References

  1. L. Lin, H. Yang, X. Xu, Effects of water pollution on human health and disease heterogeneity: a review, Front. Environ. Sci., 10 (2022) 880246, doi: 10.3389/fenvs.2022.880246.
  2. X. Xu, H. Yang, C. Li, Theoretical model and actual characteristics of air pollution affecting health cost: a review, Int. J. Environ. Res. Public Health, 19 (2022) 3532, doi: 10.3390/ijerph19063532.
  3. S. Khan, A. Malik, Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye, Environ. Sci. Pollut. Res., 25 (2018) 4446–4458.
  4. K. Shirvanimoghaddam, B. Motamed, S. Ramakrishna, M. Naebe, Death by waste: fashion and textile circular economy case, Sci. Total Environ., 718 (2020) 137317, doi: 10.1016/j.scitotenv.2020.137317.
  5. S. Popli, U. Patel, Destruction of azo dyes by anaerobic and aerobic sequential biological treatment: a review, Int. J. Environ. Sci. Technol., 12 (2014) 405–420.
  6. K. Siddique, M. Rizwan, M.J. Shahid, S. Ali, R. Ahmad, H. Rizvi, Textile Wastewater Treatment Options: A Critical Review, N. Anjum, S. Gill, N. Tuteja, Eds., Enhancing Cleanup of Environmental Pollutants, Springer, Cham, 2017, pp. 183–207.
  7. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Technol., 77 (2001) 247–255.
  8. S. Mukherji, J. Ruparelia, S. Agnihotri, Antimicrobial Activity of Silver and Copper Nanoparticles: Variation in Sensitivity Across Various Strains of Bacteria and Fungi, N. Cioffi, M. Rai, Eds., Nano-antimicrobials: progress and prospects, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 225–251.
  9. X. Li, X. Jin, N. Zhao, I. Angelidaki, Y. Zhang, Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell, Bioresour. Technol., 228 (2017) 322–329.
  10. S. Agnihotri, N.K. Dhiman, A. Tripathi, Antimicrobial Surface Modification of Polymeric Biomaterials, A. Tiwari, Ed., Handbook of Antimicrobial Coatings, Elsevier, New York, 2018, pp. 435–486.
  11. M.S. Akhtar, J. Panwar, Y.S. Yun, Biogenic synthesis of metallic nanoparticles by plant extracts, ACS Sustainable Chem. Eng., 1 (2013) 591–602.
  12. R.G. Saratale, I. Karuppusamy, G.S. Saratale, A. Pugazhendhi, G. Kumar, Y. Park, G.S. Ghodake, R.N. Bhargava, J.R. Banu, H.S. Shin, A comprehensive review on green nanomaterials using biological systems: recent perception and their future applications, Colloids Surf., B, 170 (2018) 20–35.
  13. P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parishcha, R. Ajaykumar, M. Alam, R. Kumar, Fungus mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis, Nano Lett., 1 (2001) 515–519.
  14. S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise, J. Adv. Res., 17 (2016) 17–28.
  15. J. Singh, N. Singh, A. Rathi, D. Kukkar, M. Rawat, Facile approach to synthesize and characterization of silver nanoparticles by using mulberry leaves extract in aqueous medium and its application in antimicrobial activity, J. Nanostruct., 7 (2017) 134–140.
  16. C. Ramteke, T. Chakrabarti, B.K. Sarangi, R. Pandey, Synthesis of silver nanoparticles from the aqueous extract of leaves of Ocimum sanctum for enhanced antibacterial activity, J. Chem., 2013 (2013) 278925, doi: 10.1155/2013/278925.
  17. J. Singh, P. Kukkar, H. Sammi, M. Rawat, G. Singh, D. Kukkar, Enhanced catalytic reduction of 4-nitrophenol and Congo red dye by silver nanoparticles prepared from Azadirachta indica leaf extract under direct sunlight exposure, Part. Sci. Technol., 37 (2019) 434–443.
  18. J. Singh, G. Kaur, P. Kaur, R. Bajaj, M. Rawat, A review on green synthesis and characterization of silver nanoparticles and their applications: a green nanoworld, World J. Pharm. Pharm. Sci., 7 (2016) 730–762.
  19. N.A.N. Mohamad, N.A. Arham, J. Jai, A. Hadi, Plant extract as reducing agent in synthesis of metallic nanoparticles: a review, Adv. Mater. Res., 832 (2013) 350–355.
  20. F. Mujeeb, P. Bajpai, N. Pathak, Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos, Biomed. Res. Int., 2014 (2014) 497606, doi: 10.1155/2014/497606.
  21. S. Kothari, V. Mishra, S. Bharat, S.D. Tonpay, Antimicrobial activity and phytochemical screening of serial extracts from leaves of Aegle marmelos (Linn.), Acta Pol. Pharm.–Drug Res., 68 (2011) 687–692.
  22. V.K. Bajpai, P. Agrawal, B.H. Bang, Y.H. Park, Phytochemical analysis, antioxidant and antilipid peroxidation effects of a medicinal plant, Adhatoda vasica, Front. Life Sci., 8 (2015) 305–312.
  23. S. Sankhalkar, V. Vernekar, Quantitative and qualitative analysis of phenolic and flavonoid content in Moringa oleifera Lam and Ocimum tenuiflorum L., Pharmacogn. Res., 8 (2016) 16–21.
  24. S. Agnihotri, S. Mukherji, S. Mukherji, Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy, RSC Adv., 4 (2014) 3974–3983.
  25. S. Bharti, S. Agnihotri, S. Mukherji, S. Mukherji, Effectiveness of immobilized silver nanoparticles in inactivation of pathogenic bacteria, J. Environ. Res. Dev., 9 (2015) 849–856.
  26. M. Beg, A. Maji, A.K. Mandal, S. Das, M.N. Aktara, P.K. Jha, M. Hossain, Green synthesis of silver nanoparticles using Pongamia pinnata seed: characterization, antibacterial property, and spectroscopic investigation of interaction with human serum albumin, J. Mol. Recognit., 30 (2017) e2565, doi: 10.1002/jmr.2565.
  27. K. Kalimuthu, R.S. Babu, D. Venkataraman, M. Bilal, S. Gurunathan, Biosynthesis of silver nanocrystals by Bacillus licheniformis, Colloids Surf., B, 65 (2008) 150–153.
  28. D. Khwannimit, R. Maungchang, P. Rattanakit, Green synthesis of silver nanoparticles using Clitoria ternatea flower: an efficient catalyst for removal of Methyl orange, Int. J. Environ. Anal. Chem., 102 (2020) 5247–5263.
  29. W. Routray, V. Orsat, Blueberries and their anthocyanins: factors affecting biosynthesis and properties, Compr. Rev. Food Sci. Food Saf., 10 (2011) 303–320.
  30. M.G. Guzmán, J. Dille, S. Godet, Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity, Int. J. Chem. Biomol. Eng., 2 (2009) 104–111.
  31. S.R. Arote, P.G. Yeole, Pongamia pinnata L: a comprehensive review, Int. J. Pharm. Tech. Res., 2 (2010) 2283–2290.
  32. R.S. Priya, D. Geetha, P.S. Ramesh, Antioxidant activity of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs – a comparative study, Ecotoxicol. Environ. Saf., 134 (2016) 308–318.
  33. R.W. Raut, N.S. Kolekar, J.R. Lakkakula, V.D. Mendhulkar, S.B. Kashid, Extracellular synthesis of silver nanoparticles using dried leaves of Pongamia pinnata (L) pierre, Nano-Micro Lett., 2 (2010) 106–113.
  34. P. Trouillas, P. Marsal, D. Siri, R. Lazzaroni, J.L. Duroux, A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: the specificity of the 3-OH site, Food Chem., 97 (2006) 679–688.
  35. M. Sharma, S. Yadav, N. Ganesh, M.M. Srivastava, S. Srivastava, Biofabrication and characterization of flavonoid-loaded Ag, Au, Au–Ag bimetallic nanoparticles using seed extract of the plant Madhuca longifolia for the enhancement in wound healing bio-efficacy, Prog. Biomater., 8 (2019) 51–63.
  36. K. Jyoti, M. Baunthiyal, A. Singh, Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics, J. Radiat. Res. Appl. Sci., 9 (2016) 217–227.
  37. U. Farooq, J. Ahmed, S.M. Alshehri, T. Ahmad, High surface area sodium tantalate nanoparticles with enhanced photocatalytic and electrical properties prepared through polymeric citrate precursor route, ACS Omega, 4 (2019) 19408−19419.
  38. H. Anwer, A. Mahmood, J. Lee, K.H. Kim, J.W. Park, A.C. Yip, Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges, Nano Res., 12 (2019) 955–972.
  39. A.Y. Zhang, W.K. Wang, D.N. Pei, H.Q. Yu, Degradation of refractory pollutants under solar light irradiation by a robust and self-protected ZnO/CdS/TiO2 hybrid photocatalyst, Water Res., 92 (2016) 78–86.
  40. X.R. Li, J.G. Wang, Y. Men, Z.F. Bian, TiO2 mesocrystal with exposed (001) facets and CdS quantum dots as an active visible photocatalyst for selective oxidation reactions, Appl. Catal., B, 187 (2016) 115–121.
  41. G. Kumari, R. Kamarudheen, E. Zoethout, A. Baldi, Photocatalytic surface restructuring in individual silver nanoparticles, ACS Catal., 11 (2011) 3478–3486.
  42. J.J. Jung, J.W. Jang, J.W. Park, Effect of generation growth on photocatalytic activity of nano TiO2-magnetic cored dendrimers, J. Ind. Eng. Chem., 44 (2016) 52–59.
  43. H. Answer, J.W. Park, Synthesis and characterization of a heterojunction rGO/ZrO2/Ag3PO4 nanocomposite for degradation of organic contaminants, J. Hazard. Mater., 358 (2018) 416–426.
  44. F.A. Alharthi, A.A. Alghamdi, N. Al-Zaqri, H.S. Alanazi, A.A. Alsyahi, A.E. Marghany, N. Ahmad, Facile one-pot green synthesis of Ag–ZnO nanocomposites using potato peel and their Ag concentration dependent photocatalytic properties, Sci. Rep., 10 (2020) 20229, doi: 10.1038/s41598-020-77426-y.
  45. F. Azeez, E. Al-Hetlani, M. Arafa, Y. Abdelmonem, A.A. Nazeer, M.O. Amin, M. Madkour, The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles, Sci. Rep., 8 (2018) 7104, doi: 10.1038/s41598-018-25673-5.
  46. M. Siddique, R. Khan, A.F. Khan, R. Farooq, Improved photocatalytic activity of TiO2 coupling ultrasound for Reactive Blue 19 degradation, J. Chem. Soc. Pak., 36 (2014) 37–43.
  47. T. Theivasanthi, M. Alagar, Electrolytic synthesis and characterization of silver nanopowder, Nano Biomed. Eng., 4 (2012) 58–65.
  48. T. Ahmad, R. Phul, P. Alam, I.H. Lone, M. Shahazad, J. Ahmed, T. Ahamad, S.M. Alshehri, Dielectric, optical and enhanced photocatalytic properties of CuCrO2 nanoparticles, RSC Adv., 7 (2017) 27549−27557.
  49. S. Marimuthu, A.J. Antonisamy, S. Malayandi, K. Rajendran, P.C. Tsai, A. Pugazhendhi, V.K. Ponnusamy, Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity, J. Photochem. Photobiol., B, 205 (2020) 111823, doi: 10.1016/j.jphotobiol.2020.111823.
  50. M.S. Sumi, A. Devadiga, V. Shetty, M.B. Saidutta, Solar photocatalytically active, engineered silver nanoparticle synthesis using aqueous extract of mesocarp of Cocos nucifera (Red Spicata Dwarf), J. Exp. Nanosci., 12 (2016) 1–19.
  51. M. Mavaei, A. Chahardoli, Y. Shokoohinia, A. Khoshroo, A. Fattahi, One-step synthesized silver nanoparticles using isoimperatorin: evaluation of photocatalytic, and electrochemical activities, Sci. Rep., 10 (2020) 1762, doi: 10.1038/s41598-020-58697-x.
  52. A. Manuel, A. Kirkey, N. Mahdi, K. Shankar, Plexcitonics – fundamental principles and optoelectronic applications, J. Mater. Chem. C, 7 (2018) 1821–1853.
  53. A. Liang, L. Qingye, W. Guiqing, J. Zhiliang, The surface-plasmon-resonance effect of nanogold/silver and its analytical applications, TrAC, Trends Anal. Chem., 37 (2012) 32–47.
  54. S. Li, X. Bing, C. Jialin, L. Yanping, Z. Junlei, W. Hengwei, L. Jianshe, Constructing a plasmonic p-n heterojunction photocatalyst of 3D Ag/Ag6Si2O7/Bi2MoO6 for efficiently removing broad-spectrum antibiotics, Sep. Purif. Technol., 254 (2021) 117579, doi: 10.1016/j.seppur.2020.117579.
  55. V.G. Belessiotis, G.K. Ahanassios, Plasmonic silver (Ag)-based photocatalysts for H2 production and CO2 conversion: review, analysis and perspectives, Renewable Energy, 195 (2022) 497–515.
  56. N.K. Nasab, Z. Sabouri, S. Ghazal, M. Darroudi, Greenbased synthesis of mixed-phase silver nanoparticles as an effective photocatalyst and investigation of their antibacterial properties, J. Mol. Struct., 1203 (2020) 127411, doi: 10.1016/j.molstruc.2019.127411.
  57. F. Naaz, U. Farooq, M.M. Khan, T. Ahmad, Multifunctional efficacy of environmentally benign silver nanospheres for organic transformation, photocatalysis, and water remediation, ACS Omega, 5 (2020) 26063–26076.
  58. J. Singh, A.S. Dhaliwal, Plasmon-induced photocatalytic degradation of methylene blue dye using biosynthesized silver nanoparticles as photocatalyst, Environ. Technol., 41 (2018) 1520–1534.
  59. T. Ahmed, M. Noman, M. Shahid, M.B.K. Niazi, S. Hussain, N. Manzoor, B. Li, Green synthesis of silver nanoparticles transformed synthetic textile dye into less toxic intermediate molecules through LC-MS analysis and treated the actual wastewater, Environ. Res., 191 (2020) 110142, doi: 10.1016/j.envres.2020.110142.
  60. N. Nagar, V. Devra, A kinetic study on the degradation and biodegradability of silver nanoparticles catalyzed Methyl orange and textile effluents, Heliyon, 5 (2019) e01356, doi: 10.1016/j.heliyon.2019.e01356.
  61. M. Sarkar, S. Denrah, M. Das, M. Das, Statistical optimization of bio-mediated silver nanoparticles synthesis for use in catalytic degradation of some azo dyes, Chem. Phys. Impact, 3 (2021) 100053, doi: 10.1016/j.chphi.2021.100053.
  62. S. Raina, A. Roy, N. Bharadvaja, Degradation of dyes using biologically synthesized silver and copper nanoparticles, Environ. Nanotechnol. Monit. Manage., 13 (2020) 100278, doi: 10.1016/j.enmm.2019.100278.
  63. A. Nautiyal, S.R. Shukla, Silver nanoparticles catalyzed reductive decolorization of spent dye bath containing acid dye and its reuse in dyeing, J. Water Process Eng., 22 (2018) 276–285.
  64. S. Anandan, P.S. Kumar, N. Pugazhenthiran, J. Madhavan, P. Maruthamuthu, Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of Acid Red 88, Sol. Energy Mater. Sol. Cells, 92 (2008) 929–937.
  65. R. Karthik, M. Govindasamy, S.M. Chen, Y.H. Cheng, P. Muthukrishnan, S. Padmavathy, A. Elangovan, Biosynthesis of silver nanoparticles by using Camellia japonica leaf extract for the electrocatalytic reduction of nitrobenzene and photocatalytic degradation of Eosin-Y, J. Photochem. Photobiol., B, 170 (2017) 164–172.