization of highly toxic arsenic-alkali residue by MSWI fly ash-based cementitious material containing Friedel’s salt: efficiency and mechanism, J. Hazard. Mater., 425 (2022) 127992, doi: 10.1016/j.jhazmat.2021.127992.
  12. H. Long, Y. Zheng, Y. Peng, G. Jin, W. Deng, S. Zhang, H. He, Separation and recovery of arsenic and alkali products during the treatment of antimony smelting residues, Miner. Eng., 153 (2020) 106379, doi: 10.1016/j.mineng.2020.106379.
  13. H. Long, X. Huang, Y. Zheng, Y. Peng, H. He, Purification of crude As2O3 recovered from antimony smelting arsenic-alkali residue, Process Saf. Environ. Prot., 139 (2020) 201–209.
  14. G. Zeng, H. Li, S. Chen, X. Tu, W. Wang, Leaching kinetics and separation of antimony and arsenic from arsenic alkali residue, Adv. Mater. Res., 402 (2011) 57–60.
  15. Y. Li, Z. Liu, Q. Li, F. Liu, Z. Liu, Alkaline oxidative pressure leaching of arsenic and antimony bearing dusts, Hydrometallurgy, 166 (2016) 41–47.
  16. J. Wang, Hydrometallurgical process for recovery of antimony from arsenic-alkali residue, Tech. Equip. Environ. Pollut. Control, 7 (2006) 64–67.
  17. Y. Qiu, B. Lu, B. Chen, Y. Zhong, F. Wei, Y. Yang, Commercial scale test of anti-pollution control technique for slag of arsenic and soda, J. Cent. South Univ. Technol., 36 (2005) 234–238.
  18. R. De Klerk, Y. Jia, R. Daenzer, M. Gomez, G. Demopoulos, Continuous circuit coprecipitation of arsenic(V) with ferric iron by lime neutralization: process parameter effects on arsenic removal and precipitate quality, Hydrometallurgy, 111–112 (2012) 65–72.
  19. Y. Jia, D. Zhang, R. Pan, L. Xu, G. Demopoulos, A novel twostep coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution, Water Res., 46 (2012) 500–508.
  20. Y. Du, Q. Lu, H. Chen, Y. Du, D. Du, A novel strategy for arsenic removal from dirty acid wastewater via CaCO3-Ca(OH)2-Fe(III) processing, J. Water Process Eng., 12 (2016) 41–46.
  21. E. Balladares, O. Jerez, F. Parada, L. Baltierra, C. Hernández, E. Araneda, V. Parra, Neutralization and co-precipitation of heavy metals by lime addition to effluent from acid plant in a copper smelter, Miner. Eng., 122 (2018) 122–129.
  22. J. Lei, B. Peng, Y. Liang, X. Min, Y. Chai, Y. Ke, Y. You, Effects of anions on calcium arsenate crystalline structure and arsenic stability, Hydrometallurgy, 177 (2018) 123–131.
  23. E. Li, T. Yang, Q. Wang, Z. Yu, S. Tian, J. Wang, Long-term stability of arsenic calcium residue (ACR) treated with FeSO4 and H2SO4: function of H+ and Fe(II), J. Hazard. Mater., 420 (2021) 126549, doi: 10.1016/j.jhazmat.2021.126549.
  24. D. Zhang, S. Wang, Y. Wang, M. Gomez, Y. Jia, The longterm stability of calcium arsenates: implications for phase transformation and arsenic mobilization, J. Environ. Sci., 84 (2019) 29–41.
  25. A. Nazari, R. Radzinski, A. Ghahreman, Review of arsenic metallurgy: treatment of arsenical minerals and the immobilization of arsenic, Hydrometallurgy, 174 (2017) 258–281.
  26. X. Xiang, L. Chai, X. Min, Y. Zhang, R. Deng, W. Jiang, A study on the removal of arsenic from leaching liquor of arseniccontaining alkaline dregs by precipitation as ferric arsenates, China Manganese Ind., 24 (2006) 30–33.
  27. B. Das, Theoretical study of formation of secondary arsenic minerals: scorodite and pharmacosiderite, ACS Earth Space Chem., 3 (2019) 192–201.
  28. X. Ma, Z. Yuan, G. Zhang, J. Zhang, X. Wang, S. Wang, Y. Jia, Alternative method for the treatment of hydrometallurgical arsenic–calcium residues: the immobilization of arsenic as scorodite, ACS Omega, 5 (2020) 12979–12988.
  29. X. Ma, M. Gomez, Z. Yuan, G. Zhang, Wang, S. Li, S. Yao, X. Wang, Y. Jia, A novel method for preparing an As(V) solution for scorodite synthesis from an arsenic sulphide residue in a Pb refinery, Hydrometallurgy, 183 (2019) 1–8.
  30. Y. Sun, Q. Yao, X. Zhang, H. Yang, N. Li, Z. Zhang, Z. Hao, Insight into mineralizer modified and tailored scorodite crystal characteristics and leachability for arsenic-rich smelter wastewater stabilization, RSC Adv., 8 (2018) 19560–19569.
  31. X.J. Qi, Y.K. Li, L.H. Wei, F.Y. Hao, X. Zhu, Y.G. Wei, K.Z. Li, H. Wang, Disposal of high-arsenic waste acid by the stepwise formation of gypsum and scorodite, RSC Adv., 10 (2020) 29–42.
  32. Y. Li, X. Zhu, X. Qi, B. Shu, X. Zhang, K. Li, Y. Wei, F. Hao, H. Wang, Efficient removal of arsenic from copper smelting wastewater in form of scorodite using copper slag, J. Cleaner Prod., 270 (2020) 122428, doi: 10.1016/j.jclepro.2020.122428.
  33. X. Li, G. Cai, Y. Li, X. Zhu, X. Qi, X. Zhang, B. Shu, K. Li, Y. Wei, H. Wang, Limonite as a source of solid iron in the crystallization of scorodite aiming at arsenic removal from smelting wastewater, J. Cleaner Prod., 278 (2021) 123552, doi: 10.1016/j.jclepro.2020.123552.
  34. G. Cai, X. Zhu, K. Li, X. Qi, Y. Wei, H. Wang, F. Hao, Selfenhanced and efficient removal of arsenic from waste acid using magnetite as an in-situ iron donator, Water Res., 157 (2019) 269–280.
  35. R. Su, X. Ma, X. Yin, X. Zhao, Z. Yan, J. Lin, X. Zeng, D. Zhang, S. Wang, Y. Jia, Arsenic removal from hydrometallurgical waste sulfuric acid via scorodite formation using siderite (FeCO3), Chem. Eng. J., 424 (2021) 130552, doi: 10.1016/j.cej.2021.130552.
  36. X. Ma, R. Su, X.Y. Zhu, Z.X. Zhao, X.F. Zeng, S.F. Wang, Y.F. Jia, An innovative strategy for efficient and economical arsenic removal in hydrometallurgical waste sulfuric acid by co-treatment with Fe-As coprecipitation residue via scorodite formation, J. Cleaner Prod, 375 (2022) 134186, doi: 10.1016/j.jclepro.2022.134186.
  37. J. Tian, W. Sun, X. Zhang, H. Han, Z. Yu, T. Yue, L. Wang, Y. Yang, H. Tang, E. Li, Comprehensive utilization and safe disposal of hazardous arsenic-alkali slag by the combination of beneficiation and metallurgy, J. Cleaner Prod., 295 (2021) 126381, doi: 10.1016/j.jclepro.2021.126381.
  38. R. Su, B. Qi, L. Zhao, Y. Gao, Study on the effect of ionic strength on the crystallization process of scorodite and fixation of arsenic, Appl. Chem. Ind., 51 (2022) 3207–3211.
  39. C. Silva, X. Liu, F. Millero, Solubility of siderite (FeCO3) in NaCl solutions, J. Solution Chem., 31 (2002) 97–108.
  40. H. Itou, Mechanism of Scorodite Formation at Ambient Temperature as Determined by TEM Analysis, Paper Presented at: International Symposium on Iron Control Technologies, 2006.
  41. Y. Jia, L. Xu, X. Wang, G. Demopoulos, Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite, Geochim. Cosmochim. Acta, 71 (2007) 1643–1654.
  42. X. Ma, S. Li, Z. Yuan, S. Yao, Y. Jia, S. Wang, Stabilization of scorodite by aluminum silicate microencapsulation, J. Environ. Eng., 145 (2019) 04019010, doi: 10.1061/(ASCE) EE.1943-7870.0001511.
  43. G. Waychunas, B. Rea, C. Fuller, J. Davis, Surface chemistry of ferrihydrite: part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate, Geochim. Cosmochim. Acta, 57 (1993) 2251–2269.
  44. W. Richmond, M. Loan, J. Morton, J. Parkinson, Arsenic removal from aqueous solution via ferrihydrite crystallization control, Environ. Sci. Technol., 38 (2004) 2368–2372.
  45. B. Moldovan, M. Hendry, Characterizing and quantifying controls on arsenic solubility over a pH range of 1–11 in a uranium mill-scale experiment, Environ. Sci. Technol., 39 (2005) 4913–4920.
  46. Y. Jia, G. Demopoulos, Coprecipitation of arsenate with iron(III) in aqueous sulfate media: effect of time, lime as base and co-ions on arsenic retention, Water Res., 42 (2008) 661–668.
  47. E. Krause, V.A. Ettel, Solubilities and stabilities of ferric arsenate compounds, Hydrometallurgy, 22 (1989) 311–337.
  48. Y.H. Qiu, B.Q. Lu, B.Z. Chen, Y. Zhong, W. Fu, Y.Q. Yang, Commercial-scale test of anti-pollution control technique for slag of arsenic and soda, J. Cent. South Univ. Technol., 36 (2005) 234–237.
  49. Y.S. Wei, X.W. Deng, Arsenic removal kinetics of hydrothermal sulfide precipitation for arsenic-alkali residue from antimony smelting, Nonferrous Met. (Smelting Part), 1 (2014) 8–11.
  50. Z. Li, W. Chen, C. Jin, The process research for separation of arsenic-alkali residue by fractional crystallization, Hunan Nonferrous Met., 31 (2015) 23–28.