References
- L. Lin, H. Yang, X. Xu, Effects of water pollution on human
health and disease heterogeneity: a review, Front. Environ. Sci.,
10 (2022) 880246, doi: 10.3389/fenvs.2022.880246.
- X. Xu, H. Yang, C. Li, Theoretical model and actual
characteristics of air pollution affecting health cost: a review,
Int. J. Environ. Res. Public Health, 19 (2022) 3532, doi: 10.3390/ijerph19063532.
- S. Khan, A. Malik, Toxicity evaluation of textile effluents and
role of native soil bacterium in biodegradation of a textile
dye, Environ. Sci. Pollut. Res., 25 (2018) 4446–4458.
- K. Shirvanimoghaddam, B. Motamed, S. Ramakrishna,
M. Naebe, Death by waste: fashion and textile circular
economy case, Sci. Total Environ., 718 (2020) 137317,
doi: 10.1016/j.scitotenv.2020.137317.
- S. Popli, U. Patel, Destruction of azo dyes by anaerobic and
aerobic sequential biological treatment: a review, Int. J. Environ.
Sci. Technol., 12 (2014) 405–420.
- K. Siddique, M. Rizwan, M.J. Shahid, S. Ali, R. Ahmad, H. Rizvi,
Textile Wastewater Treatment Options: A Critical Review,
N. Anjum, S. Gill, N. Tuteja, Eds., Enhancing Cleanup of
Environmental Pollutants, Springer, Cham, 2017, pp. 183–207.
- T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation
of dyes in textile effluent: a critical review on current treatment
technologies with a proposed alternative, Bioresour. Technol.,
77 (2001) 247–255.
- S. Mukherji, J. Ruparelia, S. Agnihotri, Antimicrobial Activity
of Silver and Copper Nanoparticles: Variation in Sensitivity
Across Various Strains of Bacteria and Fungi, N. Cioffi, M. Rai,
Eds., Nano-antimicrobials: progress and prospects, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 225–251.
- X. Li, X. Jin, N. Zhao, I. Angelidaki, Y. Zhang, Novel bio-electro-Fenton technology for azo dye wastewater treatment using
microbial reverse-electrodialysis electrolysis cell, Bioresour.
Technol., 228 (2017) 322–329.
- S. Agnihotri, N.K. Dhiman, A. Tripathi, Antimicrobial Surface
Modification of Polymeric Biomaterials, A. Tiwari, Ed.,
Handbook of Antimicrobial Coatings, Elsevier, New York,
2018, pp. 435–486.
- M.S. Akhtar, J. Panwar, Y.S. Yun, Biogenic synthesis of metallic
nanoparticles by plant extracts, ACS Sustainable Chem. Eng.,
1 (2013) 591–602.
- R.G. Saratale, I. Karuppusamy, G.S. Saratale, A. Pugazhendhi,
G. Kumar, Y. Park, G.S. Ghodake, R.N. Bhargava, J.R. Banu,
H.S. Shin, A comprehensive review on green nanomaterials
using biological systems: recent perception and their future
applications, Colloids Surf., B, 170 (2018) 20–35.
- P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar,
M.I. Khan, R. Parishcha, R. Ajaykumar, M. Alam, R. Kumar,
Fungus mediated synthesis of silver nanoparticles and their
immobilization in the mycelial matrix: a novel biological
approach to nanoparticle synthesis, Nano Lett., 1 (2001)
515–519.
- S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on
plants extract mediated synthesis of silver nanoparticles for
antimicrobial applications: a green expertise, J. Adv. Res.,
17 (2016) 17–28.
- J. Singh, N. Singh, A. Rathi, D. Kukkar, M. Rawat, Facile approach
to synthesize and characterization of silver nanoparticles by
using mulberry leaves extract in aqueous medium and its
application in antimicrobial activity, J. Nanostruct., 7 (2017)
134–140.
- C. Ramteke, T. Chakrabarti, B.K. Sarangi, R. Pandey, Synthesis
of silver nanoparticles from the aqueous extract of leaves of
Ocimum sanctum for enhanced antibacterial activity, J. Chem.,
2013 (2013) 278925, doi: 10.1155/2013/278925.
- J. Singh, P. Kukkar, H. Sammi, M. Rawat, G. Singh, D. Kukkar,
Enhanced catalytic reduction of 4-nitrophenol and Congo red
dye by silver nanoparticles prepared from Azadirachta indica leaf extract under direct sunlight exposure, Part. Sci. Technol.,
37 (2019) 434–443.
- J. Singh, G. Kaur, P. Kaur, R. Bajaj, M. Rawat, A review on green
synthesis and characterization of silver nanoparticles and their
applications: a green nanoworld, World J. Pharm. Pharm. Sci.,
7 (2016) 730–762.
- N.A.N. Mohamad, N.A. Arham, J. Jai, A. Hadi, Plant extract as
reducing agent in synthesis of metallic nanoparticles: a review,
Adv. Mater. Res., 832 (2013) 350–355.
- F. Mujeeb, P. Bajpai, N. Pathak, Phytochemical evaluation,
antimicrobial activity, and determination of bioactive
components from leaves of Aegle marmelos, Biomed. Res. Int.,
2014 (2014) 497606, doi: 10.1155/2014/497606.
- S. Kothari, V. Mishra, S. Bharat, S.D. Tonpay, Antimicrobial
activity and phytochemical screening of serial extracts from
leaves of Aegle marmelos (Linn.), Acta Pol. Pharm.–Drug Res.,
68 (2011) 687–692.
- V.K. Bajpai, P. Agrawal, B.H. Bang, Y.H. Park, Phytochemical
analysis, antioxidant and antilipid peroxidation effects of
a medicinal plant, Adhatoda vasica, Front. Life Sci., 8 (2015)
305–312.
- S. Sankhalkar, V. Vernekar, Quantitative and qualitative analysis
of phenolic and flavonoid content in Moringa oleifera Lam and
Ocimum tenuiflorum L., Pharmacogn. Res., 8 (2016) 16–21.
- S. Agnihotri, S. Mukherji, S. Mukherji, Size-controlled silver
nanoparticles synthesized over the range 5–100 nm using
the same protocol and their antibacterial efficacy, RSC Adv.,
4 (2014) 3974–3983.
- S. Bharti, S. Agnihotri, S. Mukherji, S. Mukherji, Effectiveness
of immobilized silver nanoparticles in inactivation of
pathogenic bacteria, J. Environ. Res. Dev., 9 (2015) 849–856.
- M. Beg, A. Maji, A.K. Mandal, S. Das, M.N. Aktara, P.K. Jha,
M. Hossain, Green synthesis of silver nanoparticles using
Pongamia pinnata seed: characterization, antibacterial property,
and spectroscopic investigation of interaction with human
serum albumin, J. Mol. Recognit., 30 (2017) e2565, doi: 10.1002/jmr.2565.
- K. Kalimuthu, R.S. Babu, D. Venkataraman, M. Bilal,
S. Gurunathan, Biosynthesis of silver nanocrystals by Bacillus
licheniformis, Colloids Surf., B, 65 (2008) 150–153.
- D. Khwannimit, R. Maungchang, P. Rattanakit, Green synthesis
of silver nanoparticles using Clitoria ternatea flower: an efficient
catalyst for removal of Methyl orange, Int. J. Environ. Anal.
Chem., 102 (2020) 5247–5263.
- W. Routray, V. Orsat, Blueberries and their anthocyanins: factors
affecting biosynthesis and properties, Compr. Rev. Food Sci.
Food Saf., 10 (2011) 303–320.
- M.G. Guzmán, J. Dille, S. Godet, Synthesis of silver nanoparticles
by chemical reduction method and their antibacterial activity,
Int. J. Chem. Biomol. Eng., 2 (2009) 104–111.
- S.R. Arote, P.G. Yeole, Pongamia pinnata L: a comprehensive
review, Int. J. Pharm. Tech. Res., 2 (2010) 2283–2290.
- R.S. Priya, D. Geetha, P.S. Ramesh, Antioxidant activity of
chemically synthesized AgNPs and biosynthesized Pongamia
pinnata leaf extract mediated AgNPs – a comparative study,
Ecotoxicol. Environ. Saf., 134 (2016) 308–318.
- R.W. Raut, N.S. Kolekar, J.R. Lakkakula, V.D. Mendhulkar,
S.B. Kashid, Extracellular synthesis of silver nanoparticles
using dried leaves of Pongamia pinnata (L) pierre, Nano-Micro
Lett., 2 (2010) 106–113.
- P. Trouillas, P. Marsal, D. Siri, R. Lazzaroni, J.L. Duroux, A DFT
study of the reactivity of OH groups in quercetin and taxifolin
antioxidants: the specificity of the 3-OH site, Food Chem.,
97 (2006) 679–688.
- M. Sharma, S. Yadav, N. Ganesh, M.M. Srivastava, S. Srivastava,
Biofabrication and characterization of flavonoid-loaded Ag,
Au, Au–Ag bimetallic nanoparticles using seed extract of
the plant Madhuca longifolia for the enhancement in wound
healing bio-efficacy, Prog. Biomater., 8 (2019) 51–63.
- K. Jyoti, M. Baunthiyal, A. Singh, Characterization of silver
nanoparticles synthesized using Urtica dioica Linn. leaves
and their synergistic effects with antibiotics, J. Radiat. Res.
Appl. Sci., 9 (2016) 217–227.
- U. Farooq, J. Ahmed, S.M. Alshehri, T. Ahmad, High surface area
sodium tantalate nanoparticles with enhanced photocatalytic
and electrical properties prepared through polymeric citrate
precursor route, ACS Omega, 4 (2019) 19408−19419.
- H. Anwer, A. Mahmood, J. Lee, K.H. Kim, J.W. Park, A.C. Yip,
Photocatalysts for degradation of dyes in industrial effluents:
opportunities and challenges, Nano Res., 12 (2019) 955–972.
- A.Y. Zhang, W.K. Wang, D.N. Pei, H.Q. Yu, Degradation of
refractory pollutants under solar light irradiation by a robust
and self-protected ZnO/CdS/TiO2 hybrid photocatalyst,
Water Res., 92 (2016) 78–86.
- X.R. Li, J.G. Wang, Y. Men, Z.F. Bian, TiO2 mesocrystal with
exposed (001) facets and CdS quantum dots as an active visible
photocatalyst for selective oxidation reactions, Appl. Catal., B,
187 (2016) 115–121.
- G. Kumari, R. Kamarudheen, E. Zoethout, A. Baldi,
Photocatalytic surface restructuring in individual silver
nanoparticles, ACS Catal., 11 (2011) 3478–3486.
- J.J. Jung, J.W. Jang, J.W. Park, Effect of generation growth on
photocatalytic activity of nano TiO2-magnetic cored dendrimers,
J. Ind. Eng. Chem., 44 (2016) 52–59.
- H. Answer, J.W. Park, Synthesis and characterization of
a heterojunction rGO/ZrO2/Ag3PO4 nanocomposite for
degradation of organic contaminants, J. Hazard. Mater.,
358 (2018) 416–426.
- F.A. Alharthi, A.A. Alghamdi, N. Al-Zaqri, H.S. Alanazi,
A.A. Alsyahi, A.E. Marghany, N. Ahmad, Facile one-pot green
synthesis of Ag–ZnO nanocomposites using potato peel and
their Ag concentration dependent photocatalytic properties,
Sci. Rep., 10 (2020) 20229, doi: 10.1038/s41598-020-77426-y.
- F. Azeez, E. Al-Hetlani, M. Arafa, Y. Abdelmonem, A.A. Nazeer,
M.O. Amin, M. Madkour, The effect of surface charge on
photocatalytic degradation of methylene blue dye using
chargeable titania nanoparticles, Sci. Rep., 8 (2018) 7104,
doi: 10.1038/s41598-018-25673-5.
- M. Siddique, R. Khan, A.F. Khan, R. Farooq, Improved photocatalytic
activity of TiO2 coupling ultrasound for Reactive
Blue 19 degradation, J. Chem. Soc. Pak., 36 (2014) 37–43.
- T. Theivasanthi, M. Alagar, Electrolytic synthesis and
characterization of silver nanopowder, Nano Biomed. Eng.,
4 (2012) 58–65.
- T. Ahmad, R. Phul, P. Alam, I.H. Lone, M. Shahazad, J. Ahmed,
T. Ahamad, S.M. Alshehri, Dielectric, optical and enhanced
photocatalytic properties of CuCrO2 nanoparticles, RSC Adv.,
7 (2017) 27549−27557.
- S. Marimuthu, A.J. Antonisamy, S. Malayandi, K. Rajendran,
P.C. Tsai, A. Pugazhendhi, V.K. Ponnusamy, Silver nanoparticles
in dye effluent treatment: a review on synthesis, treatment
methods, mechanisms, photocatalytic degradation, toxic
effects and mitigation of toxicity, J. Photochem. Photobiol., B,
205 (2020) 111823, doi: 10.1016/j.jphotobiol.2020.111823.
- M.S. Sumi, A. Devadiga, V. Shetty, M.B. Saidutta, Solar
photocatalytically active, engineered silver nanoparticle
synthesis using aqueous extract of mesocarp of Cocos nucifera (Red Spicata Dwarf), J. Exp. Nanosci., 12 (2016) 1–19.
- M. Mavaei, A. Chahardoli, Y. Shokoohinia, A. Khoshroo,
A. Fattahi, One-step synthesized silver nanoparticles
using isoimperatorin: evaluation of photocatalytic, and
electrochemical activities, Sci. Rep., 10 (2020) 1762, doi: 10.1038/s41598-020-58697-x.
- A. Manuel, A. Kirkey, N. Mahdi, K. Shankar, Plexcitonics
– fundamental principles and optoelectronic applications,
J. Mater. Chem. C, 7 (2018) 1821–1853.
- A. Liang, L. Qingye, W. Guiqing, J. Zhiliang, The surface-plasmon-resonance effect of nanogold/silver and its analytical
applications, TrAC, Trends Anal. Chem., 37 (2012) 32–47.
- S. Li, X. Bing, C. Jialin, L. Yanping, Z. Junlei, W. Hengwei,
L. Jianshe, Constructing a plasmonic p-n heterojunction
photocatalyst of 3D Ag/Ag6Si2O7/Bi2MoO6 for efficiently
removing broad-spectrum antibiotics, Sep. Purif. Technol.,
254 (2021) 117579, doi: 10.1016/j.seppur.2020.117579.
- V.G. Belessiotis, G.K. Ahanassios, Plasmonic silver (Ag)-based
photocatalysts for H2 production and CO2 conversion: review,
analysis and perspectives, Renewable Energy, 195 (2022)
497–515.
- N.K. Nasab, Z. Sabouri, S. Ghazal, M. Darroudi, Greenbased
synthesis of mixed-phase silver nanoparticles as an
effective photocatalyst and investigation of their antibacterial
properties, J. Mol. Struct., 1203 (2020) 127411, doi: 10.1016/j.molstruc.2019.127411.
- F. Naaz, U. Farooq, M.M. Khan, T. Ahmad, Multifunctional
efficacy of environmentally benign silver nanospheres for
organic transformation, photocatalysis, and water remediation,
ACS Omega, 5 (2020) 26063–26076.
- J. Singh, A.S. Dhaliwal, Plasmon-induced photocatalytic
degradation of methylene blue dye using biosynthesized silver
nanoparticles as photocatalyst, Environ. Technol., 41 (2018)
1520–1534.
- T. Ahmed, M. Noman, M. Shahid, M.B.K. Niazi, S. Hussain,
N. Manzoor, B. Li, Green synthesis of silver nanoparticles
transformed synthetic textile dye into less toxic intermediate
molecules through LC-MS analysis and treated the actual
wastewater, Environ. Res., 191 (2020) 110142, doi: 10.1016/j.envres.2020.110142.
- N. Nagar, V. Devra, A kinetic study on the degradation and
biodegradability of silver nanoparticles catalyzed Methyl
orange and textile effluents, Heliyon, 5 (2019) e01356,
doi: 10.1016/j.heliyon.2019.e01356.
- M. Sarkar, S. Denrah, M. Das, M. Das, Statistical optimization of
bio-mediated silver nanoparticles synthesis for use in catalytic
degradation of some azo dyes, Chem. Phys. Impact, 3 (2021)
100053, doi: 10.1016/j.chphi.2021.100053.
- S. Raina, A. Roy, N. Bharadvaja, Degradation of dyes using
biologically synthesized silver and copper nanoparticles,
Environ. Nanotechnol. Monit. Manage., 13 (2020) 100278,
doi: 10.1016/j.enmm.2019.100278.
- A. Nautiyal, S.R. Shukla, Silver nanoparticles catalyzed
reductive decolorization of spent dye bath containing acid dye
and its reuse in dyeing, J. Water Process Eng., 22 (2018) 276–285.
- S. Anandan, P.S. Kumar, N. Pugazhenthiran, J. Madhavan,
P. Maruthamuthu, Effect of loaded silver nanoparticles on TiO2
for photocatalytic degradation of Acid Red 88, Sol. Energy
Mater. Sol. Cells, 92 (2008) 929–937.
- R. Karthik, M. Govindasamy, S.M. Chen, Y.H. Cheng,
P. Muthukrishnan, S. Padmavathy, A. Elangovan, Biosynthesis
of silver nanoparticles by using Camellia japonica leaf extract
for the electrocatalytic reduction of nitrobenzene and
photocatalytic degradation of Eosin-Y, J. Photochem. Photobiol.,
B, 170 (2017) 164–172.