References

  1. R. Agarwal, P.K. Garg, Remote sensing and GIS-based groundwater potential and recharge zones mapping using multicriteria decision making technique, Water Resour. Manage., 30 (2016) 243–260.
  2. K. Mahmood, A.D. Rana, S. Tariq, S. Kanwal, R. Ali, A. Haidar, Groundwater levels susceptibility to degradation in Lahore metropolitan, Sci. Int., 25 (2013) 123–126.
  3. K. Mahmood, R.M. Khan, M. Ashfaq, H. Ahsan, Z. Shakoor, M. Tanveer, Assessment of the intrinsic vulnerability to groundwater contamination in Lahore, Pakistan, Pak. J. Sci., 58 (2015) 8–16.
  4. H. Hashemi, C.B. Uvo, R. Berndtsson, Coupled modeling approach to assess climate change impacts on groundwater recharge and adaptation in arid areas, Hydrol. Earth Syst. Sci., 19 (2015) 4165–4181.
  5. M.A. Kahlown, A. Majeed, Water Resources in the South: Present Scenario and Future Prospects, COMSATS’ Series of Publications on Science and Technology, Pakistan, 2003. Available at http://www.https://comsats.org/Publications/ Books_SnT_Series/03.%20Water%20Resources%20in%20 the%20South%20-%20Present%20Scenario%20and%20 Future%20Prospects%20(Nov.%202003).pdf
  6. U. Khan, H. Faheem, Z. Jiang, M. Wajid, M. Younas, B. Zhang, Integrating a GIS-based multi-influence factors model with hydro-geophysical exploration for groundwater potential and hydrogeological assessment: a case study in the Karak Watershed, Northern Pakistan, Water, 13 (2021) 1–34.
  7. D. Raza, R.B. Karim, A. Nasir, S.U. Khan, M.H. Zubair, R. Amir, Satellite based surveillance of LULC with deliberation on urban land surface temperature and precipitation pattern changes of Karachi, Pakistan, J. Geogr. Nat. Disaster, 9 (2019) 1–8.
  8. A. Kumar, A.P. Krishna, Assessment of groundwater potential zones in coal mining impacted hard-rock terrain of India by integrating geospatial and Analytic Hierarchy Process (AHP) approach, Geocarto Int., 33 (2018) 105–129.
  9. M.A. Rahman, B. Rusteberg, R.C. Gogu, J.P. Lobo Ferreira, M. Sauter, A new spatial multi-criteria decision support tool for site selection for implementation of managed aquifer recharge, J. Environ. Manage., 99 (2012) 61–75.
  10. M.O. Al-Djazouli, K. Elmorabiti, A. Rahimi, O. Amellah, O.A.M. Fadil, Delineating of groundwater potential zones based on remote sensing, GIS and analytical hierarchical process: a case of Waddai, Eastern Chad, GeoJournal, 86 (2021) 1881–1894.
  11. V. Aslan, M.F. Dilekoğlu, Groundwater potential mapping with geographical information techniques for a sustainable environment in Haliliye Basin, Turkey, Int. Environ. Sci. Technol., 10 (2022) 10337–10352.
  12. D. Souissi, M.H. Msaddek, L. Zouhri, I. Chenini, M. El May, M. Dlala, Mapping groundwater recharge potential zones in arid region using GIS and Landsat approaches, southeast Tunisia, Hydrol. Sci. J., 63 (2018) 251–268.
  13. P.K. Singh, A.K. Singh, A. Vijhani, Groundwater Potential Zone Mapping Approach in Chandraprabha Basin UP Using Remote Sensing and GIS Technology, 15th Esri India User Conference, Delhi, 2014, pp. 1–8.
  14. H.F. Yeh, C.H. Lee, K.C. Hsu, P.H. Chang, GIS for the assessment of the groundwater recharge potential zone, Environ. Geol., 58 (2009) 185–195.
  15. T.L. Saaty, A scaling method for priorities in hierarchical structures, J. Math. Psychol., 15 (1977) 234–281.
  16. R. Aggarwal, S. Kaur, D. Juyal, Micro level assessment of water resources in Bist Doab tract of Indian Punjab, J. Agric. Eng., 46 (2009) 33–39.
  17. N. Das, S. Mukhopadhyay, Application of Multi-Criteria Decision-Making technique for the assessment of groundwater potential zones: a study on Birbhum district, West Bengal, India, Environ. Dev. Sustainability, 22 (2020) 931–955.
  18. D. Raza, S. Mirza, H. Shu, A. Khan, A. Tariq, S.U. Khan, H. Aeman, F. Akmal, Geospatial approach for petrol pumps valuation with urban prediction modelling by cellular automata in creeds of metropolitan expanse, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., 10 (2023) 59–67.
  19. M. Nasar-U-Minallah, Exploring the relationship between land surface temperature and land use change in Lahore using Landsat data, Pak. J. Sci., 63 (2020) 188–200.
  20. T.H. Ahmed, A.M. Al-Manmi, Delineation of groundwater productivity zones with the integration of GIS and remote sensing methods, Bazian Basin, Sulaymaniyah, Kurdistan Region, Iraq. J. Basrah Res. (Sci.)., 45 (2019) 289–309.
  21. A.M. Hachem, E. Ali, O. Abdelhadi, H. Abdellah, H, K. Said, Using remote sensing and GIS-multicriteria decision analysis for groundwater potential mapping in the Middle Atlas Plateaus, Morocco, Res. J. Recent Sci., 4 (2015) 33–41.
  22. A. Ghalib, S. Mirza, D. Raza, A. Rafi, F. Ali, Valuation of socioeconomic indicators for progressing urban sustainability under distinctive rubrics, Trans. GIS, 27 (2023) 1318–1337.
  23. G. Maheswaran, A. Geetha Selvarani, K. Elangovan, Groundwater resource exploration in Salem District, Tamil Nadu using GIS and remote sensing, J. Earth Syst. Sci., 125 (2016) 311–328.
  24. C.B. Silwal, D. Pathak, Review on practices and state of the art methods on delineation of groundwater potential using GIS and remote sensing, Geol. Soc. Am. Bull., 20 (2018) 7, doi: 10.3126/bdg.v20i0.20717.
  25. A. Labib, Chapter 3 – Introduction to the Analytic Hierarchy Process, A. Labib, Ed., Learning from Failures: Decision Analysis of Major Disasters, Butterworth-Heinemann, 2014, pp. 33–44. Available at https://doi.org/10.1016/b978-0-12-416727-8.00003-5
  26. J. Aguarón, M.T. Escobar, J.M. Moreno-Jiménez, A. Turón, AHPgroup decision making based on consistency, Mathematics, 7 (2019) 242, doi: 10.3390/math7030242.
  27. M. Gupta, P.K. Srivastava, Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India, Water Int., 35 (2010) 233–245.
  28. A. Rashid, D.X. Guan, A. Farooqi, S. Khan, S. Zahir, S. Jehan, S.A. Khattak, M.S. Khan, R. Khan, Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan, Sci. Total Environ., 635 (2018) 203–215.
  29. E. Agarwal, R. Agarwal, R.D. Garg, P.K. Garg, Delineation of groundwater potential zone: an AHP/ANP approach, J. Earth Syst. Sci., 122 (2013) 887–898.
  30. R.K. Prasad, N.C. Mondal, P. Banerjee, M.V. Nandakumar, V.S. Singh, Deciphering potential groundwater zone in hard rock through the application of GIS, Environ. Geol., 55 (2008) 467–475.
  31. I.P. Senanayake, D.M.D.O.K. Dissanayake, B.B. Mayadunna, W.L. Weerasekera, An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques, Geosci. Front., 7 (2016) 115–124.
  32. H. Nampak, B. Pradhan, M.A. Manap, Application of GIS based data driven evidential belief function model to predict groundwater potential zonation, J. Hydrol., 513 (2014) 283–300.
  33. H.F. Yeh, Y.S. Cheng, H.I. Lin, C.H. Lee, Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan, Sustainable Environ. Res., 26 (2016) 33–43.
  34. P. Arulbalaji, B. Gurugnanam, An integrated study to assess the groundwater potential zone using geospatial tool in Salem District, South India, J. Hydrogeol. Hydrol. Eng., 5 (2016) 1–7.
  35. E.A. Bahiru, T. Woldai, Integrated geological mapping approach and gold mineralization in Buhweju area, Uganda, Ore Geol. Rev., 72 (2016) 777–793.
  36. A. Saepuloh, H. Haeruddin, M.N. Heriawan, T. Kubo, K. Koike, D. Malik, Application of lineament density extracted from dual orbit of synthetic aperture radar (SAR) images to detecting fluids paths in the Wayang Windu Geothermal Field (West Java, Indonesia), Geothermics, 72 (2018) 145–155.
  37. R.R. Krishna, D. Kishan, J. Sarup, Lineament extraction and lineament density assessment of Omkareshwar, MP, India, using GIS Techniques, Int. J. Res. Eng., 5 (2015) 717–720.
  38. N.S. Magesh, N. Chandrasekar, J.P. Soundranayagam, Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques, Geosci. Front., 3 (2012) 189–196.
  39. A. Mehmood, A. Qadir, M. Ehsan, A. Ali, D. Raza, H Aziz, Hydrogeological studies and evaluation of surface and groundwater quality of Khyber Pakhtunkhwa, Pakistan, Desal. Water Treat., 244 (2021) 41–54.
  40. A.D. Tolche, Groundwater potential mapping using geospatial techniques: a case study of Dhungeta-Ramis sub-basin, Ethiopia, Geol. Ecol. Landscapes, 5 (2021) 65–80.
  41. O.A. Fashae, M.N. Tijani, A.O. Talabi, O.I. Adedeji, Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: an integrated GIS and remote sensing approach, Appl. Water Sci., 4 (2014) 19–38.
  42. N.S. Magesh, N. Chandrasekar, J.P. Soundranayagam, Morphometric evaluation of Papanasam and Manimuthar watersheds, parts of Western Ghats, Tirunelveli district, Tamil Nadu, India: a GIS approach, Environ. Earth Sci., 64 (2011) 373–381.
  43. R.W. Aslam, H. Shu, A. Yaseen, Monitoring the population change and urban growth of four major Pakistan cities through spatial analysis of open source data, Ann. GIS, 29 (2023) 355–367.
  44. K.S. Rawat, S.K. Singh, M.I. Singh, B.L. Garg, Corrigendum to “Comparative evaluation of vertical accuracy of elevated points with ground control points from ASTERDEM and SRTM DEM with respect to CARTOSAT-1DEM”, Remote Sens. Appl.: Soc. Environ., 13 (2020) 289–297.
  45. F. Abdalla, Mapping of groundwater prospective zones using remote sensing and GIS techniques: a case study from the Central Eastern Desert, Egypt, J. Afr. Earth Sci., 70 (2012) 8–17.
  46. R. Çelik, Evaluation of groundwater potential by GIS-based multicriteria decision making as a spatial prediction tool: case study in the Tigris River Batman-Hasankeyf Sub-Basin, Turkey, Water, 11 (2019) 1–16.
  47. H.C. Nair, D. Padmalal, A. Joseph, P.G. Vinod, Delineation of groundwater potential zones in river basins using geospatial tools—an example from Southern Western Ghats, Kerala, India, J. Geovisualization Spatial Anal., 1 (2017) 1–16.
  48. R.W. Aslam, H. Shu, A. Yaseen, A. Sajjad, S.Z.U. Abidin, Identification of time-varying wetlands neglected in Pakistan through remote sensing techniques, Environ. Sci. Pollut. Res., 30 (2023) 74031–74044.
  49. G.R. Walker, L. Zhang, T.W. Ellis, T.J. Hatton, C. Petheram, Estimating impacts of changed land use on recharge: review of modelling and other approaches appropriate for management of dryland salinity, Hydrogeol. J., 10 (2002) 68–90.
  50. D. Raza, H. Shu, S.U. Khan, M. Ehsan, U. Saeed, H. Aslam, R.W. Aslam, M. Arshad, Comparative geospatial approach for agricultural crops identification in interfluvial plain-a case study of Sahiwal district, Pakistan, Pak. J. Agric. Sci., 59 (2022) 567–578.
  51. USGS, Infiltration and the Water Cycle. Water Science School, U.S. Geological Survey, 2021. Available at https:// www.usgs.gov/special-topics/water-science-school/science/ infiltration-and-water-cycle
  52. B. Etikala, V. Golla, P. Li, S. Renati, Deciphering groundwater potential zones using MIF technique and GIS:
    a study from Tirupati area, Chittoor District, Andhra Pradesh, India, Hydrol. Res., 1 (2019) 1–7.
  53. D.R. Montgomery, E.D. William, Source areas, drainage density, and channel initiation, Water Resour. Res., 25 (1989) 1907–1918.
  54. H. Ozdemir, D. Bird, Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods, Environ. Geol., 56 (2009) 1405–1415.
  55. M.A. Manap, W.N.A. Sulaiman, M.F. Ramli, B. Pradhan, N. Surip, A knowledge-driven GIS modeling technique for groundwater potential mapping at the Upper Langat Basin, Malaysia, Arabian J. Geosci., 6 (2013) 1621–1637.
  56. G. Siva, N. Nasir, R. Selvakumar, Delineation of groundwater potential zone in Sengipatti for Thanjavur District using analytical hierarchy process, IOP Conf. Ser.: Earth Environ. Sci., 80 (2017) 1–13.
  57. S. Kaliraj, N. Chandrasekar, N.S. Magesh, Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique, Arabian J. Geosci., 7 (2014) 1385–1401.
  58. Y.V.K. Reddy, D.S.V. Lakshmi, Identification of groundwater potential zones using GIS and remote sensing, Int. J. Pure Appl. Math., 119 (2018) 3195–3210.
  59. K.A.N. Adiat, M.N.M. Nawawi, K. Abdullah, Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool - a case of predicting potential zones of sustainable groundwater resources, J. Hydrol., 440 (2012) 75–89.
  60. M. Mokarram, G. Roshan, S. Negahban, Landform classification using topography position index (case study: salt dome of Korsia-Darab plain, Iran), Model. Earth Syst. Environ., 1 (2015) 1–7.
  61. K. Beven, TOPMODEL: a critique, Hydrol. Processes, 11 (1997) 1069–1085.
  62. P. Arulbalaji, D. Padmalal, K. Sreelash, GIS and AHP techniques based delineation of groundwater potential zones: a case study from Southern Western Ghats, India, Sci. Rep., 9 (2019) 1–17.
  63. S. Arunbose, Y. Srinivas, S. Rajkumar, N.C. Nair, S. Kaliraj, Remote sensing, GIS and AHP techniques-based investigation of groundwater potential zones in the Karumeniyar river basin, Tamil Nadu, southern India, Groundwater Sustainable Dev., 14 (2021) 100586, doi: 10.1016/j.gsd.2021.100586.
  64. A. Khoshand, H. Kamalan, H. Rezaei, Application of analytical hierarchy process (AHP) to assess options of energy recovery from municipal solid waste: a case study in Tehran, Iran, J. Mater. Cycles Waste Manage., 20 (2018) 1689–1700.
  65. K. Muthu, K. Sudalaimuthu, Integration of remote sensing, GIS, and AHP in demarcating groundwater potential zones in Pattukottai Taluk, Tamilnadu, India, Arabian J. Geosci., 14 (2021) 1–18.
  66. D. Machiwal, M.K. Jha, B.C. Mal, Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques, Water Resour. Manage., 25 (2011) 1359–1386.
  67. A.B. Doke, R.B. Zolekar, H. Patel, S. Das, Geospatial mapping of groundwater potential zones using Multi-Criteria Decision-Making AHP approach in a hardrock basaltic terrain in India, Ecol. Indic., 127 (2021) 107685, doi: 10.1016/j.ecolind.2021.107685.
  68. A. Legesse Kura, H. Abrar, E. Esayas Dube, D. Likisa Beyene, AHP based analysis of groundwater potential in the western escarpment of the Ethiopian Rift Valley, Geol. Ecol. Landscapes, 7 (2023) 175–188.
  69. C.J.F. Chung, A.G. Fabbri, Validation of spatial prediction models for landslide hazard mapping, Nat. Hazards, 30 (2003) 451–472.
  70. M. Mohammady, H.R. Pourghasemi, B. Pradhan, Landslide susceptibility mapping at Golestan Province, Iran:
    a comparison between frequency ratio, Dempster-Shafer, and weights-ofevidence models, J. Asian Earth Sci., 61 (2012) 221–236.
  71. H.R. Pourghasemi, B. Pradhan, C. Gokceoglu, Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran, Nat. Hazards, 63 (2012) 965–996.
  72. A.D. Regmi, K.C. Devkota, K. Yoshida, B. Pradhan, H.R. Pourghasemi, T. Kumamoto, A. Akgun, Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya, Arabian J. Geosci., 7 (2014) 725–742.
  73. Z.S. Pourtaghi, H.R. Pourghasemi, GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran, Hydrogeol. J., 22 (2014) 643–662.
  74. A. Yalcin, GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations, CATENA, 72 (2008) 1–12.
  75. H.R. Pourghasemi, H.R. Moradi, S.M. Fatemi Aghda, Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances, Nat. Hazards, 69 (2013) 749–779.
  76. A. Mahmood, W. Muqbool, M.W. Mumtaz, F. Ahmad, Application of multivariate statistical techniques for the characterization of groundwater quality of Lahore, Gujranwala and Sialkot (Pakistan), Pak. J. Anal. Environ. Chem., 12 (2011) 102–113.